Товары в корзине: 0 шт Оформить заказ
Стр. 1 

14 страниц

Устанавливает метод определения способности масел для паровых турбин и других масел на нефтяной основе выделять вовлеченный воздух.

 Скачать PDF

Идентичен ISO 9120:1997

Оглавление

1 Область применения

2 Нормативные ссылки

3 Термины и определения

4 Сущность метода

5 Реактивы и материалы

6 Аппаратура

7 Отбор проб

8 Подготовка аппаратуры

9 Проведение испытаний

10 Вычисление

11 Оформление результатов

12 Прецизионность

13 Протокол испытаний

Приложение А (обязательное) Требования к термометру

Приложение ДА (справочное) Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам

Стр. 1
стр. 1
Стр. 2
стр. 2
Стр. 3
стр. 3
Стр. 4
стр. 4
Стр. 5
стр. 5
Стр. 6
стр. 6
Стр. 7
стр. 7
Стр. 8
стр. 8
Стр. 9
стр. 9
Стр. 10
стр. 10
Стр. 11
стр. 11
Стр. 12
стр. 12
Стр. 13
стр. 13
Стр. 14
стр. 14

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ

(МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION

(ISC)

МЕЖГОСУДАРСТВЕННЫЙ

СТАНДАРТ

МАСЛА НЕФТЯНЫЕ

Определение способности к выделению воздуха. Метод с применением импинджера

(ISO 9120:1997, ЮТ)

Издание официальное

Москва

Стандартинформ

2016


Предисловие

Цели, основные принципы и порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила, рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения,обновления и отмены»

Сведения о стандарте

1    ПОДГОТОВЛЕН Межгосударственным техническим комитетом по стандартизации МТК 31 «Нефтяные топлива и смазочные материалы», Открытым акционерным обществом «Всероссийский научно-исследовательский институт по переработке нефти» (ОАО «ВНИИ НП») на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 5

2    ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (Госстандарт)

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 29 мая 2015 г. № 77-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Армения

AM

Минэкономики Республики Армения

Беларусь

BY

Госстандарт Республики Беларусь

Казахстан

KZ

Госстандарт Республики Казахстан

Киргизия

KG

Кыргызстандарт

Молдова

MD

Молдова-Стандарт

Россия

RU

Росстандарт

Таджикистан

TJ

Таджикстандарт

4    Приказом Федерального агентства по техническому регулированию и метрологии от 12 августа 2015 г. № 1142-ст межгосударственный стандарт ГОСТ ISO 9120-2015 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2017 г.

5    Настоящий стандарт идентичен международному стандарту ISO 9120:1997 Petroleum and related products - Determination of air-release properties steam turbine and other oils - Impinger method (Нефть и нефтепродукты. Определение способности паротурбинных и других масел к выделению воздуха. Метод импинджера).

Стандарт разработан комитетом ISO/TC 28 «Нефтепродукты и смазочные материалы» Международной организации по стандартизации ISO.

Перевод с английского языка (еп).

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ 1.5-2001 (подраздел 3.6).

Официальные экземпляры международного стандарта, на основе которого подготовлен настоящий межгосударственный стандарт, и международных стандартов, на которые даны ссылки, имеются в Федеральном информационном фонде технических регламентов и стандартов.

Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам приведены в дополнительном приложении ДА.

Степень соответствия - идентичная (IDT)

6 ВВЕДЕН ВПЕРВЫЕ

Приложение А (обязательное)

Требования к термометру

Термометр, указанный в 6.1.3.1 настоящего стандарта, должен соответствовать характеристикам, приведенным в таблице А.1.

Таблица А.1 - Характеристики термометра

Характеристика

Значение

Диапазон, °С

От минус 20 до плюс 102 включ.

Погружение, мм

Полное

Градуировки, °С:

промежуточные деления

0,2

длинная линия для каждого деления

1

номер на каждом делении

2

Погрешность шкалы, °С, не более

0,15

Камера расширения позволяет нагрев до, °С

150

Общая длина, мм

От 415 до 425 включ.

Наружный диаметр капилляра, мм

От 6 до 8 включ.

Длина резервуара, мм

От 15 до 20 включ.

Диаметр резервуара, мм

От 6 до наружного

диаметра капилляра

Расстояние от нижней части резервуара до отметки ми-

нус 20 °С, мм

От 35 до 50 включ.

Длина шкалы, мм

От 305 до 350 включ.

Примечание - Этим требованиям соответствует термометр ASTM 12C/IP 64 С.

8

Приложение ДА (справочное)

Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам

Таблица ДА.1

Обозначение и наименование ссылочного международного стандарта

Степень

соответствия

Обозначение и наименование межгосударственного стандарта

ISO 3170:1988 Нефтепродукты жидкие. Ручной отбор проб

-

*

ISO 3696:1987 Вода для аналитического лабораторного использования. Технические требования и методы испытаний

ЮТ

ГОСТ ISO 3696-2013 Вода для лабораторного анализа. Технические требования и методы контроля

ISO 4259:1992 Нефтепродукты. Определение и применение показателей прецизионности методов испытаний

*

ISO 6353-2:1983 Реактивы для химических анализов. Часть 2. Технические требования. Первые серии

*

ISO 6353-3:1987 Реактивы для химических анализов. Часть 3. Технические требования. Вторые серии

*

ISO 6743-4:1982 Смазочные материалы, индустриальные масла и родственные продукты (класс L). Классификация. Часть 4. Группа Н (гидравлические системы)

ЮТ

ГОСТ ISO 6743-4-2013 Материалы смазочные, индустриальные масла и родственные продукты (класс L). Классификация. Часть 4. Группа Н (гидравлические системы)

* Соответствующий межгосударственный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов.

Примечание - В настоящей таблице использовано следующее условное обозначение степени соответствия стандартов:

IDT - идентичные стандарты.

9

УДК 665.765:620.162:544.77.052.12:006.354    МКС    75.100

ЮТ

Ключевые слова: нефтяные масла, способность к выделению воздуха, импинджер, метод

10

Редактор А.А. Бражников Корректор М.И. Першина Компьютерная вёрстка П.К. Одинцова

Подписано в печать 08.02.2016. Формат 60x84V8.

Уел. печ. л. 1,86. Тираж 42 экз. Зак. 3690.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ФГУП «СТАНДАРТИНФОРМ»

123995 Москва, Гранатный пер., 4. www.gostinfo.ru    info@gostinfo.ru

ГОСТ ISO 9120-2015

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок - в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2016

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

III

ГОСТ ISO 9120-2015

СТАНДАРТ

МЕЖГОСУДАРСТВЕННЫЙ

МАСЛА НЕФТЯНЫЕ Определение способности к выделению воздуха. Метод с применением импинджера

Petroleum oils. Determination of air-release properties. Impinger method

Дата введения — 2017 — 01 — 01

Предостережение - В настоящем стандарте не предусмотрено рассмотрение всех вопросов обеспечения безопасности, связанных с его использованием. Пользователь настоящего стандарта несет ответственность за установление соответствующих правил по технике безопасности и охране здоровья, а также определяет целесообразность применения законодательных ограничений перед его использованием.

1 Область применения

1.1 Настоящий стандарт устанавливает метод определения способности масел для паровых турбин и других масел на нефтяной основе выделять вовлеченный воздух.

Примечания

1    Настоящий метод с применением импинджера используют для определения способности испытуемых масел выделять воздух. Воздушные пузырьки, диспергированные в масле, влияют на его сжимаемость и могут привести к неисправностям. Настоящий метод не предназначен для оценки качества масел в условиях применения, предполагающих ограниченное время нахождения в аппарате и высокое содержание газа.

2    Смешивание смазочного масла с воздухом в оборудовании, например в подшипниках, муфтах, зубчатых передачах, насосах и обратных маслопроводах, может приводить к диспергированию воздушных пузырьков в масле. Если время выдерживания в резервуаре слишком короткое для выхода пузырьков воздуха на поверхность масла, то смесь воздуха и масла будет циркулировать в системе смазки. Это может привести к невозможности поддержания достаточного давления масла (особенно в центробежных насосах), разрыву масляной пленки в подшипниках и зубчатых передачах и неудовлетворительной работе или неисправности гидравлической системы.

3    Настоящий метод при заданных условиях испытания позволяет определять время, в течение которого содержание вовлеченного воздуха снижается до относительно низкого значения, равного 0,2 % об. и, следовательно, обеспечивает сравнение способности масел выделять вовлеченный воздух в условиях, при которых доступно время разделения. Хотя значимость результатов испытания не полностью установлена, недостаток чувствительности систем регулирования некоторых турбин может быть связан со свойствами масла выделять воздух. Конструкция системы и давление в системе также могут быть разными.

4    В настоящем стандарте выражение «% об.» используют для представления объемной доли вещества.

2 Нормативные ссылки

Для применения настоящего стандарта необходимы следующие ссылочные документы. Для датированных ссылок применяют только указанное издание ссылочного документа.

ISO 3170:1988 Petroleum liquids - Manual sampling (Нефтепродукты жидкие. Ручной отбор проб)

ISO 3696:1987 Water for analytical laboratory use - Specification and test methods (Вода для аналитического лабораторного использования. Технические требования и методы испытаний)

ISO 4259:1992 Petroleum products - Determination and application of precision data in relation to methods of test (Нефтепродукты. Определение и применение показателей прецизионности методов испытаний)

ISO 6353-2:1983 Reagents for chemical analysis - Part 2: Specifications - First series (Реактивы для химических анализов. Часть 2. Технические требования. Первые серии)

ISO 6353-3:1987 Reagents for chemical analysis - Part 3: Specifications - Second series (Реактивы для химических анализов. Часть 3. Технические требования. Вторые серии)

ISO 6743-4:1982 Lubricants, industrial oils and related products (class L) - Classification - Part 4: Family H (Hydraulic systems) [Смазочные материалы, индустриальные масла и родственные продукты (класс L). Классификация. Часть 4. Группа Н (гидравлические системы)]

Издание официальное

3    Термины и определения

В настоящем стандарте применен следующий термин с соответствующим определением:

3.1    выделение воздуха (air release): Время в минутах, в течение которого содержание диспергированного в масле воздуха снижается до 0,2 % об. при заданной температуре.

4    Сущность метода

Нагнетают воздух в масло под давлением при температуре испытания 25 °С, 50 °С или 75 °С. После прекращения подачи воздуха следят за выходом диспергированных воздушных пузырьков из масла, определяя зависимость плотности масла от времени. Фиксируют по графику время, в течение которого содержание диспергированного воздуха снижается до 0,2 % об. Можно применять ручные и автоматические аппараты.

5    Реактивы и материалы

Если нет других указаний, используют реактивы по ISO 6353-2 и ISO 6353-3 или реактивы квалификации ч. д. а. и воду, соответствующую 3-му классу по ISO 3696.

5.1    Метилбензол (толуол).

5.2    Ацетон.

5.3    Метанол.

5.4    Растворитель смол, состоящий из равных объемов толуола (5.1), ацетона (5.2) и метанола (5.3).

Примечание - Ранее для растворения смолистых веществ использовали 1,1,1-трихлорэтан, но из-за его токсичности и неблагоприятного воздействия на окружающую среду следует использовать альтернативные растворители. Можно использовать любую смесь растворителей, обеспечивающую эффективное удаление смол со стеклянного оборудования.

5.5 Воздух

Подают с регулируемой скоростью осушенный, профильтрованный воздух без примесей масла.

5.6 Очищающий раствор

Используют хромовую смесь (хромсерную кислоту) или другой сильно окисляющий очищающий раствор.

Примечание - Сильно окисляющий очищающий раствор необходим для удаления остатков силикона, которые часто присутствуют в маслах как вещества, снижающие пенообразование, и могут серьезно повлиять на результаты настоящего испытания.

Предупреждение - Хромовая смесь является опасной для здоровья. Смесь является токсичным канцерогенным веществом, поскольку содержит соединения Cr(VI), которые являются коррозионно-активными и потенциально опасными при контакте с органическими материалами. При использовании хромовой смеси следует применять средства индивидуальной защиты глаз и защитную спецодежду. Не следует отбирать очищающий раствор в пипетку ртом. После использования очищающий раствор не сливают в канализацию, а нейтрализуют, принимая соответствующие меры предосторожности из-за содержания концентрированной серной кислоты, и утилизируют в соответствии со стандартными процедурами для токсичных лабораторных отходов (хром является особо опасным для окружающей среды).

Сильно окисляющие очищающие растворы, не содержащие хрома, также являются коррозионно-активными и потенциально опасными при контакте с органическими веществами. К утилизации хрома предъявляют специальные требования.

ГОСТ ISO 9120-2015

6 Аппаратура

6.1 Схема аппарата, состоящего из элементов, указанных в 6.1.1-6.1.5, приведена на рисунке 1.

5    6

1 - сжатый воздух; 2 - воздушный фильтр; 3 - редукционный клапан; 4 - нагреватель; 5 - термометр; 6 - манометр; 7 - сосуд для испытаний; 8 - циркуляционная баня

Рисунок 1 - Схема аппарата

6.1.1    Испытательный сосуд (импинджер) из боросиликатного стекла, конструкция которого приведена на рисунке 2. Импинджер состоит из пробирки с рубашкой и разделительной перегородкой, трубки подачи и выпуска воздуха. Две части испытательного сосуда должны иметь маркировку для обеспечения правильного соединения.

6.1.2    Манометр диапазоном измерения от 0 до 35,5 кПа.

6.1.3 Датчики температуры

6.1.3.1    Термометр, соответствующий требованиям, приведенным в приложении А, или датчик температуры с равноценными рабочими характеристиками для контроля температуры сжатого воздуха.

6.1.3.2    Датчик температуры диапазоном измерения от 20 °С до 100 °С, с точностью применения до 0,1 °С для контроля температуры образца (см. примечание к 9.1).

6.1.4    Нагреватель сжатого воздуха

Для нагревания сжатого воздуха до температуры 25 °С применяют змеевик из медной трубки, погруженный в циркуляционную баню (6.1.5). При нагревании сжатого воздуха до температур 50 °С и 75 °С используют дополнительную баню или отдельный паровой или электрический теплообменник. При этом температуру сжатого воздуха измеряют как можно ближе к испытательному сосуду (6.1.1).

6.1.5    Циркуляционная баня вместимостью примерно 10 дм1 со скоростью циркуляции потока 10дм1/мин, обеспечивающая поддержание испытательного сосуда при заданной температуре с точностью ± 0,1 °С. Баня не должна быть стеклянной.

6.2    Гидростатические весы, обеспечивающие точность взвешивания не менее 0,5 кг/м1, с поплавком вытесняемого объема 5 или 10 см1, с круглым или коническим дном. Длина поплавка -(80,0 ± 1,5) мм.

6.3    Термостат, обеспечивающий контролируемое поддержание температуры до 100 °С.

6.4    Градуированный электронный или ручной таймер, обеспечивающий точность не менее 1 с.

6.5    Мерный цилиндр вместимостью 250 см1.

6.6    Платиновая проволока.

2 1



1 - подача воздуха; 2- выпуск воздуха; 3 - разделительная перегородка; 4- подача циркулирующей жидкости; 5 - выпуск циркулирующей жидкости


Рисунок 2 - Сосуд для испытания (импинджер)


7 Отбор проб

Если нет других указаний, пробу отбирают по ISO 3170.


4


ГОСТ ISO 9120-2015

8    Подготовка аппаратуры

8.1    Очищают внутреннюю поверхность испытательного сосуда, включая трубку для подачи воздуха и поплавок гидростатических весов, а также стеклянную аппаратуру, контактирующую с образцом, по 8.1.1-8.1.4.

8.1.1    Удаляют с аппаратуры остатки масла и смол растворителем (5.4) и сушат потоком воздуха (см. примечание к 8.1.4).

8.1.2    Погружают аппаратуру в очищающий раствор (5.6) и выдерживают не менее 12 ч.

8.1.3    Тщательно промывают аппаратуру сначала водопроводной, затем дистиллированной водой по разделу 5.

8.1.4    Промывают аппаратуру ацетоном и сушат потоком воздуха.

Примечание - Для удаления растворителя продувают аппаратуру воздухом в вытяжном шкафу.

9    Проведение испытаний

9.1    Собирают аппарат по схеме, приведенной на рисунке 1.

Обеспечивают условия, при которых отклонение температуры образца от температуры испытания составляет не более ± 0,1 °С, отклонение температуры сжатого воздуха от температуры испытания - не более ± 0,2 °С, при этом обеспечивают поддержание температуры образца в циркуляционной бане в пределах ± 0,1 °С от заданной температуры.

Выбирают температуру испытания в зависимости от кинематической вязкости испытуемого масла при 40 °С следующим образом:

-    масла с кинематической вязкостью ниже 9 мм2/с........................ 25    °С;

-    масла с кинематической вязкостью от 9 до 90 мм2/с...................... 50    °С;

-    масла с кинематической вязкостью выше 90 мм2/с...................... 75    °С.

Примечание - Температуру образца удобно измерять датчиком температуры (6.1.3.2), состоящим из резистивного датчика или термопары, вводимой через трубку выпуска воздуха.

9.2    Нагревают примерно 200 см3 испытуемого масла в термостате (6.3), установленном на температуру, на 10 °С выше выбранной температуры испытания.

9.3    Помещают 180 см3 нагретого образца в испытательный сосуд (см. 6.1.1).

9.4    Выдерживают образец в термостате для достижения температуры испытания.

Примечание - Для большинства образцов время достижения температуры испытания составляет 20 мин.

9.5    Нагревают в термостате поплавок гидростатических весов до температуры испытания не менее 20 мин. После достижения поплавком температуры испытания его погружают в образец и следят, чтобы вокруг поплавка не было воздушных пузырьков. Прикрепляют поплавок к коромыслу гидростатических весов платиновой проволокой (6.6) таким образом, чтобы поплавок располагался на расстоянии (10±2) мм от дна испытательного сосуда.

9.6    Записывают исходное значение плотности масла с точностью до 0,5 кг/м3.

9.7    Повторно помещают поплавок в термостат и устанавливают вместо него в испытательный сосуд трубку для подачи воздуха (см. рисунок 2). Через 5 мин при температуре испытания начинают подавать в образец воздух под давлением 20 кПа. Включают таймер (6.4) и поддерживают установленные давление и температуру в течение всего испытания.

9.8    Через (420 ± 1) с прекращают подачу воздуха и быстро удаляют трубку для подачи воздуха из испытательного сосуда. Включают таймер и погружают поплавок в испытуемый образец, как указано в 9.5. Далее следуют процедуре, приведенной в 9.9 или в 9.10.

Примечание - В некоторых маслах из-за объема дисперсной системы «воздух/масло» верхняя часть поплавка может быть погружена в пену, в результате чего начальные результаты определения плотности могут быть неудовлетворительными.

9.9    Определение времени выделения закаченного объема воздуха

Отмечают на гидростатических весах как «нулевую точку» значение плотности образца, соответствующее содержанию воздуха 0,2 % об. Регистрируют время от прекращения подачи воздуха до достижения «нулевой точки» на весах с точностью до 0,1 мин. Если «нулевая точка» не достигнута через 30 мин, то испытание прекращают (см. 9.11). 2

9.10    График зависимости выделения воздуха от времени

В некоторых случаях необходимо построить график зависимости выделения воздуха от времени.

Для этого регистрируют показания плотности с интервалами 1 мин в течение первых 15 мин и затем с интервалами 2 мин с точностью до 0,5 кг/м3. Испытание прекращают, когда расхождение двух значений плотности образца не превышает 0,5 кг/м3.

9.11    Некоторые масла, например масла HFAC, HFAS и HFC по ISO 6743-4, могут терять легкие компоненты в процессе насыщения воздухом (см. 9.7), при этом изменяется их эффективная плотность р£. Это происходит в случае, если нулевая точка достигнута или превышена сразу после начала испытания или если конечное значение плотности по 9.10 превышает значение плотности, полученное по 9.6. Если для таких масел требуется значение времени выделения воздуха, то плотность можно определить через 10 мин с момента начала выделения воздуха. Если конечную плотность по 9.10 используют вместо начальной плотности pQ в разделе 10, то это необходимо указать (см. 11.3).

Если потери возникают из-за воздействия на поплавок (вспенивание), то испытание прекращают и повторно его выполняют с использованием 190 см3 образца.

10 Вычисление

Содержание диспергированного воздуха в воздушно-масляной смеси L, % об., вычисляют по формуле

(1)

L_ ЮО(Ро-рх)

Ро ~ А

где р0 - плотность образца, не содержащего воздух, кг/м3 (см. 9.6); р - плотность воздушно-масляной смеси через х минут, кг/м3; р( - плотность воздуха при температуре испытания, кг/м3.

Примечание - Примерное значение (р - 1,7) кг/м3 для (р0 - рх) соответствует содержанию 0,2 % об. воздуха в масле плотностью 850 кг/м3 при температуре испытания. Значение 1,7 изменяется на 0,1 для каждых 50 кг/м3 плотности масла, предполагая что начальное и конечное значения плотности одинаковые.

11    Оформление результатов

11.1    Регистрируют время выделения воздуха из образца с точностью до 0,1 мин и температуру испытания. Если испытание было прекращено после 30 мин, то записывают результат как «более 30 мин».

11.2    При необходимости приводят график зависимости выделения воздуха от времени сточным указанием температуры испытания.

11.3    Если вместо исходной плотности pQ использовали эффективную плотность рЕ для выражения значения выделения воздуха, то результат дополняют фразой «преобразованная плотность».

12    Прецизионность

Прецизионность установлена статистическим анализом результатов межпабораторных испытаний в соответствии с ISO 4259 и приведена в 12.1 и 12.2.

Примечание - Значения прецизионности по 12.1 и 12.2 могут не быть получены при ручном испытании масел с очень низким значением кинематической вязкости при температуре 40 °С, например масла для амортизаторов. Такие масла не были включены в матрицу образцов при установлении прецизионности.

12.1 Повторяемость (сходимость) г

Расхождение результатов последовательных испытаний, полученных одним и тем же оператором на одной и той же аппаратуре при постоянных рабочих условиях на идентичном испытуемом материале при нормальном и правильном выполнении метода, может превышать указанное ниже значение только в одном случае из двадцати:

г- 0,5X0'2,    (2)

где X- среднеарифметическое значение сравниваемых значений.

6

ГОСТ ISO 9120-2015

12.2 Воспроизводимость R

Расхождение двух единичных независимых результатов, полученных разными операторами в разных лабораториях на идентичном испытуемом материале при нормальном и правильном выполнении метода, может превышать указанное ниже значение только в одном случае из двадцати:

R = 1,3 X05,    (3)

где X- среднеарифметическое значение сравниваемых значений.

Примечание - Сравнение этих значений прецизионности со значениями, полученными DIN для трех диапазонов - от 0 до 5 мин, от 5 мин до 10 мин и от 10 мин до 15 мин, показывает более высокую воспроизводимость, но более низкую повторяемость, чем у DIN.

13 Протокол испытаний

Протокол испытаний должен содержать:

a)    обозначение настоящего стандарта;

b)    тип и полную идентификацию испытуемого продукта;

c)    результат испытаний (см. раздел 11);

d)    любое отклонение от установленных процедур испытаний;

e)    дату проведения испытаний. 3

1

2

3