Стр. 1
 

46 страниц

517.00 ₽

Купить официальный бумажный документ с голограммой и синими печатями. подробнее

Официально распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО "ЦНТИ Нормоконтроль".

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

Способы доставки

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Устанавливает термины и определения понятий в области теории вероятностей и математической статистики

Введен впервые (ИУС 04-2001)

Оглавление

1a Область применения 1b Нормативные ссылки 1 Термины, используемые в теории вероятностей 2 Общие статистические термины 3 Общие термины, относящиеся к наблюдениям и к результатам проверок 4 Общие термины, относящиеся к выборочным методам Алфавитный указатель терминов на русском языке Алфавитный указатель терминов на английском языке Алфавитный указатель терминов на французском языке Приложение А Библиография

Показать даты введения Admin

ГОСТ Р 50779.10-2000

(ИСО 3534.1-93)

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Статистические методы

ВЕРОЯТНОСТЬ И ОСНОВЫ СТАТИСТИКИ

Термины и определения

ГОССТАНДАРТ РОССИИ

Москва

ПРЕДИСЛОВИЕ

1. РАЗРАБОТАН И ВНЕСЕН Техническим комитетом по стандартизации ТК 125 «Статистические методы в управлении качеством продукции»,

Акционерным обществом «Научно-исследовательский центр контроля и диагностики технических систем» (АО «НИЦ КД»).

2. ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 29 декабря 2000 г. № 429-ст.

3. Разделы настоящего стандарта, за исключением разделов 1a, 1b и приложения А, представляют собой аутентичный текст международного стандарта ИСО 3534.1-93 «Статистика. Словарь и условные обозначения. Часть 1. Вероятность и основные статистические термины».

4. ВВЕДЕН ВПЕРВЫЕ.

СОДЕРЖАНИЕ

1a. Область применения 2

1b. Нормативные ссылки 2

1. ТЕРМИНЫ, ИСПОЛЬЗУЕМЫЕ В ТЕОРИИ ВЕРОЯТНОСТЕЙ 3

2. ОБЩИЕ СТАТИСТИЧЕСКИЕ ТЕРМИНЫ 14

3. ОБЩИЕ ТЕРМИНЫ, ОТНОСЯЩИЕСЯ К НАБЛЮДЕНИЯМ И К РЕЗУЛЬТАТАМ ПРОВЕРОК 29

4. ОБЩИЕ ТЕРМИНЫ, ОТНОСЯЩИЕСЯ К ВЫБОРОЧНЫМ МЕТОДАМ 33

АЛФАВИТНЫЙ УКАЗАТЕЛЬ ТЕРМИНОВ НА РУССКОМ ЯЗЫКЕ 36

АЛФАВИТНЫЙ УКАЗАТЕЛЬ ТЕРМИНОВ НА АНГЛИЙСКОМ ЯЗЫКЕ 50

АЛФАВИТНЫЙ УКАЗАТЕЛЬ ТЕРМИНОВ НА ФРАНЦУЗСКОМ ЯЗЫКЕ 63

ПРИЛОЖЕНИЕ А 77

(справочное) 77

БИБЛИОГРАФИЯ 77


ВВЕДЕНИЕ

Установленные в стандарте термины расположены в систематизированном порядке и отражают систему понятий в области теории вероятностей и математической статистики.

Для каждого понятия установлен один стандартизованный термин.

Недопустимые к применению термины-синонимы приведены в круглых скобках после стандартизованного термина и обозначены пометой «Ндп.».

Термины-синонимы без пометы «Ндп.» приведены в качестве справочных данных и не являются стандартизованными.

Заключенная в круглые скобки часть термина может быть опущена при использовании термина в документах по стандартизации.

Наличие квадратных скобок в терминологической статье означает, что в нее включены два термина, имеющих общие терминоэлементы.

В алфавитных указателях данные термины приведены отдельно с указанием номера статьи.

Приведенные определения можно при необходимости изменить, вводя в них производные признаки, раскрывая значения используемых в них терминов, указывая объекты, входящие в объем определяемого понятия. Изменения не должны нарушать объем и содержание понятий, определенных в данном стандарте.

Стандартизованные термины набраны полужирным шрифтом, их краткие формы, представленные аббревиатурой, - светлым, а синонимы - курсивом.

В стандарте приведены иноязычные эквиваленты стандартизованных терминов на английском (en) и французском (fr) языках.

В настоящем стандарте многие термины определены одновременно в разделе 1 и в разделе 2 в зависимости от того, имеют ли они применение:

- теоретическое - в вероятностном смысле;

- практическое - в статистическом смысле.

Термины, определенные в разделе 1, сформулированы на языке свойств генеральных совокупностей. В разделе 2 определения отнесены к множеству наблюдений. Многие из них основаны на выборочных наблюдениях из некоторой совокупности. Для того чтобы различать параметры генеральной совокупности и результаты вычислений оценок параметров по выборочным данным, к определениям ряда терминов из раздела 2 добавлено слово «выборочный» или «эмпирический».

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Статистические методы

ВЕРОЯТНОСТЬ И ОСНОВЫ СТАТИСТИКИ

Термины и определения

Statistical methods. Probability and general statistical terms.
Terms and definitions

Дата введения 2001-07-01

1a. Область применения

Настоящий стандарт устанавливает термины и определения понятий в области теории вероятностей и математической статистики.

Термины, установленные настоящим стандартом, обязательны для применения во всех видах документации и литературы по статистическим методам, входящих в сферу работ по стандартизации и (или) использующих результаты этих работ.

1b. Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ Р 50779,11-2000 (ИСО 3534.2-93) Статистические методы. Статистическое управление качеством. Термины и определения.

ИСО 31.0-921) Величины и единицы измерения. Часть 0. Общие принципы.

ИСО 31.1-921) Величины и единицы измерения. Часть 1. Пространство и время.

ИСО 31.2-921) Величины и единицы измерения. Часть 2. Периодические явления.

ИСО 31.3-921) Величины и единицы измерения. Часть 3. Механика.

ИСО 31.4-921) Величины и единицы измерения. Часть 4. Термообработка.

ИСО 31.5-921) Величины и единицы измерения. Часть 5. Электричество и магнитное излучение.

ИСО 31.6-921) Величины и единицы измерения. Часть 6. Световое и электромагнитное излучение.

ИСО 31.7-921) Величины и единицы измерения. Часть 7. Акустика.

ИСО 31.8-921) Величины и единицы измерения. Часть 8. Физическая химия и молекулярная физика.

ИСО 31.9-921) Величины и единицы измерения. Часть 9. Атомная и ядерная физика.

ИСО 31.10-921) Величины и единицы измерения. Часть 10. Ядерные реакции и ионовое излучение.

ИСО 31.11-921) Величины и единицы измерения. Часть 11. Математические знаки и символы, используемые в физических науках.

ИСО 31.12-921) Величины и единицы измерения. Часть 12. Число характеристик.

ИСО 31.13-921) Величины и единицы измерения. Часть 13. Физика твердого тела.

ИСО 3534.3-851) Статистика. Словарь и условные обозначения. Часть 3. Планирование экспериментов.

ИСО 5725.1-911) Точность методов и результатов измерений. Часть 1. Общие принципы и определения

1) Оригиналы международных стандартов ИСО - во ВНИИКИ Госстандарта России.

1. ТЕРМИНЫ, ИСПОЛЬЗУЕМЫЕ В ТЕОРИИ ВЕРОЯТНОСТЕЙ

1.1 вероятность

Действительное число в интервале от 0 до 1, относящееся к случайному событию.

Примечания

1. Число может отражать относительную частоту в серии наблюдений или степень уверенности в том, что некоторое событие произойдет. Для высокой степени уверенности вероятность близка к единице.

2. Вероятность события А обозначают Рr (А) или Р (А)

en probability

fr probabilite

1.2. случайная величина

Переменная, которая может принимать любое значение из заданного множества значений и с которой связано распределение вероятностей.

Примечание - Случайную величину, которая может принимать только отдельные значения, называют дискретной. Случайную величину, которая может принимать любые значения из конечного или бесконечного интервала, называют непрерывной.

en random variable; variate

fr variable aleatoire

1.3. распределение (вероятностей)

Функция, определяющая вероятность того, что случайная величина примет какое-либо заданное значение или будет принадлежать заданному множеству значений.

Примечание - Вероятность того, что случайная величина находится в области ее изменения, равна единице

en probability distribution

fr loi de probabilite

1.4. функция распределения

Функция, задающая для любого значения х вероятность того, что случайная величина Х меньше или равна х,

en distribution function

fr fonction de repartition

1.5. плотность распределения (вероятностей)

Первая производная, если она существует, функции распределения непрерывной случайной величины

Примечание - называется элементом вероятности

en probability density function

fr fonction de densite de probabilit

1.6. функция распределения (вероятностей) масс

Функция, дающая для каждого значения xi дискретной случайной величины Х вероятность pi того, что случайная величина равна хi:

en probability mass function

fr fonction de masse

1.7. двумерная функция распределения

Функция, дающая для любой пары значений х, у вероятность того, что случайная величина X будет меньше или равна х, а случайная величина Y - меньше или равна y:

Примечание - Выражение в квадратных скобках означает пересечение событий Х £ х и Y £ у

en bivariate distribution function

fr fonction de repartition a deux variables

1.8. многомерная функция распределения

Функция, дающая для любого набора значений х, у, ... вероятность того, что несколько случайных величин X, Y, ... будут меньше или равны соответствующим значениям х, у, ...:

en multivariate distribution function

fr fonction de repartition a plusieurs variables

1.9. маргинальное распределение (вероятностей)

Распределение вероятностей подмножества k1 из множества k случайных величин, при этом остальные (k - k1) случайные величины принимают любые значения в соответствующих множествах возможных значений.

Примечание - Для распределения вероятностей трех случайных величин X, Y, Z существуют:

- три двумерных маргинальных распределения, т.е. распределения пар (X, Y), (X, Z), (Y, Z);

- три одномерных маргинальных распределения, т.е. распределения X, Y и Z.

en marginal probability distribution

fr loi de probabilite marginale

1.10. условное распределение (вероятностей)

Распределение подмножества k1 < k случайных величин из распределения случайных величин, когда остальные (k - k1) случайные величины принимают постоянные значения.

Примечание - Для распределения вероятностей двух случайных величин X, Y существуют:

- условные распределения X: некоторое конкретное распределение представляют как «распределение X при Y = y»; - условные распределения Y: некоторое конкретное распределение представляют как «распределение Y при Х = х».

en conditional probability distribution

fr loi de probabilite conditionnelle

1.11. независимость (случайных величин)

Две случайные величины Х и Y независимы, если их функции распределения представлены как

где F (х, ¥) = G (х) и F (¥, у) = Н (у) - маргинальные функции распределения X и Y, соответственно, для всех пар (х, у).

Примечания:

1. Для непрерывной независимой случайной величины ее плотность распределения, если она существует, выражают как

где g (x) и h (у) - маргинальные плотности распределения Х и Y, соответственно, для всех пар (х, у).

Для дискретной независимой случайной величины ее вероятности выражают как

для всех пар (xi, уj).

2. Два события независимы, если вероятность того, что они оба произойдут, равна произведению вероятностей этих двух событий.

en independence

fr independance

1.12. параметр

Величина, используемая в описании распределения вероятностей некоторой случайной величины.

en parameter

fr parametre

1.13. корреляция

Взаимозависимость двух или нескольких случайных величин в распределении двух или нескольких случайных величин.

Примечание - Большинство статистических мер корреляции измеряют только степень линейной зависимости.

en correlation

fr correlation

1.14. квантиль (случайной величины)

Значение случайной величины хp, для которого функция распределения принимает значение p (0 £ p £ 1) или ее значение изменяется скачком от меньшего p до превышающего р.

Примечания

1. Если значение функции распределения равно p во всем интервале между двумя последовательными значениями случайной величины, то любое значение в этом интервале можно рассматривать как p-квантиль.

2. Величина хp будет p-квантилем, если

3. Для непрерывной величины p-квантиль - это то значение переменной, ниже которого лежит р-я доля распределения.

4. Процентиль - это квантиль, выраженный в процентах.

en quantile

fr quantile

1.15. медиана

Квантиль порядка p = 0,5.

en median

fr mediane

1.16. квартиль

Квантиль порядка p = 0,25 или p = 0,75.

en quartile

fr quartile

1.17. мода

Значение случайной величины, при котором функция распределения вероятностей масс или плотность распределения вероятностей имеет максимум.

Примечание - Если имеется единственная мода, то распределение вероятностей случайной величины называется унимодальным; если имеется более чем одна мода, оно называется многомодальным, в случае двух мод - бимодальным.

en mode

fr mode

1.18. математическое ожидание (случайной величины)

а) Для дискретной случайной величины X, принимающей значения xi с вероятностями pi, математическое ожидание, если оно существует, определяют формулой

где суммируют все значения xi, которые может принимать случайная величина X.

b) Для непрерывной случайной величины X, имеющей плотность f (x), математическое ожидание, если оно существует, определяют формулой

где интеграл берут по всему интервалу (интервалам) изменения Х.

en expectation; expected value; mean

fr esperance mathematique; valeur esperee; moyenne

1.19. маргинальное математическое ожидание

Математическое ожидание маргинального распределения случайной величины.

en marginal expectation

fr esperance mathematique marginale

1.20. условное математическое ожидание

Математическое ожидание условного распределения случайной величины.

en conditional expectation

fr esperance mathematique conditionnelle

1.21. центрированная случайная величина

Случайная величина, математическое ожидание которой равно нулю.

Примечание - Если случайная величина Х имеет математическое ожидание m, то соответствующая центрированная случайная величина равна X - m.

en centered random variable

fr variable aleatoire centree

1.22. дисперсия (случайной величины)

Математическое ожидание квадрата центрированной случайной величины

en variance

fr variance

1.23. стандартное отклонение (случайной величины)

Положительный квадратный корень из значения дисперсии

en standard deviation

fr ecart-type

1.24. коэффициент вариации (случайной величины)

Отношение стандартного отклонения к абсолютному значению математического ожидания случайной величины

en coefficient of variation

fr coefficient de variation

1.25. стандартизованная случайная величина

Случайная величина, математическое ожидание которой равно нулю, а стандартное отклонение - единице.

Примечания

1. Если случайная величина X имеет математическое ожидание m и стандартное отклонение s, то соответствующая стандартизованная случайная величина равна

Распределение стандартизованной случайной величины называется стандартным распределением.

2. Понятие стандартизованной случайной величины является частным случаем «приведенной случайной величины», определяемой относительно центрального значения и параметра масштаба, отличных от математического ожидания и стандартного отклонения.

en standardized random variable

fr variable aleatoire centree reduite

1.26. момент1) порядка q относительно начала отсчета

Математическое ожидание случайной величины в степени q для одномерного распределения

Примечание - Момент первого порядка - математическое ожидание случайной величины Х.

en moment of order q about the origin

fr moment d’ordre q par rapport a l’origine

1.27. момент1) порядка q относительно а

Математическое ожидание величины (X - а) в степени q для одномерного распределения

en moment of order q about an origin a

fr moment d’ordre q a partir d’une origine a

1.28. центральный момент порядка q

Математическое ожидание центрированной случайной величины для одномерного распределения

Примечание - Центральный момент второго порядка - дисперсия случайной величины Х.

en central moment of order q

fr moment centre d’ordre q

1.29. совместный момент1) порядков q и s относительно начала отсчета

Математическое ожидание произведения случайной величины Х в степени q и случайной величины Y в степени s для двумерного распределения

Примечание - Совместный момент порядков 1 и 0 - маргинальное математическое ожидание случайной величины X.

Совместный момент порядков 0 и 1 - маргинальное математическое ожидание случайной величины Y.

en joint moment of orders q and s about the origin

fr moment d’ordres q et s a partir de l’origine

1.30. совместный момент1) порядков q и s относительно точки (а, b)

Математическое ожидание произведения случайной величины (X - а) в степени q и случайной величины (Y - b) в степени s для двумерного распределения:

en joint moment of orders q and s about an origin (a, b)

fr moment d’ordres q et s a partir d’une origine (a, b)

1.31. совместный центральный момент1) порядков q и s

Математическое ожидание произведения центрированной случайной величины (X - mx) в степени q и центрированной случайной величины (Y - my)в степени s для двумерного распределения:

Примечание - Совместный центральный момент порядков 2 и 0 - дисперсия маргинального распределения X.

Совместный центральный момент порядков 0 и 2 - дисперсия маргинального распределения Y.

1) Если при определении моментов значения случайных величин X, X - a, Y, Y - b и т.д. заменяют на их абсолютные значения |Х|, |Х - а|, |Y|, |Y - b| и т.д., то моменты называют «абсолютными моментами».

en joint central moment of orders q and s

fr moment centre d’ordres q et s

1.32. ковариация; корреляционный момент

Совместный центральный момент порядков 1 и 1:

en covariance

fr covariance

1.33. коэффициент корреляции

Отношение ковариации двух случайных величин к произведению их стандартных отклонений:

Примечания

1. Эта величина всегда будет принимать значения от минус 1 до плюс 1, включая крайние значения.

2. Если две случайные величины независимы, коэффициент корреляции между ними равен нулю только в случае двумерного нормального распределения.

en correlation coefficient

fr coefficient de correlation

1.34. кривая регрессии (Y по X)

Для двух случайных величин Х и Y кривая, отображающая зависимость условного математического ожидания случайной величины Y при условии Х = х для каждой переменной х.

Примечание - Если кривая регрессии Y по X представляет собой прямую линию, то регрессию называют «простой линейной». В этом случае коэффициент линейной регрессии Y по Х - это коэффициент наклона перед х в уравнении линии регрессии.

en regression curve

fr courbe de regression

1.35. поверхность регрессии (Z по Х и Y)

Для трех случайных величин X, Y, Z поверхность, отображающая зависимость условного математического ожидания случайной величины Z при условии Х = х и Y = y для каждой пары переменных (х, у).

Примечания

1. Если поверхность регрессии представляет собой плоскость, то регрессию называют «линейной». В этом случае коэффициент линейной регрессии Z по Х - это коэффициент перед х в уравнении регрессии.

2. Определение можно распространить на число случайных величин более трех.

en regression surface

fr surface de regression

1.36. равномерное распределение; прямоугольное распределение

а) Распределение вероятностей непрерывной случайной величины, плотность распределения вероятности которой постоянна на конечном интервале [а, b] и равна нулю вне его.

b) Распределение вероятностей дискретной случайной величины такое, что

для i = 1, 2, ..., n.

Примечание - Равномерное распределение дискретной случайной величины имеет равные вероятности для каждого из п значений, то есть

для j = 1, 2, ..., n.

en uniform distribution; rectangular distribution

fr loi uniforme; loi rectangulare

1.37. нормальное распределение; распределение Лапласа - Гаусса

Распределение вероятностей непрерывной случайной величины Х такое, что плотность распределения вероятностей при - ¥ < х < + ¥ принимает действительное значение

Примечание - m - математическое ожидание; s - стандартное отклонение нормального распределения.

en normal distribution; Laplace - Gauss distribution

fr loi normale; loi de Laplace - Gauss

1.38. стандартное нормальное распределение; стандартное распределение Лапласа - Гаусса

Распределение вероятностей стандартизованной нормальной случайной величины U, плотность распределения которой