Товары в корзине: 0 шт Оформить заказ
Стр. 1 

27 страниц

456.00 ₽

Купить ГОСТ Р МЭК 61603-7-2015 — бумажный документ с голограммой и синими печатями. подробнее

Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО "ЦНТИ Нормоконтроль"

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

Способы доставки

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Устанавливает характеристики цифровых многоканальных систем передачи аудиосигналов с несколькими несущими в качестве расширения для систем конференц-связи или аналогичных систем, работающих в частотных полосах от 45 кГц до МГц и от 2 до 6 МГц.

 Скачать PDF

Идентичен (IDT) IEC 61603-7:2003

Оглавление

1 Область применения

2 Нормативные ссылки

3 Термины и определения

4 Сокращения

5 Пояснения к терминам и общая информация

6 Системные ограничения (возможности)

7 Основная концепция системы

8 Протокол

8.1 Системный подход (контекст)

8.2 Физический уровень

8.3 Канальный уровень

8.4 Детальное рассмотрение структуры аудиокадров

9 Протокол данных

9.1 Общие положения

9.2 Информационные сообщения

9.3 Структура пакета данных

Приложение А (обязательное) Определение стандартного фильтра

Приложение В (справочное) Пример схемы лямбда/f для конференц-связи в зоне пользователя

Приложение С (справочное) База для будущих разработок

Приложение ДА (справочное) Сведения о соответствии ссылочных международных стандартов ссылочным национальным стандартам Российской Федерации и действующим в этом качестве межгосударственным стандартам

Библиография

 
Дата введения01.06.2016
Добавлен в базу01.02.2017
Актуализация01.01.2021

Этот ГОСТ находится в:

Организации:

15.06.2015УтвержденРосстандарт649-ст
РазработанАНО НТЦ СЭ ИСЭП
ИзданСтандартинформ2016 г.

Transmission systems of audio and/or video and related signals using infra-red radiation. Part 7. Digital audio signals for conference and similar applications

Стр. 1
стр. 1
Стр. 2
стр. 2
Стр. 3
стр. 3
Стр. 4
стр. 4
Стр. 5
стр. 5
Стр. 6
стр. 6
Стр. 7
стр. 7
Стр. 8
стр. 8
Стр. 9
стр. 9
Стр. 10
стр. 10
Стр. 11
стр. 11
Стр. 12
стр. 12
Стр. 13
стр. 13
Стр. 14
стр. 14
Стр. 15
стр. 15
Стр. 16
стр. 16
Стр. 17
стр. 17
Стр. 18
стр. 18
Стр. 19
стр. 19
Стр. 20
стр. 20
Стр. 21
стр. 21
Стр. 22
стр. 22
Стр. 23
стр. 23
Стр. 24
стр. 24
Стр. 25
стр. 25
Стр. 26
стр. 26
Стр. 27
стр. 27

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

ГОСТР мэк

61603-7-

2015


НАЦИОНАЛЬНЫЙ

СТАНДАРТ

РОССИЙСКОЙ

ФЕДЕРАЦИИ


СИСТЕМЫ ПЕРЕДАЧИ АУДИО- И/ИЛИ ВИДЕО-И СОПУТСТВУЮЩИХ СИГНАЛОВ С ИСПОЛЬЗОВАНИЕМ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ

Ч а с т ь 7

Цифровые аудиосигналы для конференц-связи и аналогичного применения

IEC 61603-7:2003

Transmission systems of audio and/or video and related signals using infra-red radiation — Part 7: Digital audio signals for conference and similar applications (IDT)

Издание официальное

Москва

Стандартинформ

2016

Предисловие

1    ПОДГОТОВЛЕН Автономной некоммерческой организацией «Научно-технический центр сертификации электрооборудования» «ИСЭП» (АНО «НТЦСЭ «ИСЭП») на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 4

2    ВНЕСЕН Техническим комитетом по стандартизации ТК 452 «Безопасность аудио-, видео-, электронной аппаратуры, оборудования информационных технологий и телекоммуникационного оборудования»

3    УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 15 июня 2015 г. № 649-ст

4    Настоящий стандарт идентичен международному стандарту МЭК 61603-7:2003 «Системы передачи аудио- и/или видео- и сопутствующих сигналов с использованием инфракрасного излучения. Часть 7. Цифровые аудиосигналы для конференц-связи и аналогичного применения» (IEC 61603-7:2003 «Transmission systems of audio and/or video and related signals using infra-red radiation — Part 7: Digital audio signals for conference and similar applications»).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации и межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

5    ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0-2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в годовом (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок— в ежемесячно издаваемом информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

© Стандартинформ, 2016

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

ГОСТ Р МЭК 61603-7-2015

Х(П)

Рисунок 7 — Блок-схема кодера адаптивной ИКМ (АРСМ) в субполосе

Имеются две величины кодирования: среднее качество (MQ) и высокое качество (HQ). Характеристики кодера представлены в таблице 3.

Таблица 3 — Характеристики кодера адаптивной ИКМ (АРСМ) в субполосе

Параметр

Среднее качество (MQ)

Высокое качество (HQ)

Ширина полосы аудиосигнала, кГц

10

20

Количество используемых субполос

2

4

Битовый пул

11

22

Выходная битовая скорость, кбит/с

136

272

8.2.8.2 Банки фильтров

Аналитические фильтры представлены посредством h (к, п). Эти фильтры получают изобразцово-гостандартногофильтрар(л)сдлиной/_ = 40 (см. приложение А). При/с—номере субполосы, /се(0,3), и п — индексе образцового фильтра, п е (0, L-1), получаем следующее:

h(k, п) = са(к, п) ■ р(п),

при

ca = cos f- •(n-2).(/f + -)\

8.2.8.3 Кодирование адаптивной ИКМ (АРСМ) в субполосе

Прореженные выходные выборки хранятся в буферах. В каждый период из 24 выборок (544 мкс) заполняются четыре блока из шести субполосных выборок, готовых для кодирования АРСМ.

Кодирование АРСМ в субполосе работает по 16-битовым выборкам и выполняется в последовательности представленной ниже.

Примечание — На выходе прореживающих устройств все выборки должны быть квантованы к 16 битам.

Значения к определяет индекс субполосы, к е(0,3) для кодирования высокого качества (HQ) и к е (0,1) для кодирования среднего качества (MQ). Значения nbands означает количество кодированных

7

субполос, четыре — для кодирования высокого качества (HQ) и две — для кодирования среднего качества (MQ).

a)    Определяется наибольшее абсолютное значение в каждом блоке: М(к).

b)    По значению М(к) вычисляется масштабный коэффициент Fscaie(k)\

^scaleM = [_2\OQ(M(k))j


с) Из значений масштабного коэффициента определяется количество битов в субполосе:


при W =


У, ^аса!й(^) ~В

V/c


пbands


^bits(^) Bsca\e(k),

nb\ts(k) = max(Fscale(/f) - W,0)-,


где В — битовый пул (см. таблицу 3);

-при ^nbits(k)< В -> приращение nbits(/r) на

V/c


начиная с к= 0 и увеличение к до получения


2>bits (к) = В-


V/c


- при 2>bits(/c)>B -> уменьшениеnbits(/f) на 1, начиная ск= 3(Н<Э)или/с= 1 (MQ) и уменьшение

к    v/c


до получения У nbits(/f) = В.

V/c

d) Дискретизация всех образцов-выборок в блоке субполосы к до nbils(k) битов (см. пример 7-бит-ной дискретизации на рисунке 8):


Позиция битов 15 SF +1 0 1 1 1

шестнадцати- i i i i битовая выбоока II II

ПП

j биты (к) = 7

1* *

оемиоитовая квантованная выборка

Рисунок 8 — Квантование выборок в субполосе


Выходной сигнал кодера АРСМ в субполосе состоит из всех квантованных выборок субполосы вместе с масштабными коэффициентами.


8


ГОСТ Р МЭК 61603-7-2015

8.3 Канальный уровень

8.3.1 Общие положения

Основным модулем протокола канального уровня является суперкадр (см. рисунок 9).

Рисунок 9 — Структура суперкадра

Суперкадр состоит из синхрогруппы, за которой идут шесть кадров RS. Это определяет размер суперкадра в 1368 битов. При битовой скорости 837,9 кбит/с общая длина суперкадра будет составлять 1,632 мс. Это точно равно троекратной длине кадра АРСМ (на входе кодера).

8.3.2    Синхронизация

Перед шестью последовательными кадрами RS передается синхрослово. Оно равно величине D21DB8 в шестнадцатеричной системе.

8.3.3    Избыточность кодирования

Для защиты аудиоинформации и данных от ошибок передачи используют кодер Рида-Соломона. В этом кодере к каждой паре аудиоблоков вместе с одним слотом данных добавляются 4 байта избыточной информации. В поле Галуа GF(28) выбирается RS (28,24) (см. 8.2.7). Структура кадра RS представлена на рисунке 10.

Аудиоблок А (10 байт)

Аудиоблок В (10 байт)

Данные (4 байта)

Контроль четности (4 байта)

Один кадр RS (28 байт)

Рисунок 10 — Структура RS-кадра

8.3.4 Аудиоблоки информации

В одном аудиоблоке передается 10 байтов аудиоинформации. Эти 80 битов включают 66 битов для АРСМ-выборок субполосы, 8 битов для масштабных коэффициентов АРСМ, 1 бит для аудиорежима и

9

5 битов для защиты циклической проверкой избыточным кодом по масштабному коэффициенту и битам аудиорежима. Структура аудиоблока представлена на рисунке 11.

Образцы субполосы (66 бит)

Масштабные коэффициенты (8 бит)

Аудиорежим (1 бит)

CRC (5 бит)

Один аудиоблок (10 байт)

Рисунок 11 — Структура аудиоблока

8.3.5 Слоты данных

В слотах данных передается информация управления, информация о конфигурации, информация дисплею и т. п. Такая информация передается как сообщения в последовательности слотов данных. Каждый слот данных равен 4 байтам.

Примечание — Протокол передачи данных представлен в разделе 9.

8.4 Детальное рассмотрение структур аудиокадров

8.4.1 Аудиорежим

Каждая пара аудиоблоков (слот А и слот В) включает два бита аудиорежима. Эти биты отмечают аудиорежим, передаваемый слотом А и слотом В (как установлено в таблице 4). Бит «1» находится в аудиоблоке А, а бит «0» — в аудиоблоке В (см. также 8.4.3).

Таблица 4 — Определение битов аудиорежима

Бит «1»

Бит «0»

Качество информации аудиорежима для обоих аудиоблоков

0

0

MMQ

0

1

SMQ

1

0

MHQ

1

1

SHQ

8.4.2 CRC — проверка циклическим избыточным кодированием

Вводится добавочная CRC проверка по масштабным коэффициентам и битам аудиокачества. Для CRC используют следующий полином:

G(x) = х10 + х9 + х5+ х4 + х1 + 1.

Такой расчет CRC проводят при следующей схеме (см. рисунок 12), состоящей из регистра сдвига с 10 каскадами и исключающих ИЛИ, установленных в соответствующих местах.

Масштабные коэффициенты (SF) и режим качества аудио (AQM)

с(0)    с(1)    с(2)    с(3)    с(4)    с(5)    с(6)    с(7)    с(8)    с(9)

Рисунок 12 — Расчет CRC

До начала расчета CRC инициализируется регистр сдвига для всех нулей.

В старшие разряды генераторов CRC первыми поступают 18 битов масштабных коэффициентов и режима аудиокачества (т. е. масштабный коэффициент аудиоблока А, бит «1» режима аудиокачества, масштабный коэффициент аудиоблока В, бит «0» режима аудиокачества).

8.4.3 Структура аудиоблока

8.4.3.1 Среднее качество

Аудиоблок А

_80    бит_

Ь10 ьо

Ью Ь0

Ью ь0

Ь10 Ь0

Ь10 Ь0

ью ь0

Ьз ь0

Ьз ь0

Ь1

Ь9 Ь5

Нулевой

Первый

Второй

Третий

Четвертый

Пятый

Нулевой

Первый

Режим

CRC

образец

образец

образец

образец

образец

образец

масштабный

масштабный

аудио

битового пула

битового пула

битового пула

битового пула

битового пула

битового пула

коэффициент

коэффициент


66 бит    8    бит    1    бит    5    бит

ЬЮ Ь0

ью Ь0

О

£1

О

£

Ью Ь0

ью Ь0

О

£1

О

£

О*

со

о*

о

Ьз ь0

Ьо

Ь4 ь5

Нулевой

Первый

Второй

Третий

Четвертый

Пятый

Нулевой

Первый

Режим

CRC

образец

образец

образец

образец

образец

образец

масштабный

масштабный

аудио

битового пула

битового пула

битового пула

битового пула

битового пула

битового пула

коэффициент

коэффициент


Аудиобпок В

Рисунок 13 — Структура аудиоблока при среднем качестве

11 бит

bi+1

Нулевая субпопоса

bi ь0 Первая субполоса

______—

___——

ью Ь0 Образец битового пула

Рисунок 14 — Структура выборки битового пула при среднем качестве

80 бит

66 бит

8.4.3.2 Высокое качество

Аудиоблок А

Ь21 Ь0

Нулевой образец битового пула

b2i ь0

Первый образец битового пула

Ь21 Ь0 Второй образец битового пула

Ьз ь0

Нулевой

масштабный

коэффициент

Ьз ь0

Первый

масштабный

коэффициент

Ь1

Режим

аудио

Ь9 Ь5 CRC

Аудиоблок В

Ь21 ь0 Нулевой образец битового пула

Ь21 Ь0

Четвертый образец битового пула

Ь21 Ь0 Пятый образец битового пула

Ьз ь0

Второй

масштабный

коэффициент

Ьз Ь0 Третий масштабный коэффициент

Ь0

Режим

аудио

ь4 ь0

CRC

CRC — проверка циклическим избыточным кодом


8 бит    1    бит    5    бит

Рисунок 15 — Структура аудиоблока при высоком качестве

11

22 бита

b2i

ьо

Нулевая субполоса

Первая субполоса

Вторая субполоса

Третья субполоса

Ь21 ь0 Образец битового пула

Рисунок 16 — Структура выборки битового пула при высоком качестве

8.4.4 Аудиоблоки и аудиокачество

В таблице 5 представлены все возможные комбинации вариантов качества в суперкадре (т.е. на одной поднесущей) и способ разделения данных между разными кадрами RS.

Таблица 5 — Аудиоблоки и аудиокачество

Аудиорежим

RS нулевого, второго и четвертого кадра

RS первого, третьего и пятого кадра

Аудиоблок А

Аудиоблок В

Аудиоблок А

Аудиоблок В

4 xMMQ

MMQ

MMQ

MMQ

MMQ

2 xMMQ; 1 xMHQ

MMQ

MMQ

MMQ

1 xMHQ; 2 xMMQ

MHQ

MMQ

MMQ

2 xMMQ; 1 xSMQ

MMQ

MMQ

SMQ слева

SMQ справа

1 xSMQ; 2 xMMQ

SMQ слева

SMQ справа

MMQ

MMQ

1 xSMQ; 1 xMHQ

SMQ слева

SMQ справа

MMQ

1 xMHQ; 1 xSMQ

MHQ

SMQ слева

SMQ справа

1 xSMQ; 1 xSMQ

SMQ слева

SMQ справа

SMQ слева

SMQ справа

1 xMHQ; 1 xMHQ

MHQ

MHQ

1 x SHQ

SHQ слева

SHQ справа

9 Протокол данных

9.1 Общие положения

В настоящем разделе приведен протокол и структуры кадра при передаче информационных сообщений приложений. Такие сообщения не зависят от поднесущей и поэтому передаются на каждой поднесущей. Протокол данных используется для преобразования асинхронных сообщений приложений в протокол синхронной передачи (см. 8.3).

Приложение

Сообщение приложения

Сообщение приложения

Уровень

приложения

Канальный

уровень

Физический

уровень

Рисунок 17 — Позиционирование протоколаданных

ГОСТ Р МЭК 61603-7-2015

9.2 Информационные сообщения

9.2.1 Общие положения

Сообщения приложения будут передаваться по требованию приложения, т. е. асинхронно. Информационные сообщения включают идентификатор информационных сообщений (8 битов), по которому идентифицируется тип информационного сообщения, длину информационного сообщения (8 битов) и проверку циклическим избыточным кодом информационного сообщения (32 бита) для обнаружения ошибочного приема. Структура информационных сообщений приведена на рисунке 18.

Заголовок информационного

сообщения

DMI

DML

Полезная нагрузка информационного сообщения (= Сообщение приложения)

DM-CRC

8 бит

8 бит

32 бита

Рисунок 18 — Построение информационного сообщения

9.2.2 Идентификатор информационного сообщения (DMI)

9.2.2.1 Общие положения

Поле DMI (8 битов) определяет тип данных, передаваемых в поле полезной нагрузки. Были определены следующие типы (остальные типы оставлены для последующего определения).

Таблица 6 — Определение идентификатора информационного сообщения

DMI

Описание

Тип информационного

сообщения Ь7...Ь3

Номер версии b2...bQ

СМ

Сообщение о конфигурации

00000

000

DM

Дисплейное сообщение с использованием кода ASCII

00001

000

Дисплейное сообщение с поэлементным отображением (битовая матрица)

00001

001

Зарезервировано для использования в будущем

00010

XXX

Зарезервировано для использования в будущем

11111

XXX

Бит 7 ... Зтип информационного сообщения 0 ... 31 (см. таблицу 6).

Бит 2 ... 0 номер версии информационного сообщения 0... 7 (ООО ... 111) (см. таблицу 6). Этот номер включен для обеспечения разных версий одного типа информационного сообщения.

9.2.2.2 Сообщение о конфигурации (СМ)

SEI

SCI

MAXCN

CAT

Spare

16 бит

3 бита

5 бит

256 бит

40 бит

Расшифровка полей приведена ниже.


Цель сообщения о конфигурации состоит в передаче данных о конфигурации приемника. Это сообщение построено так, чтобы оно состояло из 40 байтов. Оно вмещает два суперкадра, поэтому оно будет 2 • 1,632 мс = 3,264 мс. Структура сообщения о конфигурации (СМ) приведена на рисунке 19.

Рисунок 19 — Структура сообщения о конфигурации

13

a)    Идентификатор изменения установки (SEI) (16-битовый)

Идентификатор изменения установки используется системой для сообщения-предупреждения об изменении одной или нескольких установок (установочных значений) конфигурации. Передатчик будет давать приращение этому идентификатору при каждом изменении установки. Сохраняемым значением SEI является 0 при переходе приемника в режим ожидания. Поэтому посылаемый передатчиком идентификатор SEI никогда не будет 0.

b)    Идентификатор кодирования источника (SCI) (3-битовый)

Идентификатор кодирования источника используется для идентификации алгоритма сжатия аудиоинформации, который работает на стороне передатчика. Стандартный алгоритм сжатия (АРСМ, см. 8.2.8) имеет значение SCI, равное ООО, как показано в таблице 7.

Таблица 7 — Определение идентификатора кодирования источника (SCI)

SCI

Алгоритм сжатия

ООО

АРСМ fs = 44,1 кГц

001 ... 111

Зарезервирован

c)    Максимальный номер канала (MAXCN) (5-битовый)

Максимальный номер канала (MAXCN) используется для обозначения максимального номера логических каналов, используемого в данной системе.

d)    Таблица назначения каналов (CAT) (32 • 8 бит)

В таблице назначения каналов приведена информация о соответствии между логическим и физическими каналами (аудиоблок). Размеры CAT обеспечивают до 32 логических каналов. Структура приведена в таблице 8.

Примечание — Одному физическому каналу могут быть приписаны разные логические каналы.

Таблица 8 — Таблица назначения каналов

Индекс

Стартовый аудиоблок 6-битовый

Режим аудиокачества 2-битовый

0

000000

11

1

000100

00

000101

00

31

111111

Не используется

Индекс — логический канал.

Аудиоблоки имеют абсолютное значение, соответствующее номеру поднесущей и позиции в рамках этой поднесущей. Стартовый аудиоблок обозначает аудиоблок канала. В столбце 2 приведен соответствующий режим качества, который переносится в номер аудиоблоков, как показано в таблице 9.

Таблица 9 — Режим аудиокачества (AQM) по номеру используемых аудиоблоков

Аудиокачество

Номер аудиоблока

Код

MMQ

Среднее качество моноканала

1

00

SMQ

Среднее качество стереоканала

2

01

MHQ

Высокое качество моноканала

3

10

SHQ

Высокое качество стереоканала

4

11

Если логический канал не используется, об этом будет извещено за счет использования стартового слота 63. Стартовый слот 63 — автоматически означает, что канал не используется,

е) Резервное поле (SPARE) (40-битовое)

ГОСТ Р МЭК 61603-7-2015

Сообщение о конфигурации может передаваться в двух пакетах данных (см. 9.3). Чтобы полезная нагрузка пакета точно соответствовала нужному размеру, сообщение расширяют за счет резервного поля, которое заполняется нулями.

9.2.2.3 Сообщение дисплею (DM)

9.2.2.3.1    Общие положения

Цель данного сообщения — передать данные дисплею приемника, например, номера каналов или названия языков. Существует два типа сообщений дисплею: ASCII — для текстовых дисплеев и битовая матрица — для графических дисплеев.

9.2.2.3.2    Сообщение дисплею ASCII

Сообщение дисплею ASCII состоит из номера логического канала, идентификатора смены дисплея (DCI) и самих данных ASCII. Если в номере логического канала указано значение 63, сообщение дисплею должно стать видимым на всех приемниках. Каждый логический канал имеет свой собственный 2-бито-вый идентификатор DCI. Когда меняются данные дисплею ASCII с соответствующим логическим каналом, значение DCI увеличивается. Данные дисплею ASCII состоят из 12 символов и составляют 12-8 битов = 96 битов.

Номер

логического

канала

DCI

Дисплей с ASCII

Резервное попе

6 бит

2 бита

96 бит

32 бита

Рисунок 20 — Структура сообщения дисплею при данных дисплею ASCII

Сообщение дисплею ASCII можно передавать в одном пакете. Чтобы полезная нагрузка пакета точно соответствовала нужному размеру, сообщение расширяют за счет резервного поля, которое заполняется нулями.

9.2.2.3.3 Сообщение дисплею в битовой матрице

Сообщение дисплею в битовой матрице состоит из номера логического канала, идентификатора смены дисплея (DCI) и самих данных битовой матрицы. Если в номере логического канала указано значение 63, сообщение дисплею должно стать видимым на всех приемниках. Каждый логический канал имеет свой собственный 2-битовый идентификатор DCI. Когда меняются данные дисплею битовой матрицы с соответствующим логическим каналом, значение DCI увеличивается. Данные дисплею битовой матрицы состоят из 1280 битов. Каждый из пяти символов имеет размеры 16x16 пикселей, что составляет 1280 пикселей.

Номер

логического

DCI

Данные дисплея с битовой матрицей

Резервное

поле

канала

6 бит

2 бита

1280 бит

136 бит

Рисунок 21 — Структура сообщения дисплею при данных дисплею с битовой матрицей

Сообщение дисплею с битовой матрицей можно передавать в восьми пакетах. Чтобы полезная нагрузка пакета точно соответствовала нужному размеру, сообщение расширяют за счет резервного поля, которое заполняется нулями.

9.2.3    Длина информационного сообщения (DML)

Длина сообщения в номере суперкадров обозначается значением от 0 до 255. Контенты сообщения рекомендуется обрабатывать приложением, чтобы они точно соответствовали нескольким суперкадрам.

9.2.4    Проверка информационного сообщения циклическим избыточным кодом (DM-CRC)

Проверка информационного сообщения циклическим избыточным кодом составляет 32-битовое слово проверки избыточным кодом, рассчитываемое по DMI, DMA и полезной нагрузке информационного сообщения на базе полинома:

G(x) = х32 + х26 + х23 + х22 + х16 + х12 + х11 + х10 + х8 + х7 + х5 + х4 + х2 + х + 1.

15

В начале расчета каждого слова проверки циклическим избыточным кодом содержание всех каскадов регистров сдвига должно обнуляться.

9.3 Структура пакета данных

Контенты информационного сообщения должны распределяться по слотам данных суперкадра, чтобы контенты сегментировались в один пакет или более (см. рисунок22). Чтобы приемник мог извлечь исходное сообщение из пакетов, каждый пакет имеет последовательный номер пакета. Такой номер, имеющий значение 0, указывает на старт нового информационного сообщения.


1

1

Информа

ционное

сообщение

По.

пезная нагрузка инфо

эмационного сообще

ния

DM-CRC

*—

*—

*—

— •«».





Заголовок

Полезная

пакета

нагрузка

пакета


Заголовок

пакета


Полезная

нагрузка

пакета


Заголовок

пакета


Полезная

нагрузка

пакета


Рисунок 22 — Сегментирование информационных сообщений

Размер пакета равен сумме байтов данных в суперкадре (т. е. 24 байтам). Заголовок пакета синхронизирован с синхрословом суперкадра, как показано на рисунке 23.


Заголовок

пакета


1 байт


23 байта


Послед

ний

номер

пакета


Полезная нагрузка пакета


Синхро-\ слово \

£


Суперкадр


#


Я


Рисунок 23 — Пакеты данных, соответствующие структуре суперкадра

Пакеты можно определять по 8-битовому последовательному номеру от 0 до 255. Это определяет максимальный размер информационного сообщения 256 • 23 байта = 5888 байтов (при задержке пере-дачи256 • 1,632 мс = 418 мс).


16


ГОСТ Р МЭК 61603-7-2015

Содержание

1    Область применения...................................................1

2    Нормативные ссылки..................................................1

3    Термины и определения................................................1

4    Сокращения........................................................1

5    Пояснения к терминам и общая информация...................................2

6    Системные ограничения (возможности).......................................2

7    Основная концепция системы.............................................2

8    Протокол..........................................................3

8.1    Системный подход (контекст)...........................................3

8.2    Физический уровень................................................3

8.3    Канальный уровень.................................................9

8.4    Детальное рассмотрение структуры аудиокадров.............................10

9    Протокол данных....................................................12

9.1    Общие положения.................................................12

9.2    Информационные сообщения.........................................13

9.3    Структура пакета данных............................................16

Приложение А (обязательное) Определение стандартного фильтра.....................17

Приложение В (справочное) Пример схемы Х/^для конференц-связи в зоне пользователя.......18

Приложение С (справочное) База для будущих разработок...........................19

Приложение ДА (справочное) Сведения о соответствии ссылочных международных стандартов ссылочным национальным стандартам Российской Федерации и действующим в этом качестве межгосударственным стандартам..........................20

Библиография........................................................21

Приложение А (обязательное)

Определение стандартного фильтра

Стандартный фильтр р(п)\

р(0) = р(1) = Р(2) = Р(3) = Р(4) = Р(5) = Р(6) = Р(7) =

р(8) =

р(9) =

р(10)

Р(11)

Р(12)

Р(13)

Р(14)

Р(15)

р(16)

р(17)

Р(18)

Р(19)

Р(20)

Р(21)

Р(22)

Р(23)

Р(24)

Р(25)

Р(26)

Р(27)

Р(28)

Р(29)

Р(30)

Р(31)

Р(32)

Р(33)

Р(34)

Р(35)

Р(36)

Р(37)

Р(38)

Р(39)

0.0000000000000е—00 5.3654897628474е—04 1.4918835706273е—03 2.7337090367926е—03 3.8372019280091 е—03 3.8920514850040е—03 1.8658169061497е—03 -3.0601228600951 е—03 -1.0913762016690е—02 -2.0438508719161 е—02 = -2.8875739180821 е—02 = -3.2193928982763е—02 = -2.5876781146790е—02 = -6.1324518594809е—03 = 2.8821727426597е—02 = 7.7646349365466е—02 = 1.3559327369645е—01 = 1.9498784104769е—01 = 2.4663666230909е—01 = 2.8182820289485е—01 = 2.9431533161836е—01 = 2.8182820289485е—01 = 2.4663666230909е—01 = 1.9498784104769е—01 = 1.3559327369645е—01 = 7.7646349365466е—02 = 2.8821727426597е—02 = -6.1324518594809е—03 = -2.5876781146790е—02 = -3.2193928982763е—02 = -2.8875739180821 е—02 =-2.0438508719161 е—02 = -1.0913762016690е—02 = -3.0601228600951 е—03 = 1.8658169061497е—03 = 3.8920514850040е—03 = 3.8372019280091 е—03 = 2.7337090367926е—03 = 1.4918835706273е—03 = 5.3654897628474е—04

17

Введение

1)    Международная электротехническая комиссия (МЭК) является международной организацией по стандартизации, объединяющей все национальные электротехнические комитеты (национальные комитеты МЭК). Задачей МЭК является продвижение международного сотрудничества во всех вопросах, касающихся стандартизации вобласти электротехники и электроники. Результатом этой работы и в дополнение к другой деятельности МЭК является издание международных стандартов, технических требований, технических отчетов, публично доступных технических требований (PAS) и Руководств (в дальнейшем именуемых «Публикации МЭК»). Их подготовка поручена техническим комитетам. Любой национальный комитет МЭК, заинтересованный в объекте рассмотрения, с которым имеет дело, может участвовать в этой предварительной работе. Международные, правительственные и неправительственные организации, кооперирующиеся с МЭК, также участвуют в этой подготовке. МЭК близко сотрудничает с Международной организацией по стандартизации (ИСО) в соответствии с условиями, определенными соглашением между этими двумя организациями.

2)    Формальные решения или соглашения МЭК означают выражение положительного решения технических вопросов, международный консенсус в соответствующих областях, так как у каждого технического комитета есть представители от всех заинтересованных национальных комитетов МЭК.

3)    Публикации МЭК имеют форму рекомендаций для международного использования и принимаются национальными комитетами МЭК в этом качестве. Прилагают максимальные усилия для того, чтобы гарантировать правильность содержания Публикаций МЭК, однако МЭК не может отвечать за порядок их использования или за любое неверное толкование любым конечным пользователем.

4)    В целях содействия международной гармонизации национальные комитеты МЭК обязуются применять Публикации МЭК в их национальных и региональных публикациях с максимальной степенью приближения к исходным. Любые расхождения между Публикацией МЭК и соответствующей национальной или региональной публикацией должны быть четко обозначены в последней.

5)    МЭК не устанавливает процедуры маркировки знаком одобрения и не берет на себя ответственность за любое оборудование, о котором заявляют, что оно соответствует Публикации МЭК.

6)    Следует обратить внимание на то, что имеется вероятность, что некоторые из элементов настоящего стандарта могут быть предметом патентного права. МЭК не несет ответственности за идентификацию любых таких патентных прав.

Настоящий международный стандарт МЭК 61603-7 подготовлен техническим подкомитетом 3 «Системы инфракрасного излучения и их применение» технического комитета 100 «Аудио-, видео- и мультимедийные системы и оборудование».

Настоящее (первое) издание стандарта отменяет и заменяет раздел 2.6.2 стандарта МЭК 61603-3 (1997).

Текст данного стандарта основан на следующих документах:

Окончательный проект международного стандарта

Отчет о голосовании

100/649/FDIS

100/676/RVD

Полную информацию о голосовании по одобрению настоящего стандарта можно найти в отчете о голосовании, указанном в приведенной выше таблице.

Настоящий стандарт подготовлен в соответствии с Директивами ИСО/МЭК, часть 2.

По решению технического комитета содержание настоящего стандарта будет оставаться неизменным до даты результата пересмотра, указанной на сайте IEC «http://webstore.iec.ch», в отношении данных, связанных с настоящим стандартом. На эту дату стандарт будет:

-    подтвержден;

-    аннулирован;

-    заменен пересмотренным изданием или

-    изменен.

IV

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

СИСТЕМЫ ПЕРЕДАЧИ АУДИО- И/ИЛИ ВИДЕО- И СОПУТСТВУЮЩИХ СИГНАЛОВ С ИСПОЛЬЗОВАНИЕМ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ

Ч а с т ь 7

Цифровые аудиосигналы для конференц-связи и аналогичного применения

Transmission systems of audio and/or video and related signals using infra-red radiation. Part 7. Digital audio signals for

conference and similar applications

Дата введения — 2016—06—01

1    Область применения

Настоящий стандарт устанавливает характеристики цифровых многоканальных систем передачи аудиосигналов с несколькими несущими в качестве расширения для систем конференц-связи или аналогичных систем, работающих в частотных полосах от 45 кГц до 1 МГц и от 2 до 6 МГц.

Примечание — В данных частотных полосах также работают аналоговые импульсные системы, используемые для аналогичных применений. Считается, что помехи отсутствуют, таккакобычнообе системы передачи одновременно в одном помещении не используются.

2    Нормативные ссылки

Для применения настоящего стандарта необходимы следующие ссылочные документы. Для датированных ссылок применяется только указанное издание ссылочного документа, для недатированных ссылок применяют последнее издание ссылочного документа (включая все его изменения).

МЭК 61603-1:1997 Передача аудио- и/или видео- и сопутствующих сигналов с использованием инфракрасного излучения. Часть 1. Общие положения (IEC 61603-1:1997, Transmission of audio and/or video and related signals using infra-red radiation — Part 1: General)

МЭК 61603-3:1997 Передача аудио- и/или видео- и сопутствующих сигналов с использованием инфракрасного излучения. Часть 3. Системы передачи аудиосигналов для систем конференц-связи и аналогичных систем (IEC 61603-3:1997, Transmission of audio and/or video and related signals using infra-red radiation — Part 3: Transmission systems for audio signals for conference and similar systems)

МЭК 61920 Системы передачи с использованием инфракрасного излучения. Использование в свободном пространстве (IEC 61920, Infrared transmission systems — Free air applications)

ИСО/МЭК 7498-1:1994 Информационные технологии. Межсоединения открытых систем. Основная эталонная модель. Основная модель (ISO/IEC 7498-1:1994, Information technology — Open systems interconnection — Basic reference model: The basic model).

3    Термины и определения

В настоящем стандарте применены термины с соответствующими определениями по МЭК 61603-1.

4    Сокращения

АРОМ — адаптивная импульсно-кодовая модуляция (адаптивная ИКМ);

AQM — режим качества аудиосигнала;

CAT — таблица размещения (назначений) каналов;

СМ — сообщение конфигурации;

Издание официальное

ГОСТ Р МЭК 61603-7-2015

CRC — контроль циклическим избыточным кодом (ЦИК-контроль);

DCI — идентификатор смены (замены) дисплея;

DM — дисплейное сообщение;

DM-CRC — контроль циклическим избыточным кодом информационного сообщения;

DMI — идентификатор информационного сообщения;

DML — длина информационного сообщения;

DQPSK — дифференциальная квадратурная фазовая манипуляция (4ФМ);

HQ — высокое качество;

MAXCN — максимальный номер канала;

MHQ — высокое качество моноканала;

MNQ — среднее качество моноканала;

MQ — среднее качество;

OSI — межсоединение открытых систем;

РСМ — импульсно-кодовая модуляция (ИКМ);

PRBS — псевдослучайная бинарная последовательность;

SCI — идентификатор кодирования источника;

SEI — идентификатор смены установочного значения;

SF — масштабный коэффициент;

SHQ — высокое качество стереоканала;

SMQ — среднее качество стереоканала;

SRRC — корень квадратный из приподнятого косинуса;

XOR — исключающее ИЛИ, неэквивалентность.

5    Пояснения к терминам и общая информация

В настоящем стандарте используют пояснения и информацию, приведенные в разделе 2 МЭК 61603-3.

6    Системные ограничения (возможности)

В настоящем стандарте применяют положения, приведенные в разделе 3 МЭК 61603-3.

Примечание — Относительно основной полосы следует обратить особое внимание на подраздел 3.3 МЭК 61603-3, особенно для индуктивного/индукционного освещения и в целях дальнейших разработок.

7    Основная концепция системы

Основная концепция системы приведена на рисунке 1.

Рисунок 1 — Основная концепция

2

ГОСТ Р МЭК 61603-7-2015

Система состоит из ряда источников аудиосигнала (Л/), аналоговых или цифровых, соединенных с передатчиком. Передатчик преобразует аудиосигналы (в соответствии с протоколом, приведенным в разделе 8) в электрический выходной сигнал, подаваемый на инфракрасный излучатель. Инфракрасный сигнал приходит на приемник инфракрасного излучения, который преобразует его и выдает на выходе аудиосигнал и/или соответствующие данные.

8 Протокол

8.1 Системный подход (контекст)

С точки зрения концептуальной эталонной модели межсоединений открытых систем (OSI) протокол передачи должен иметь следующие уровни:

I    I    I    Данные    пользователя    i

| Потоки аудиосигналов |    |    (низкая    скорость,    |

|    I    |    ограничения)    i

----------1—!----------’

< >

--------1—!----------

< >

i i Более высокие ! ! уровни протокола ! ! OSI ! !

ТУ J

Более высокие уровни протокола OSI

ТУ J

Канальный уровень (уровень линии передачи

данных) (уровень 2)

МЭК 61603-7

МЭК 61603-7

Физический уровень (уровень 1)

МЭК 61603-1

МЭК 61920

Средний

Рисунок2 — Концептуальная модель

На рисунке 2 приведен системный подход (контекст) с использованием эталонной модели межсоединений открытых систем (OS/). Уровни 1 и 2 являются частью протокола передачи, установленного настоящим стандартом.

8.2 Физический уровень

8.2.1    Общие положения

На уровне 1 OSI (физическом уровне) в качестве среды передачи между излучателем и приемником используют инфракрасное излучение, как установлено МЭК 61920 и МЭК 61603-1.

8.2.2    Несущая

Оптическая длина волны при максимальной оптической интенсивности ХР: (875 + 25) нм.

8.2.3    Поднесущие

Основная частотная полоса (полоса IV): 2—6 МГц.

Вторичная частотная полоса (полоса II): 45 кГц—1 МГц.

Примечание — Вторичная частотная полоса 45 кГ ц—1 МГц находится на рассмотрении.

На рисунке 3 представлено распределение ширины полосы в основной полосе с частотами каждой поднесущей. Учтена защитная полоса между полосами передачи. Частоты каждой поднесущей приведены в таблице 1.

3

Рисунок 3 — Распределение полосы при шести модулированных поднесущих


Таблица 1 — Центральные частоты поднесущих

Поднесущая

Частота, кГц

СС1

2333,333

СС2

3000

ССЗ

3666,667

СС4

4333,333

СС5

5000

СС6

5666,667


8.2.4 Занимаемая ширина полосы

Занимаемую ширину полосы вычисляют по формуле


®осс - rs (1 + Р)>


где Восс — занимаемая ширина полосы;

rs — символьная скорость [= гь/2 при (D)QPSK, rb — битовая скорость (см. 8.3)];

Р — коэффициент сглаживания (см. 8.2.6).

8.2.5 Модуляция поднесущей

Методом модуляции является (дифференциальная) квадратурная фазовая манипуляция (4ФМ). Набор реализуемых состояний представлен на рисунке 4а. Алгоритм дифференциального декодирования приведен на рисунке 4Ь. В таблице 2 также приведены фазовые переходы для алгоритма дифференциального кодирования.


Q

01

11

00

10


00 00


а)


Ь)


Рисунок4 — Набор реализуемых состояний при (дифференциальной) QPSK и алгоритм дифференциального

декодирования


4


ГОСТ Р МЭК 61603-7-2015

Таблица 2 — Фазовые переходы алгоритма дифференциального кодирования

Изменение фазы

СимволIQ

00

CD

О

01

180°

11

1

CD

О

10

8.2.6 Характеристики фильтра

Используют канальный фильтр. В передатчике и приемнике используют характеристику корня квадратного из приподнятого косинуса, как показано на рисунке 5, что дает полную передаточную характеристику приподнятого косинуса.

Рисунок 5 — Амплитудно-частотная характеристика канального фильтра в виде приподнятого косинуса


Коэффициент сглаживания фильтра р = 0,4.

Результирующая характеристика фильтра от передающего и приемного фильтра должна соответствовать следующему уравнению:

rb.cos2^[|f|-%(p + 1)

Kl^(l-P)

Рг(0 =

^-(1-Р)<т<^-(1+Р),

Ifl>^-(1+P)

где Рг(/) — функция передачи мощности; f—частота, Гц; гь — битовая скорость, бит/с; Tb-l/'b;

Р — коэффициент сглаживания.

8.2.7 Канальное кодирование

8.2.7.1 Кодер Рида-Соломона

5

ГОСТ Р МЭК 61603-7-2015

Используют укороченный кодер Рида-Соломона (n, k, d) = (28,24,5) на 8-битовые символы. Кодер Рида-Соломона работает в поле Галуа (конечном поле), GF (28).

Полином генератора поля будет иметь вид:

р(х) = х8 + х4 + х3 + х2 + 1.

Полином генератора кодов будет иметь вид:

з

д(х) = ]^[ (х + а') = х4 + а75х3 + а249х2 + а78х + а1,

/=о

где а = 02 (в шестнадцатеричной системе счисления, HEX)

8.2.7.2 Скремблер

Скремблер состоит из логического элемента исключающего ИЛИ и генератора псевдослучайной бинарной последовательности. Длина последовательности равна 11 битам, и она инициализируется после каждой синхронизации кадра. Для такой последовательности используется следующий полином:

1 + х9 + х11

и исходная кодограмма будет иметь вид:

Исходная кодограмма = «10010101000».

Схема скремблера представлена на рисунке 6. Ксинхронизации кадра скремблирование не применяют.

Вывод

данных

8.2.8 Кодирование источника аудиосигнала

8.2.8.1 Общие положения

Линейный ИКМ аудиосигнал (fs = 44,1 кГ ц) делится на четыре сигнала в субполосах с помощью банка фильтров (аналитических фильтров). Эти четыре субполосных сигнала прореживаются с коэффициентом 4 и квантуются по схеме кодирования с использованием адаптивной импульсно-кодовой модуляцией (адаптивной ИКМ). Блок-схема кодера приведена на рисунке 7.

1