Товары в корзине: 0 шт Оформить заказ
Стр. 1 

82 страницы

Купить ГОСТ IEC/TR 61000-3-14-2019 — бумажный документ с голограммой и синими печатями. подробнее

Цена на этот документ пока неизвестна. Нажмите кнопку "Купить" и сделайте заказ, и мы пришлем вам цену.

Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО "ЦНТИ Нормоконтроль"

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

Способы доставки

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Стандарт, являющийся по своему назначению рекомендательным документом, представляет собой руководство в отношении принципов, которые могут быть применены в качестве основы для определения требований при подключении установок, создающих помехи, к общественным низковольтным (LV) системам электроснабжения. Для целей стандарта установка, создающая помехи, означает установку (которая может представлять собой нагрузку или генератор), создающую помехи, в том числе: гармоники и/или интергармоники, фликер и/или быстрые изменения напряжения, и/или несимметрию напряжений. Основная цель стандарта - это представление рекомендаций сетевым организациям по инженерным применениям, которые будут способствовать достижению условий обеспечения надлежащего качества обслуживания для всех подключенных установок пользователей. При рассмотрении установок настоящий стандарт не предназначен для замены стандартов, распространяющихся на оборудование, устанавливающих нормы эмиссии.

рассматривает распределение пропускной способности системы для поглощения помех. Он не применяется при решении задач помехоподавления или увеличения пропускной способности системы.

Стандарт применяется к установкам, подключенным к общественным энергосистемам низкого напряжения, которые снабжают или могут снабжать другие низковольтные нагрузки или установки. Стандарт предназначен для применения к большим установкам, превышающим минимальный размер.

Стандарт не предназначен для установления норм эмиссии применительно к отдельным образцам оборудования, подключенным к системам низкого напряжения.

Стандарт распространяется на следующие виды помех, возникающих в низковольтных установках:

- гармоники и интергармоники;

- фликер и быстрые изменения напряжения;

- несимметрия напряжений (компонент с обратной последовательностью).

В стандарте представлены рекомендуемые процедуры установления норм эмиссии для больших установок низкого напряжения.

 Скачать PDF

Идентичен IEC/TR 61000-3-14(2011)

Оглавление

1 Область применения

2 Нормативные ссылки

3 Термины и определения

4 Основные концепции ЭМС

     4.1 Общие положения

     4.2 Уровни совместимости

     4.3 Планируемые уровни

     4.4 Иллюстрация концепций ЭМС

     4.5 Уровни эмиссии

5 Общие принципы

     5.1 Общие положения

     5.2 Этап 1. Упрощенная оценка эмиссии помех

     5.3 Этап 2. Нормы эмиссии по отношению к фактическим характеристикам системы

     5.4 Этап 3. Принятие более высоких уровней эмиссии при определенных условиях

     5.5 Ответственность

6 Общие руководящие принципы для оценки уровней эмиссии

     6.1 Точка оценки

     6.2 Концепция уровня эмиссии

     6.3 Условия эксплуатации

     6.4 Характеристики полного сопротивления системы

7 Общий закон суммирования

     7.1 Общие положения

     7.2 Гармоники

     7.3 Фликер и быстрые изменения напряжения

     7.4 Несимметрия напряжений

8 Нормы эмиссии гармоник для искажающих установок в низковольтных системах

     8.1 Этап 1. Упрощенная оценка эмиссии помех

     8.2 Этап 2. Нормы эмиссии по отношению к фактическим характеристикам системы

     8.3 Этап 3. Принятие более высоких уровней эмиссии при определенных условиях

     8.4 Нормы эмиссии для интергармоник

9 Нормы эмиссии колебаний напряжения для установок в низковольтных системах

     9.1 Этап 1. Упрощенная оценка эмиссии помех

     9.2 Этап 2. Нормы эмиссии в сопоставлении с фактическими характеристиками системы

     9.3 Этап 3. Принятие более высоких уровней эмиссии при определенных условиях

     9.4 Быстрые изменения напряжения

10 Нормы эмиссии несимметрии для несимметричных установок в низковольтных системах

     10.1 Общие положения

     10.2 Этап 1. Упрощенная оценка эмиссии помех

     10.3 Этап 2. Нормы эмиссии в сравнении с фактическими характеристиками системы

     10.4 Этап 3. Принятие более высоких уровней эмиссии при определенных условиях

11 Сводные диаграммы, которые представляют процедуру оценки

Приложение A (справочное) Пример использования общего метода для определения норм для конкретного типа низковольтных сетей

Приложение B (справочное) Пример использования общего метода для расчета норм эмиссии для конкретной установки

Приложение C (справочное) Нормы эмиссии для гармоник на этапе 2

Приложение D (справочное) Расчет коэффициентов уменьшения для гармоник и несимметрии

Приложение E (справочное) Пример метода вычисления норм эмиссии гармоник на этапе 3

Приложение F (справочное) Пример использования метода, представленного в приложении E

Приложение G (справочное) Список условных обозначений и индексов

Приложение ДА (справочное) Сведения о соответствии ссылочных международных стандартов межгосударственным стандартам

Библиография

 
Дата введения01.06.2020
Добавлен в базу01.01.2021
Актуализация01.01.2021

Этот ГОСТ находится в:

Организации:

30.10.2019УтвержденМежгосударственный Совет по стандартизации, метрологии и сертификации123-П
30.10.2019УтвержденФедеральное агентство по техническому регулированию и метрологии1112-ст
РазработанЗАО НИЦ САМТЭС
РазработанООО ЛИНВИТ
РазработанТК 030 Электромагнитная совместимость технических средств
ИзданСтандартинформ2019 г.

Electromagnetic compatibility (EMC). Part 3-14. Assessment of emission limits of harmonic, interharmonic, voltage fluctuation and unbalance for the connection of disturbing installations to LV power systems

Нормативные ссылки:
Стр. 1
стр. 1
Стр. 2
стр. 2
Стр. 3
стр. 3
Стр. 4
стр. 4
Стр. 5
стр. 5
Стр. 6
стр. 6
Стр. 7
стр. 7
Стр. 8
стр. 8
Стр. 9
стр. 9
Стр. 10
стр. 10
Стр. 11
стр. 11
Стр. 12
стр. 12
Стр. 13
стр. 13
Стр. 14
стр. 14
Стр. 15
стр. 15
Стр. 16
стр. 16
Стр. 17
стр. 17
Стр. 18
стр. 18
Стр. 19
стр. 19
Стр. 20
стр. 20
Стр. 21
стр. 21
Стр. 22
стр. 22
Стр. 23
стр. 23
Стр. 24
стр. 24
Стр. 25
стр. 25
Стр. 26
стр. 26
Стр. 27
стр. 27
Стр. 28
стр. 28
Стр. 29
стр. 29
Стр. 30
стр. 30

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ

СТАНДАРТ

ГОСТ

IEC/TR 61000-3-14— 2019

Электромагнитная совместимость (ЭМС)

Часть 3-14

ОЦЕНКА НОРМ ЭМИССИИ ДЛЯ ГАРМОНИК, ИНТЕРГАРМОНИК, КОЛЕБАНИЙ НАПРЯЖЕНИЯ И НЕСИММЕТРИИ ПРИ ПОДКЛЮЧЕНИИ УСТАНОВОК, СОЗДАЮЩИХ ПОМЕХИ,

К НИЗКОВОЛЬТНЫМ СИСТЕМАМ ЭЛЕКТРОСНАБЖЕНИЯ

(IEC/TR 61000-3-14:2011, ЮТ)

Ш

Издание официальное

Москва

Стандартимформ

2019

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

1    ПОДГОТОВЛЕН Обществом с ограниченной ответственностью «ЛИНВИТ» (ООО «ЛИНВИТ»). Закрытым акционерным обществом «Научно-испытательный центр «САМТЕС» (ЗАО НИЦ «САМТЕС») и Техническим комитетом по стандартизации ТК 030 «Электромагнитная совместимость технических средств» на основе собственного перевода на русский язык англоязычной версии документа, указанного в пункте 5

2    ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3    ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 октября 2019 г. № 123-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97

Код страны по МК (ИСО 3166)004—97

Сохраненное наименование национального органа по стандартизации

Армения

AM

Минэкономики Республики Армения

Беларусь

BY

Госстандарт Республики Беларусь

Киргизия

KG

Кыргызстандарт

Россия

RU

Росстандарт

Узбекистан

U Z

Узстандарт

4    Приказом Федерального агентства по техническому регулированию и метрологии от 30 октября 2019 г. № 1112-ст межгосударственный стандарт ГОСТ IEC/TR 61000-3-14—2019 введен в действие в качестве национального стандарта Российской Федерации с 1 июня 2020 г.

5    Настоящий стандарт идентичен международному документу 1ЕСЯЯ 61000-3-14:2011 «Электромагнитная совместимость (ЭМС). Часть 3-14. Оценка норм эмиссии для гармоник, интергармоник, колебаний напряжения и несимметрии при подключении установок, создающих помехи, к низковольтным системам электроснабжения» [«Electromagnetic compatibility (EMC) — Part 3-14: Assessment of emission limits of harmonic, interharmonic, voltage, fluctuation and unbalance for the connection of disturbing installations to LV power systems». ЮТ].

Международный документ IEC/TR 61000-3-14:2011. представляющий собой технический отчет, подготовлен подкомитетом 77А «Низкочастотные явления» Технического комитета ТС 77 IEC «Электромагнитная совместимость» (ЭМС).

Он образует часть 3-14 IEC 61000 и имеет статус основополагающей публикации ЭМС в соответствии с Руководством IEC 107.

Первое издание настоящего международного документа гармонизировано с IEC/TR 61000-3-6. 1ЕСЯЯ 61000-3-7 и lECrTR 61000-3-13.

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

6 ВВЕДЕН ВПЕРВЫЕ

3.15    размер установки (installation size)

3.15.1    большая установка (large installation): Установка с согласованной мощностью, большей или равной значению, указанному сетевой организацией.

Примечание — Это указанное значение в настоящем стандарте обозначено

3.15.2    небольшая установка (small installation): Установка с согласованной мощностью, меньшей значения, указанного сетевой организацией.

Примечание — Это указанное значение в настоящем стандарте обозначено Smin

3.16    нормальные условия эксплуатации (normal operating condition): Условия функционирования системы или установки, создающей помехи, которые, как правило, включают в себя все вариации генерации, изменения нагрузки и компенсации реактивной мощности или смены состояния фильтра (например, состояние батарей конденсаторов), запланированные отключения и меры по техническому обслуживанию и налаживанию, неидеальные условия эксплуатации и непредвиденные обстоятельства, при которых рассматриваемая система или установка, создающая помехи, способна работать, что предусмотрено при разработке.

Примечание — Нормальные условия эксплуатации системы, как правило, исключают условия, возникающие в результате неисправности или нескольких неисправностей, превышающих установленные по стандарту безопасности системы: непредусмотренные ситуации и неизбежные обстоятельства (например, форс-мажорные обстоятельства, исключительные погодные условия и другие стихийные бедствия, действия государственных органов. производственные происшествия), случаи, когда пользователи системы значительно превышают установленные для них нормы эмиссии или не соответствуют требованиям к подключению, а также временные механизмы производства или поставки, которые принимаются для поддержания снабжения клиентов во время технического обслуживания или строительных работ, если в противном случае электроснабжение может быть прервано

3.17    планируемый уровень (planning level): Уровень конкретной помехи в определенной электромагнитной обстановке, принятый в качестве опорного значения для установления норм, подлежащих соблюдению при эмиссии от установок в конкретной системе, с целью согласования этих ограничений со всеми ограничениями, которые существуют для оборудования и установок, подключенных к системе электроснабжения.

Примечание — Планируемые уровни считаются внутренними составляющими качества, которые должны быть определены на местном уровне лицами, ответственными за планирование и эксплуатацию системы электроснабжения в соответствующем районе

3.18    точка общего присоединения; РСС (point of common coupling (PCC)): Точка общественной электрической сети, ближайшая к сетям рассматриваемого потребителя, к которой присоединены или могут быть присоединены электрические сети. РСС представляет собой точку, расположенную «выше по течению» от рассматриваемой установки.

Примечание — Система электроснабжения считается общественной по критерию ее использования, а не права собственности на нее

3.19    точка присоединения; РОС (point of connection (РОС)]: Точка в системе общественного электроснабжения, в которой рассматриваемая установка подключена или может быть подключена.

Примечание — Система электроснабжения считается общественной по критерию ее использования, а не права собственности на нее

3.20    точка оценки; РОЕ (point of evaluation (РОЕ)]: Точка системы общественного электроснабжения. в которой уровни эмиссии данной установки оцениваются с учетом норм эмиссии. Эта точка может быть точкой общего присоединения (РСС). или точкой присоединения (РОС), или любой другой точкой, указанной сетевой организацией или согласованной между сторонами.

Примечание — Система электроснабжения считается общественной по критерию ее использования, а не права собственности на нее

3.21    общественная низковольтная система электроснабжения (public low-voltage power system): Низковольтная система электроснабжения, которая подает или может подавать электрическую энергию нескольким установкам или пользователям.

Примечание — Система электроснабжения считается общественной по критерию ее использования, а не права собственности на нее

3.22    мощность короткого замыкания (short cirquit power): Теоретическое значение начальной трехфазной мощности короткого замыкания, выраженное в MBA. в точке системы электроснабжения. Оно вычисляется как произведение начального симметричного тока короткого замыкания, номинального напряжения системы и коэффициента v'3. при этом непериодичной составляющей (постоянным током) пренебрегают.

3.23    ответвление (spur): Фидер, отходящий от основного фидера (как правило, применяется на фидерах среднего и низкого напряжения).

3.24    система электроснабжения (supply system): Все линии, распределительные устройства и трансформаторы, работающие при различных напряжениях, которые составляют систему электроснабжения и систему распределения, к которым подключены установки пользователя.

3.25    сетевая организация (system operator or system owner): Лицо, ответственное за заключение договора о техническом присоединении пользователей, для которых необходимо подключение к нагрузке или подключение генерации к системе распределения.

3.26    коэффициент передачи, коэффициент влияния [transfer coefficient (influence coefficient)): Относительный уровень помехи, которая может быть передана между двумя шинами или двумя частями энергосистемы при различных условиях эксплуатации.

3.27    явления, относящиеся к определениям. Гармоники

Определения 3.27.1—3.27.9 относятся к гармоникам. Они основаны на анализе системных напряжений или токов методом дискретного преобразования Фурье (DFT) в соответствии с определением по IEC 60050-101:1998. 101-13-09.

Примечание 1 — Преобразование Фурье периодической или непериодической функции времени является функцией в частотной области, называемой частотным спектром временной функции или просто спектром Если функция времени является периодической, то спектр состоит из дискретных линий (или компонентов). Если функция времени не является периодической, то спектр является непрерывной функцией, указывающей компоненты на всех частотах

Примечание 2 — С целью упрощения определения, приведенные в настоящем стандарте, относятся только к (меж)гэрмоническим компонентам Однако они не должны интерпретироваться в качестве ограничений для применения определений, указанных в других стандартах IEC. например в IEC 61000-4-7. в которых ссылка на (меж)гзрмонические группы или подгруппы более подходит для измерения быстро меняющихся сигналов

3.27.1    основная частота (fundamental frequency): Частота в спектре, полученном путем преобразования Фурье функции времени, относительно которой рассматриваются все частоты спектра. В контексте требований настоящего стандарта основная частота такая же. как и частота источника питания.

Примечание — В случае периодической функции основная частота, как правило, равна частоте, соответствующей периоду самой функции

3.27.2    основной компонент (fundamental component): Компонент, частота которого является основной частотой.

3.27.3    частота гармоники (harmonic frequency): Частота, кратная основной частоте. Отношение частоты гармоники к основной частоте называют порядком гармоники (рекомендуемое условное обозначение «/г»),

3.27.4    гармоническая составляющая (harmonic component): Любой из компонентов на частоте гармоники. Для краткости вместо термина «гармоническая составляющая» допускается применение термина «гармоника».

3.27.5    частота интергармоники (interharmonic frequency): Частота, которая не является целым числом, кратным основной частоте.

Примечание 1 — Аналогично понятию «порядок гармоники» под понятием «порядок интергармоники» понимают отношение частоты интергармоники к основной частоте Это отношение не выражается целым числом (рекомендуемое условное обозначение «т»).

Примечание 2 — В том случае, когда т < 1. допускается применение термина «субгармоническая частота».

3.27.6    интергармоническая составляющая (interharmonic component): Составляющая на частоте интергармоники. Для краткости допускается применение термина «интергармоника».

3.27.7    общее гармоническое искажение: THD (total harmonic distortion. THD): Отношение среднеквадратичного значения суммы всех гармонических составляющих до порядка Н к среднеквадратичному значению основного компонента

где О — ток или напряжение;

Q, — среднеквадратичное значение компонента основной частоты;

h — порядок гармоники;

Qh — среднеквадратичное значение гармонической составляющей порядка h.

Н — как правило. 40 или 50. в зависимости от условий.

3.27.8    установка, создающая помехи (distorting installation): Электрическая установка в целом (включая компоненты, создающие помехи, и те. которые не создают помех), которая может привести к искажениям напряжения или тока в системе электроснабжения, к которой она подключена.

Примечание — В контексте требований настоящего стандарта понятие «установка, создающая искажения» включает не только линейные и нелинейные нагрузки, но и генерирующие установки, а также любой источник несинусоидального тока эмиссии, такой как система рекуперативного торможения

3.27.9    нелинейная нагрузка или оборудование (см. также термин «установка, создающая помехи») (non linear load or equipment): Любая(ое) нагрузка или оборудование, которые потребляют несинусоидальный ток. находясь под синусоидальным напряжением.

3.28    явления, относящиеся к определениям. Фликер и быстрые изменения напряжения

3.28.1    фликер (fliker): Ощущение неустойчивости зрительного восприятия, вызванное световым источником, яркость или спектральный состав которого изменяются во времени.

Примечание — Фликер является результатом воздействия на лампы накаливания, в то время как электромагнитное явление, вызывающее его, представляет собой колебания напряжения

3.28.2    быстрые изменения напряжения (rapid voltage changes): Изменения среднеквадратичного значения напряжения основной частоты в течение нескольких периодов; быстрые изменения напряжения также могут быть в виде циклических изменений.

Примечание — Быстрые изменения напряжения часто вызываются запуском, пусковыми токами или переключением оборудования

3.28.3    установка, создающая колебания напряжения (fluctuating installation): Электрическая установка в целом (включая те элементы, которые создают колебания напряжения, и те. которые не создают колебаний напряжения), которая характеризуется систематическими или внезапными колебаниями напряжения или запусками оборудования и пусковыми токами, которые могут вызывать фликер или быстрые изменения напряжения в системе электроснабжения, к которой она подключена.

Примечание — 8 контексте требований настоящего стандарта понятие «установка, создающая колебания напряжения» включает не только нагрузки, но и генерирующие установки

3.28.4    колебания напряжения (voltage fluctuations): Серия изменений напряжения или циклическое изменение огибающей напряжения.

3.29    явления, относящиеся к определениям. Несимметрия

Приведенные ниже определения, относящиеся к несимметрии напряжений, основаны на анализе системных напряжений или токов с помощью матрицы преобразования Фортескью и метода дискретного преобразования Фурье (DFT) с целью определения составляющих основной частоты для вычисления коэффициентов несимметрии.

3.29.1    несмметрия напряжений [voltage umbalance (imbalance)]: Условие, при котором в многофазной системе значения фазных напряжений или фазовых углов между последовательными фазами не равны.

[IEC 60050-161:1990,161-08-09, модифицировано]

Примечание — В трехфазных системах степень несимметрии, как правило, выражается как отношение составляющих обратной и нулевой последовательности к составляющим прямой последовательности 8 настоящем стандарте несимметрия напряжений рассмотрена в отношении трехфазных систем и только составляющих обратной последовательности

3.29.2    составляющая прямой последовательности трехфазных напряжений (или токов)

(positive-sequence component of 3-phase voltage (or currents)]: Симметричная векторная система, полученная применением матрицы преобразования Фортескью и рассчитанная по следующей формуле:

+    Ус),где    а    =    1Z 120* = ~ + ]£

и У^. У^. Не — напряжение между линией и нейтралью (основная составляющая);

У = >/М) — мнимая единица.

Примечание — Могут быть использованы также межфазные напряжения

3.29.3    составляющая обратной последовательности трехфазных напряжений (или токов)

(negative-sequence component of 3-phase voltage (or currents)): Симметричная векторная система, полученная применением матрицы преобразования Фортескью и рассчитанная по следующей формуле:

У2 = 1(Ув + а2 yb + a Uc).rae a = \Z-\20 =~+/^ и У^. У^. Ус — напряжение между линией и нейтралью (основная составляющая);

1 = 4И) — мнимая единица.

Примечание — Могут быть использованы также межфазные напряжения

3.29.4    составляющая нулевой последовательности в трехфазной системе напряжений (или токов) (zero-sequence component of 3-phase voltage (or currents)): Симметричная векторная система, полученная применением матрицы преобразования Фортескью и рассчитанная по следующей формуле:

где уа, Уь'Ус — напряжение между линией и нейтралью (основная составляющая).

Примечание — Фазные напряжения не могут быть использованы, так как компонент нулевой последовательности в этом случае будет равен нулю

3.29.5 коэффициент несимметрии напряжений (voltage unbalance factor и): Отношение модулей составляющих обратной последовательности и составляющих прямой последовательности напряжений на основной частоте, %,

кы100 К+*2^а^1

Ш |^а Уь + а2Ус\


Примечание 1 — Могут быть использованы также межфазные напряжения

Примечание 2—Для упрощения в настоящем стандарте обозначение и использовано для обозначения коэффициента несимметрии напряжений вместо и2 Эквивалентное выражение приведено в IEC 61000-4-30


(|У,е|2ЧУе=£ + |У«|2)2

Ь-4зЩ

\Uy/3-6fi


100%, где р


и


3.29.6 коэффициент несимметрии токов (current unbalance factor. IUF): Отношение модулей составляющих обратной последовательности и составляющих прямой последовательности токов на основной частоте. %.


и+в2!*ь\ <ЛЛ

-5—г*10°.

\U+aLb + a Ц

'2 =


где Ц, ib, Lc — фазные токи (основная составляющая);

L2 — коэффициент несимметрии токов по обратной последовательности;

£1 — коэффициент несимметрии токов по прямой последовательности.

3.29.7 установка, вызывающая несимметрию (unbalanced installation): Установка пользователя в целом (включая части, создающие несимметрию. и те. которые не создают несимметрии). работа которой характеризуется неравенством линейных токов либо межфазных напряжений и/или углов сдвига фаз, что может вызвать несимметрию напряжений в системе электроснабжения.


Примечание 1 — В контексте требований настоящего стандарта понятие «установка, вызывающая несимметрию» применяется не только к нагрузкам, но и к генерирующим установкам


4 Основные концепции ЭМС

4.1    Общие положения

Определение норм эмиссии (напряжения или тока) от отдельного оборудования или установки пользователя должно быть основано на влиянии указанных норм эмиссии на качество электрической энергии (качество напряжения). Оценку качества напряжения осуществляют с применением определенных основополагающих концепций. С целью использования этих концепций для оценки в конкретных местах (расположениях), они должны учитывать различные условия, такие как: расположение, в котором они применяются; характеристики измерения (продолжительность измерения, время выборки, интервалы усреднения, статистика) и порядок проведения расчетов. Эти концепции описаны ниже и проиллюстрированы на рисунках 1 и 2. Определения приведены в IEC 60050-161.

4.2    Уровни совместимости

4.2.1    Общие положения

Уровни совместимости представляют собой опорные значения, используемые для координации эмиссии и помехоустойчивости оборудования, являющегося частью системы энергоснабжения или получающего от нее питание, с целью обеспечения ЭМС системы в целом (включая системное оборудование и подключенное оборудование). Уровни совместимости, как правило, основаны на 95 %-ных вероятностных уровнях системы в целом, используя распределения, которые представляют собой как временные, так и пространственные вариации нарушений. При этом учитывается тот факт, что сетевая организация не может постоянно контролировать все точки системы. Поэтому оценка уровней совместимости должна быть проведена на общесистемной основе и для оценки в конкретном расположении не следует применять отдельный метод оценки.

Уровни совместимости для низкочастотных кондуктивных помех и сигналов в общественных низковольтных системах электроснабжения представлены в IEC 61000-2-2.

4.2.2    Гармоники

Уровни совместимости в IEC 61000-2-2 для гармонических напряжений в низковольтных системах следует рассматривать как связанные с квазистационарными или стационарными гармониками и представленные в качестве опорных значений как при длительном воздействии помех, так и при кратковременных помехах

Длительные воздействия помех связаны главным образом с тепловыми эффектами в кабелях, трансформаторах, двигателях, конденсаторах и т. д. Они возникают из-за гармоник, уровни которых поддерживаются в течение 10 мин или более.

Кратковременные воздействия связаны главным образом с влияниями на электронные устройства, которые могут быть восприимчивы к гармоникам продолжительностью 3 с или менее. Переходные процессы не включены.

Уровни совместимости при длительном воздействии помех для отдельных гармонических составляющих напряжения приведены в таблице 1. Уровень совместимости для полного гармонического искажения THD = 8 %.

Таблица 1 — Уровни совместимости для отдельных гармонических напряжений в низковольтных сетях (в процентах от основной составляющей) (в соответствии с IEC 61000-2-2)

Нечетные гармоники не кратные 3

Нечетные гармоники, кратные 3

Четные гармоники

Порядок гармоник h

Гармоническое напряжение.%

Порядок гармоник h

Гармоническое напряжение.%

Порядок гармоник ft

Гармоническое напряжение, %

5

6

3

5

2

2

7

5

9

1.5

4

1

11

3.5

15

0,4

6

0,5

13

3

21

0.3

8

0.5

17£/»£49

2.27 — — 0.27 h

21 < /? £ 45

0.2

10 £ Л £ 50

0,25 — ♦ 0,25 Л

При кратковременных воздействиях (см. IEC 61000-2-2) уровни совместимости для отдельных гармонических составляющих напряжения принимают равными значениям, приведенным в таблице 1, умноженным на коэффициент khvs, где значение khvs рассчитывают по формуле

*'1«=г3+«    (Ч

При кратковременных воздействиях гармоник уровень совместимости для полного гармонического искажения THD = 11 %.

4.2.3    Интергармоники

Система знаний о электромагнитных помехах, относящихся к интергармоническим напряжениям, находится в развитии. В IEC 61000-2-2 уровни совместимости приведены только для случая интергармонического напряжения, возникающего на частоте, близкой к основной частоте (50 или 60 Гц), что приводит к амплитудной модуляции подаваемого напряжения и вызывает фликер. Уровень совместимости для одного интергармонического напряжения в этом случае основан на уровне фликера Р# = 1 (см. рисунок 2 в IEC 61000-2-2).

IEC 61000-2-2 содержит также указания, касающиеся опорных значений для интергармоник на других частотах:

-    предполагается, что опорный уровень для каждой интергармонической частоты будет равен уровню совместимости, указанному в таблице 1. для следующей более высокой четной гармоники;

-    в сети, содержащей приемники управления пульсациями, опорный уровень при определенной рабочей частоте приемников должен составлять 0,2 % от номинального напряжения питания;

-для дискретной частоты в полосе от 50-й гармоники до 9 кГц предложенный опорный уровень составляет 0.2 % основной составляющей;

-для полосы частот от 50-й гармоники до 9 кГц предложенный опорный уровень при любой ширине полосы 200 Гц составляет 0,3 % основной составляющей.

4.2.4    Колебания напряжения

Фликерметр, соответствующий международным требованиям (см. IEC 61000-4-15), предусматривает две величины для оценки дозы фликера: Р^ (индекс «s/» означает кратковременную дозу фликера, одно значение которой измеряют за каждый 10-минутный интервал времени) и Рп (индекс «/б> означает длительную дозу фликера, одно значение которой измеряют за каждые 2 ч). Оценка качества напряжения, связанного с фликером, как правило, выражается через критерии P# и/или Рп, причем Р1( обычно рассчитывают исходя из группы 12 последовательных значений Р^ следующим образом:

ХрД    <2)

Для фликера в низковольтных сетях уровни совместимости представлены в IEC 61000-2-2 (см. таблицу 2).

Таблица 2 — Уровни совместимости для фликера в низковольтных сетях (в соответствии с IEC 61000-2-2)

Фликер

р«

1,0

_й_

0.8

В настоящем стандарте предполагается также, что фликерметр и связанные с ним факторы адаптированы к типу используемых ламп накаливания (например. 120 или 230 В), так что норма фликера остается неизменной независимо от напряжения ламп. Это существенно, потому что лампы 120 В менее чувствительны к колебаниям напряжения, чем лампы 230 В. а лампы 100 В еще менее чувствительны.

В обычных условиях значение быстрых изменений напряжения (RVC) ограничено 3 % номинального напряжения питания для низковольтных систем. Однако изменения напряжения, превышающие 3 %, все же могут изредка возникать в сетях общественного питания (см. IEC 61000-2-2).

4.2.5 Несимметрия

Уровень совместимости для несимметрии напряжений в низковольтных системах представлен в IEC 61000-2-2 и представляет собой компонент обратной последовательности, равный 2 % от компонента прямой последовательности. В практике подключения больших однофазных нагрузок уровень совместимости может принимать значения не более 3 %.

Ю

Примечание 1 — Необходимо также отметить, что вышеуказанные уровни совместимости относятся к устойчивым тепловым воздействиям несимметрии напряжений. Более высокие значения могут регистрироваться в течение короткого периода времени (например, 100 %-ная несимметрия напряжений во время короткого замыкания), но эти кратковременные высокие уровни несимметрии не обязательно оказывают значительное тепловое воздействие на оборудование

Примечание 2 — Спецификация требований к защите от несимметрии в установках должна учитывать уровень совместимости и кратковременные эффекты несимметрии

Примечание 3 — Уровень 3 % может возникать, как правило, в низковольтных сетях и электрических сетях среднего напряжения, к которым подключены небольшие установки, имеющие однофазное (или межфазное) подключение

4.3 Планируемые уровни

4.3.1    Индикативные значения планируемых уровней

Это уровни, которые могут быть использованы для планирования при оценке воздействия на систему электроснабжения всех установок, создающих помехи. Планируемые уровни должны быть определены сетевой организацией для всех уровней напряжения в системе и могут быть рассмотрены как внутренние индикаторы качества для сетевой организации.

Планируемые уровни должны быть равны или ниже уровней совместимости и должны обеспечивать согласование уровней помех, которые возникают при различных уровнях напряжения. Некоторая разница между планируемыми уровнями и уровнями совместимости может быть оправдана для учета характеристик напряжения (см. примечание ниже), влияния резонансов и т. д. Планируемые уровни будут отличаться в зависимости от структуры и компонентов системы, и никакие определенные значения не могут быть заданы (относительно уровней совместимости см. 4.2).

Примечание — В некоторых странах существуют характеристики напряжения, представляющие собой квазигарантированные уровни Они должны быть согласованы с планируемыми уровнями При рассмотрении этих вопросов следует учитывать характеристики системы

В последующей части настоящего стандарта изложены процедуры использования уровней планирования для установления норм эмиссии для отдельных установок потребителей, которые создают помехи.

4.3.2    Процедура оценки для сравнения с планируемыми уровнями

Следует использовать методы измерения класса А. установленные в IEC 61000-4-30 Маркированные данные, отмеченные в соответствии с этим стандартом, во время оценки во внимание не принимают. Соответственно, процентиль. применяемый при вычислении индексов, определенных ниже, вычисляют с использованием только действительных (немаркированных) данных.

При быстрых колебаниях напряжения не существует стандартизованного метода измерения. По этой причине рекомендуется, чтобы процедура оценки, используемая в данном случае, основывалась на измеренных среднеквадратичных значениях только основной составляющей с удаленными переходными процессами. На практике необходимо использовать многопериодное окно минимальной длительности. для того чтобы избежать искусственного сглаживания среднеквадратичного значения напряжения основной частоты.

Для каждого типа помех минимальный период измерения составляет 1 нед обычной деловой активности. Период мониторинга должен включать некоторую часть периода ожидаемых максимальных уровней помех.

Для сравнения действительных уровней помех с планируемыми уровнями могут быть применены один или несколько приведенных ниже индексов. Для сравнения с планируемыми уровнями при оценке воздействия более высоких уровней эмиссии, разрешенных на короткие периоды времени, например во время перенапряжений и запусков оборудования, может быть необходимым применение более чем одного индекса.

Для гармонических напряжений применяют следующие индексы:

-    95 %-ное еженедельное значение Uhsh (среднеквадратичное значение индивидуальных гармоник за «короткие» 10-минутные периоды) не должно превышать планируемый уровень;

-    наибольшее 99 %-ное ежедневное значение Uhvs (среднеквадратичное значение индивидуальных гармонических составляющих в течение «очень коротких» периодов 3 с) не должно превышать планируемый уровень, умноженный на коэффициент кЛу5. указанный в формуле (1). с учетом приведенной ссылки на кратковременные эффекты гармоник.

Примечание 1 — Гармоники, как правило, измеряют до порядка 40 или 50, в зависимости от условий

Для фликера индикативные значения для Р^ и Р„ следующие:

-    95 %-ное еженедельное значение Pst не должно превышать планируемый уровень;

-    99 %-ное еженедельное значение Рй не должно превышать планируемый уровень, умноженный на коэффициент (например. 1—1.5). который должен быть указан сетевой организацией в зависимости от характеристик системы и нагрузки;

-    95 %-ное еженедельное значение Plt не должно превышать планируемый уровень.

Примечание 2 — Возможные аномальные результаты (например, из-за отключения напряжения или при других переходных процессах) должны быть устранены Также рекомендовано, чтобы каждое новое значение Ра включалось в пересмотренный расчет Ря с использованием скользящего окна, в котором самое старое измеренное значение PJt заменяется последним новым значением Pst в каждом 10-минутном интервале Эта рекомендуемая процедура расчета Pt дает 144 значения Рй каждый день В некоторых случаях это может потребовать постобработки значений Р# полученных при измерении фликерметром

При быстрых изменениях напряжения, учитывая низкую вероятность их появления, статистические показатели не учитывают. Таким образом, максимальные значения быстрых изменений напряжения не должны превышать планируемых уровней. Однако высокие значения, связанные с аномальными нарушениями, такими как неисправности или операции переключения, должны быть удалены из оценки.

Для несимметрии напряжений используют следующие индексы:

-    95 %-ное еженедельное значение ush (коэффициент несимметрии напряжений при основной частоте по кратковременным 10-минутным периодам) не должно превышать планируемый уровень;

-    наибольшее 99 %-ное ежедневное значение uvs (коэффициент несимметрии напряжений при основной частоте в течение очень коротких периодов 3 с) не должно превышать планируемый уровень, умноженный на коэффициент (например. 1.25—2). который должен быть указан сетевой организацией, в зависимости от характеристик системы и нагрузки с учетом защитных устройств.

Примечание 3 — В соответствии с IEC 61000-4-30 при оценке коэффициента несимметрии напряжения необходимо использовать только компоненты основной частоты прямой и обратной последовательности (гармоники должны быть удалены, так как некоторые гармоники с обратной последовательностью могут изменить результаты измерения)

4.4 Иллюстрация концепций ЭМС

Основные концепции совместимости и применения планируемых уровней иллюстрированы на рисунках 1 и 2. Их цель — акцентировать внимание на наиболее важных соотношениях между основными переменными.

Внутри системы электроснабжения в целом неизбежно возникает определенный уровень помех в некоторых ситуациях и. следовательно, существует риск перекрытия распределений уровней помех и уровней устойчивости к помехам (см. рисунок 1). Планируемые уровни, как правило, равны или ниже уровня совместимости; они должны быть установлены сетевой организацией. Уровни помехоустойчивости установлены в соответствующих стандартах или подлежат согласованию между производителями и потребителями оборудования.

Плотность вероятности

Рисунок 1 — Иллюстрация основных концепций качества напряжения со статистикой «время/расположение»

применительно к системе в целом

Плотность вероятности

Рисунок 2 — Иллюстрация основных концепций качества напряжения со статистикой по времени применительно

к одному расположению в системе

На рисунке 2 показано, что распределение вероятности уровней помех и помехоустойчивости в отдельном расположении, как правило, является более узким, чем во всей системе, так что в большинстве отдельных расположений перекрытие распределений уровней помех и помехоустойчивости будет минимальным или может вообще отсутствовать. В этих условиях помехи не признают, как правило, серьезной проблемой, поэтому предполагают, что оборудование будет функционировать удовлетворительно. Поэтому ЭМС более вероятна, чем показано на рисунке 1.

4.5 Уровни эмиссии

Подход к координации, установпенный в настоящем стандарте, основан на индивидуальных уровнях эмиссии, определяемых на основе разработанных планируемых уровней. По этой причине одни и те же индексы используют при оценке соответствия фактических измерений нормам эмиссии и планируемым уровням.

Для сравнения фактического уровня эмиссии с нормой эмиссии для потребителя могут быть применены один или несколько приведенных ниже индексов. Для сравнения с нормой эмиссии при оценке воздействия более высоких уровней эмиссии, разрешенных на короткие периоды времени, например во время перенапряжений и запусков оборудования, может быть необходимым применение бопее чем одного индекса.

При эмиссии гармоник индексы следующие:

-    95 %-ное еженедельное значение Uhsh (или lhsh) (среднеквадратичное значение индивидуальных гармоник за «короткие» 10-минутные периоды) не должно превышать норм эмиссии EUhl (или Е)\

-    наибольшее 99 %-ное ежедневное значение Uhvs (или /йу5) (среднеквадратичное значение индивидуальных гармонических составляющих в течение «очень коротких» периодов 3 с) не должно превышать нормы эмиссии, умноженные на коэффициент khvs, который представлен в формуле (1).

При эмиссии фликера используют следующие индексы:

-    95 %-ное еженедельное значение Р^ не должно превышать нормы эмиссии Ер

-    99 %-ное еженедельное значение Рм не должно превышать нормы эмиссии Epsf( при умножении на коэффициент (например. 1—1.5). который должен быть указан сетевой организацией, в зависимости от характеристик системы и нагрузок;

-    95 %-ное еженедельное значение Рп не должно превышать нормы эмиссии Ер,0.

При быстрых изменениях напряжения при низкой вероятности их появления статистические показатели не учитывают. Таким образом, максимальные значения быстрых изменений напряжения не должны превышать норм эмиссии. Однако их высокие значения из-за аномапьных нарушений, таких как неисправности или операции переключения, должны быть удалены из оценки.

При эмиссии несимметрии используют следующие индексы:

-    95 %-ные еженедельные значения u2s/J или ^ (коэффициенты несимметрии напряжения или тока при основной частоте по «коротким» 10-минутным периодам) не должны превышать норм эмиссии Еи2, (или Ej2j);

- наибольшие 99 %-ные ежесуточные значения u2vs или ^ ^коэффициенты несимметрии напряжения или тока на основной частоте в течение «очень коротких» периодов 3 с) не должны превышать норм эмиссии, умноженных на коэффициент (например, 1,25—2), который должен быть указан сетевой организацией, в зависимости от характеристик системы, нагрузок и защитных устройств.

С целью сравнения уровней эмиссии помех от установки пользователя с нормами эмиссии минимальный период измерения должен составлять 1 нед. Однако для оценки эмиссии могут применять более короткие периоды измерения в конкретных условиях работы. Такие более короткие периоды должны отражать процессы, которые ожидаются в последующем в течение более длительных периодов (т. е. более 1 нед ). В любом случае период измерения должен быть достаточным для отображения наибольшего уровня эмиссии помех, который, как ожидается, будет иметь место. Еспи доминирует эмиссия определенного типа помех, создаваемая одной большой единицей оборудования, период должен быть достаточным для захвата как минимум двух полных циклов работы этого оборудования. Если эмиссия обусловлена суммированием нескольких единиц оборудования, период измерений должен быть как минимум рабочей сменой.

Следует использовать методы измерения класса А. установленные в IEC 61000-4-30. Маркированные данные, отмеченные в соответствии с этим стандартом, во время оценки во внимание не принимают. Соответственно процентиль, применяемый при вычислении индексов, определенных выше, вычисляют с использованием только действительных (немаркированных) данных.

Для гармоник, когда сигнал, подлежащий анализу, быстро меняется (например, ток электрической дуги), измерение гармонических групп и подгрупп следует проводить по IEC 61000-4-7, в отличие от измерений гармонических компонентов.

При быстрых изменениях напряжения не существует стандартизованного метода измерения. По этой причине рекомендуется, чтобы процедура оценки, используемая в данном случае, основывалась на измерении среднеквадратичного значения изменений с учетом только основной составляющей с удаленными переходными процессами. На практике необходимо использовать кратчайшее многопериодное окно, для того чтобы избежать искусственного сглаживания среднеквадратичного значения изменений основного напряжения.

Для каждого вида помех уровень эмиссии от установки, создающей помехи, представляет собой уровень помех, оцениваемый в соответствии с другими индексами, указанными в разделе 6.

5 Общие принципы

5.1    Общие положения

Предлагаемый подход к установлению норм эмиссии для установок, создающих помехи, зависит от согласованной мощности установки пользователя и характеристик системы. Задача состоит в том. чтобы нормировать эмиссию помех от всех установок, создающих помехи в системе, до значений, которые не будут приводить к нарушениям уровней напряжений помех, т. е. не будут превышать планируемые уровни. С этой целью определены три этапа оценки, которые могут быть использованы последовательно или независимо друг от друга

5.2    Этап 1. Упрощенная оценка эмиссии помех

Как правило, для потребителя приемлемо устанавливать небольшие устройства без специальной оценки эмиссии помех сетевой организацией. Производители таких устройств несут ответственность за ограничение эмиссии. Например, IEC 61000-3-2 и IEC 61000-3-12 в случае гармоник, а также IEC 61000-3-3 и IEC 61000-3-11 в случае колебаний напряжения представляют собой стандарты, устанавливающие нормы эмиссии для образцов оборудования, подключенного к низковольтным системам. Для небольших установок, таких как установки жилых домов, сетевая организация может полагаться на эти нормы эмиссии для отдельных единиц оборудования в соответствии с планируемыми уровнями.

В случае подключения более крупных установок сетевая организация должна нести ответственность за то. чтобы планируемые уровни не превышались. Тем не менее существует возможность определить консервативные критерии приемлемости подключения установок, создающих помехи в низковольтных системах. Действительно, если общая помеховая нагрузка или согласованная мощность пользователя является незначительной в сравнении с мощностью короткого замыкания в точке оценки, необходимость проводить детальную оценку уровней эмиссии помех отсутствует.

В разделах 8—10 приведены специальные критерии, которые позволяют применять оценку по этапу 1.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменений или отмены настоящего стандарта соответствующая информация также будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

©Стандартинформ, оформление, 2019

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

5.3    Этап 2. Нормы эмиссии по отношению к фактическим характеристикам системы

Если установка не соответствует критериям этапа 1, то конкретные характеристики установки, создающей помехи, следует оценивать вместе с абсорбирующей способностью системы. Для каждого типа помех абсорбирующую способность системы определяют исходя из планируемых уровней и распределяют по индивидуальным установкам пользователей в соответствии с их потребностью в отношении общей пропускной способности системы. Уровень помех, передаваемый от уровней восходящего напряжения системы питания до уровня низкого напряжения, также должен быть учтен при распределении уровней планирования для отдельных установок пользователей.

Принцип такого подхода заключается в том. что если система использована на полной мощности и все установки пользователей подключены с их индивидуальными нормами, то общий уровень помех будет равен планируемым уровням с учетом коэффициента передачи между различными частями системы и суммирования различных помех. Процедура распределения уровней планирования для отдельных установок представлена в разделах 8—10.

5.4    Этап 3. Принятие более высоких уровней эмиссии при определенных условиях

При некоторых условиях сетевая организация может подключить установку, создающую более высокие помехи, чем установленные нормы, определяемые по этапу 2. Это особенно характерно, когда нормы по этапу 2 являются обобщенными нормами, полученными с использованием типичных, но консервативных характеристик системы. В такой ситуации пользователь и сетевая организация могут согласовать определенные условия, которые позволяют подключить установку, создающую помехи, к системе.

Следующие обстоятельства могут обеспечить определенный запас в системе, позволяющий подключать установки, характеризующиеся более высокими нормами эмиссии, например:

-    некоторые установки не создают значительных уровней помех из-за отсутствия в их составе оборудования. способного создавать значительные помехи. Следовательно, некоторые из потенциально неиспользуемых возможностей системы по поглощению помех могут быть доступны для применения на временной основе;

-    в определенных случаях общий закон суммирования может быть излишне консервативным: некоторые установки могут создавать помехи с взаимно противоположными фазами или фазовые сдвиги в системе могут привести к частичной компенсации помех;

-    фактические характеристики низковольтной системы могут позволить применение норм эмиссии. которые выше, чем нормы эмиссии по этапу 2 (например, при использовании в системе более коротких кабелей низкого напряжения);

-    в отношении несимметрии напряжений следует учитывать, что если все единицы оборудования в низковольтных установках являются однофазными, то допустимы более высокие уровни несимметрии. так как оборудование в меньшей степени зависит от несимметрии;

-    в некоторых случаях более высокий уровень помех для низковольтных систем может быть допущен после перераспределения планируемых уровней между системами низкого и среднего напряжения с учетом локальных факторов, таких как специальные эффекты затухания или отсутствие установок, создающих помехи на определенном уровне напряжения.

Во всех случаях, когда это необходимо, сетевая организация может принять решение об установлении более высоких норм эмиссии на этапе 3. Для этого необходимо тщательно изучить соединения между системой и подключаемыми установками, учитывая ранее существующие уровни помех и ожидаемые уровни эмиссии от рассматриваемой установки для различных возможных условий эксплуатации. Принятие более высоких уровней эмиссии для установок пользователей возможно только при выполнении определенных условий и конкретных ограничений, которые должны быть указаны сетевой организацией. Например, ограничения временного характера по этапу 3 могут быть применены:

-    до тех пор. пока в системе остается доступным запас мощности для обеспечения большей миссии;

-    до тех пор. пока другие пользователи не будут в полной мере использовать свои нормы эмиссии, определенные в соответствии с этапом 2;

-для новой подключаемой установки на время, необходимое для выполнения дополнительных корректирующих мероприятий, если это необходимо.

5.5    Ответственность

В настоящем стандарте установлена следующая ответственность сторон с точки зрения обеспечения ЭМС:

Содержание

1

.....2

.....3

.....9

.....9

.....9

...11

...12

...13

...14

...14

...14

...15

...15

...15

.......16

...16

...16

...17

...17

...18

.......18

...18

...18

.......18

... 19

.......19

...20

...

...23

...23

23

.......23

.......24

26

.......26

...27

.27

...27

77

...30

...30

...34

42

46

55

...63

R7

.......71

.......74

...75

1    Область применения...........................................................................................................................

2    Нормативные ссылки..........................................................................................................................

3    Термины и определения......................................................................................................................

4    Основные концепции ЭМС..................................................................................................................

4.1    Общие положения ........................................................................................................................

4.2    Уровни совместимости..................................................................................................................

4.3    Планируемые уровни....................................................................................................................

4 4 Иллюстрация концепций ЭМС......................................................................................................

4.5 Уровни эмиссии.............................................................................................................................

5    Общие принципы ................................................................................................................................

5.1    Общие положения.........................................................................................................................

5.2    Этап 1. Упрощенная оценка эмиссии помех................................................................................

5.3    Этап 2. Нормы эмиссии по отношению к фактическим характеристикам системы.................

5.4    Этап 3. Принятие более высоких уровней эмиссии при определенных условиях...................

5.5    Ответственность............................................................................................................................

6    Общие руководящие принципы для оценки уровней эмиссии.........................................................

6.1    Точка оценки...................................................................................................................................

6.2    Концепция уровня эмиссии...........................................................................................................

6.3    Условия эксплуатации...................................................................................................................

6.4    Характеристики полного сопротивления системы......................................................................

7    Общий закон суммирования...............................................................................................................

7.1    Общие положения.........................................................................................................................

7.2    Гармоники.......................................................................................................................................

7.3    Фликер и быстрые изменения напряжения.................................................................................

7.4    Несимметрия напряжений............................................................................................................

8    Нормы эмиссии гармоник для искажающих установок в низковольтных системах.......................

8.1    Этап 1. Упрощенная оценка эмиссии помех................................................................................

8.2    Этап 2. Нормы эмиссии по отношению к фактическим характеристикам системы.................

8.3    Этап 3. Принятие более высоких уровней эмиссии при определенных условиях...................

8.4    Нормы эмиссии для интергармоник.............................................................................................

9    Нормы эмиссии колебаний напряжения для установок в низковольтных системах......................

9.1    Этап 1. Упрощенная оценка эмиссии помех................................................................................

9.2    Этап 2. Нормы эмиссии в сопоставлении с фактическими характеристиками системы........

9.3    Этап 3. Принятие более высоких уровней эмиссии при определенных условиях...................

9.4    Быстрые изменения напряжения.................................................................................................

10    Нормы эмиссии несимметрии для несимметричных установок в низковольтных системах.......

10.1    Общие положения.....................................................................................................................

10.2    Этап 1. Упрощенная оценка эмиссии помех............................................................................

10.3    Этап 2. Нормы эмиссии в сравнении с фактическими характеристиками системы............

10.4    Этап 3. Принятие более высоких уровней эмиссии при определенных условиях...............

11    Сводные диаграммы, которые представляют процедуру оценки .................................................

Приложение А (справочное) Пример использования общего метода для определения

норм для конкретного типа низковольтных сетей......................................................

Приложение В (справочное) Пример использования общего метода для расчета норм

эмиссии для конкретной установки.............................................................................

Приложение С (справочное) Нормы эмиссии для гармоник на этапе 2.............................................

Приложение D (справочное) Расчет коэффициентов уменьшения для гармоник и несимметрии..

Приложение Е (справочное) Пример метода вычисления норм эмиссии гармоник на этапе 3.......

Приложение F (справочное) Пример использования метода, представленного в приложении Е ...

Приложение G (справочное) Список условных обозначений и индексов..........................................

Приложение ДА (справочное) Сведения о соответствии ссылочных международных

стандартов межгосударственным стандартам........................................................

Библиография.........................................................................................................................................

Введение

Стандарты комплекса IEC 61000 публикуются отдельными частями в соответствии со следующей структурой:

часть 1. Общие положения: общее рассмотрение (введение, фундаментальные принципы), определения. терминология;

часть 2. Электромагнитная обстановка: описание электромагнитной обстановки, классификация электромагнитной обстановки, уровни электромагнитной совместимости;

часть 3. Нормы: нормы электромагнитной эмиссии, нормы помехоустойчивости (в тех случаях, когда они не являются предметом рассмотрения техническими комитетами, разрабатывающими стандарты на продукцию):

часть 4 Методы испытаний и измерений: методы измерений, методы испытаний; часть 5. Руководства по установке и помехоподавлению: руководства по установке, методы и устройства ломехоподавления; часть 6. Общие стандарты; часть 9. Разное.

Кахщая часть далее подразделяется на несколько частей, которые могут быть опубликованы в качестве международных стандартов или технических отчетов/требований, некоторые из них уже опубликованы как разделы. Другие будут опубликованы с указанием номера части, за которым следует дефис, а затем номер раздела (например. IEC 61000-6-1).

МКС 33.100.10

Поправка к ГОСТ IEC/TR 61000-3-14—2019 Электромагнитная совместимость (ЭМС). Часть 3-14. Оценка норм эмиссии для гармоник, интергармоник, колебаний напряжения и несимметрии при подключении установок, создающих помехи, к низковольтным системам электроснабжения

В каком месте

Напечатано

Должно быть

Предисловие. Таблица согласования

Казахстан

KZ

Госстандарт Республики Казахстан

(ИУС № 8 2020 г.)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Электромагнитная совместимость (ЭМС)

Часть 3-14

ОЦЕНКА НОРМ ЭМИССИИ ДЛЯ ГАРМОНИК, ИНТЕРГАРМОНИК, КОЛЕБАНИЙ НАПРЯЖЕНИЯ И НЕСИММЕТРИИ ПРИ ПОДКЛЮЧЕНИИ УСТАНОВОК, СОЗДАЮЩИХ ПОМЕХИ,

К НИЗКОВОЛЬТНЫМ СИСТЕМАМ ЭЛЕКТРОСНАБЖЕНИЯ

Electromagnetic compatibility (EMC). Part 3-14 Assessment of emission limits of harmonic, interharmonic, voltage fluctuation and unbalance for the connection of disturbing installations to LV power systems

Дата введения — 2020—06—01

1 Область применения

Настоящий стандарт, являющийся по своему назначению рекомендательным документом, представляет собой руководство в отношении принципов, которые могут быть применены в качестве основы для определения требований при подключении установок, создающих помехи, к общественным низковольтным (LV) системам электроснабжения. Для целей настоящего стандарта установка, создающая помехи, означает установку (которая может представлять собой нагрузку или генератор), создающую помехи, в том числе: гармоники и/или интергармоники, фликер и/или быстрые изменения напряжения, и/или несимметрию напряжений. Основная цель настоящего стандарта — это представление рекомендаций сетевым организациям по инженерным применениям, которые будут способствовать достижению условий обеспечения надлежащего качества обслуживания для всех подключенных установок пользователей. При рассмотрении установок настоящий стандарт не предназначен для замены стандартов. распространяющихся на оборудование, устанавливающих нормы эмиссии.

Примечание 1—В настоящем стандарте низкое напряжение (LV) относится к значению Un < 1 кВ

Настоящий стандарт рассматривает распределение пропускной способности системы для поглощения помех. Он не применяется при решении задач ломехолодавления или увеличения пропускной способности системы.

Настоящий стандарт применяется к установкам, подключенным к общественным энергосистемам низкого напряжения, которые снабжают или могут снабжать другие низковольтные нагрузки или установки. Настоящий стандарт предназначен для применения к большим установкам, превышающим минимальный размер. Этот минимальный размер Smjn должен быть указан сетевой организацией, в зависимости от характеристик системы.

Примечание 2 — Учитывая указанный минимальный размер, настоящий стандарт, как правило, не применяют к бытовым установкам потребителей

Настоящий стандарт не предназначен для установления норм эмиссии применительно к отдельным образцам оборудования, подключенным к системам низкого напряжения. Нормы эмиссии для низковольтного оборудования установлены в стандартах IEC, распространяющихся на группы продукции. Нормы, указанные в этих стандартах, определены на основе допущений о числе, типе и использовании оборудования, создающего помехи в установке, подключенной к системе электроснабжения, и опорного полного сопротивления, приведенного в IEC 60725. которое рассматривается в качестве репрезентативного в отношении полных сопротивлений установок небольших жилых объектов. Эти допущения могут быть неприменимы для больших низковольтных установок. Поэтому рекомендации, приведенные в настоящем стандарте, предназначены для предоставления методов определения норм эмиссии для таких больших установок.

Издание официальное

Примечание 3 — Соответствие нормам эмиссии, определенным на основе применения методов настоящего стандарта, не исключает любых требований о соответствии нормам эмиссии для оборудования (установленным на основе национальных или региональных регулирующих требований).

Настоящий стандарт распространяется на следующие виды помех, возникающих в низковольтных установках:

-    гармоники и интергармоники;

-    фликер и быстрые изменения напряжения;

-    несимметрия напряжений (компонент с обратной последовательностью).

Так как руководящие принципы, изложенные в настоящем стандарте, обязательно включают некоторые упрощающие предположения, гарантия, что этот подход будет всегда обеспечивать оптимальное решение для всех ситуаций, отсутствует. Рекомендуемый подход при применении к конкретной процедуре оценки следует применять с гибкостью и предусмотрительностью, учитывающей технические вопросы.

Сетевая организация несет ответственность за уточнение требований к подключению установок, создающих помехи, к системе. Установку, создающую помехи, рассматривают как полную установку пользователя (включая элементы, создающие помехи, и те, которые не вызывают помех).

В настоящем стандарте представлены рекомендуемые процедуры установления норм эмиссии для больших установок низкого напряжения Для того чтобы сетевая организация могла полностью применять положения настоящего стандарта, необходимо присутствие эксперта, который должен учесть соответствующие факторы, касающиеся конкретных типов низковольтных установок.

Примечание 4 — Упрощение норм эмиссии путем создания одного набора таблиц для всех низковольтных сетей может привести в некоторых случаях к чрезмерно консервативным нормам

Основная часть настоящего стандарта представляет собой описание общей процедуры распределения норм эмиссии применительно к гармоникам, колебаниям напряжения и несимметрии для больших установок, подключенных к низковольтным системам.

В приложениях к настоящему стандарту содержится дополнительная информация, в частности:

-    приложение А включает практический пример применения технических решений на уровне экспертов в области распределительных сетей или на уровне национального регулирования с целью получения собственных норм, которые адаптированы к конкретным характеристикам сетей, на основе использования общего метода;

-    приложение В включает пример практического применения рекомендуемого метода на уровне сетевой организации при подключении конкретных установок на основе локальных параметров низковольтной сети;

-    приложения С и D содержат подробную информацию теоретического характера, необходимую для использования и понимания процедур, приведенных в настоящем стандарте.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты. Для датированных ссылок применяют только указанное издание ссылочного стандарта, для недатированных — последнее издание (включая все изменения).

IEC 60050-161:1990. International electrotechnical vocabulary — Chapter 161: Electromagnetic compatibility. Amendment 1 (1997). Amendment 2 (1998) (Международный электротехнический словарь. Глава 161. Электромагнитная совместимость. Изменение 1 (1997). Изменение 2 (1998)]

IEC/TR 60725. Consideration of reference impedances and public supply network impedances for use in determining disturbance characteristics of electrical equipment having a rated current < 75 A per phase (Обзор стандартных полных сопротивлений и полных сопротивлений общественных сетей, используемых при определении характеристик помех электрического оборудования с номинальным током < 75 А в одной фазе)

IEC/TR 61000-2-1:1990, Electromagnetic compatibility (EMC) — Part 2-1: Environment — Description of the environment — Electromagnetic environment for low-frequency conducted disturbances and signalling in public power supply systems (Электромагнитная совместимость (ЭМС). Часть 2-1. Электромагнитная обстановка. Описание электромагнитной обстановки. Электромагнитная обстановка для низкочастотных кондуктивных помех и сигналов в общественных системах электроснабжения]

IEC 61000-2-2:2002. Electromagnetic compatibility (EMC) — Part 2-2: Environment — Compatibility levels for low-frequency conducted disturbances and signalling in public low— voltage power supply systems

(Электромагнитная совместимость (ЭМС). Часть 2-2. Электромагнитная обстановка. Уровни совместимости для низкочастотных кондуктивных помех и сигналов в низковольтных системах общественного электроснабжения]

IEC 61000-3-2. Electromagnetic compatibility (EMC) — Part 3-2: Limits — Limits for harmonic current emissions (equipment input current <16 A per phase) (Электромагнитная совместимость (ЭМС). Часть 3-2. Нормы. Нормы эмиссии гармонических составляющих тока (оборудование с входным током < 16 А в одной фазе)]

IEC 61000-3-3, Electromagnetic compatibility (EMC) — Part 3-3: Limits — Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current < 16 A per phase and not subject to conditional connection (Электромагнитная совместимость (ЭМС). Часть 3-3. Нормы. Ограничение изменений напряжения, колебаний напряжения и фликера в общественных низковольтных системах электроснабжения для оборудования с номинальным током не более 16 А в одной фазе, не подлежащего условному соединению]

IEC/TR 61000-3-6:2008. Electromagnetic compatibility (EMC) — Part 3-6: Limits — Assessment of emission limits for the connection of distorting installations to MV. HV and EHV power systems (Электромагнитная совместимость (ЭМС). Часть 3-6. Нормы. Оценка норм эмиссии для подключения установок, создающих помехи, к системам электроснабжения среднего (MV). высокого (HV) и сверхвысокого (EHV) напряжения]

1ЕСЯР 61000-3-7:2008. Electromagnetic compatibility (EMC) — Part 3-7: Limits — Assessment of emission limits for the connection of fluctuating load installations to MV. HV and EHV power systems (Электромагнитная совместимость (ЭМС). Часть 3-7. Нормы. Оценка норм эмиссии для подключения флуктуирующих установок к системам электроснабжения среднего (MV). высокого (HV) и сверхвысокого (EHV) напряжения]

IEC 61000-3-11, Electromagnetic compatibility (EMC) — Part 3-11: Limits — Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems — Equipment with rated current < 75 A and subject to conditional connection (Электромагнитная совместимость (ЭМС). Часть 3-11. Нормы. Ограничение изменений напряжения, колебаний напряжения и фликера в общественных низковольтных системах электроснабжения. Оборудование с номинальным током < 75 А в одной фазе, подлежащее условному соединению]

IEC 61000-3-12. Electromagnetic compatibility (EMC) — Part 3-12: Limits — Limits for harmonic currents produced by equipment connected to public low-voltage systems with input current > 16 A and < 75 A per phase (Электромагнитная совместимость (ЭМС). Часть 3-12. Нормы. Нормы гармонических составляющих тока, создаваемых оборудованием, подключаемым к общественным низковольтным системам, с входным током более 16 А, но не более 75 А в одной фазе]

IEC/TR 61000-3-13:2008, Electromagnetic compatibility (EMC) — Part 3-13: Limits — Assessment of emission limits for the connection of unbalanced installations to MV. HV and EHV power systems (Электромагнитная совместимость (ЭМС). Часть 3-13. Нормы. Оценка норм эмиссии при подключении несимметричных электрических установок к системам электроснабжения среднего (MV). высокого (HV) и сверхвысокого (EHV) напряжения)

IEC 61000-4-15. Electromagnetic compatibility (EMC) — Part 4-15: Testing and measurement techniques — Flickermeter — Functional and design specifications (Электромагнитная совместимость (ЭМС). Часть 4-15. Методы испытаний и измерений. Фликерметр. Функциональные и конструктивные требования]

3 Термины и определения

В настоящем стандарте применены термины по IEC 60050-161. а также следующие термины с соответствующими определениями:

3.1    95 %-ная (99 %-ная) вероятность еженедельного (ежедневного) значения [95 % (99 %) probability weekly (daily) value]: Значение, которое не превышалось в течение 95 % (99 %) времени в течение одной(го) недели (дня).

3.2    согласованная мощность (agreed power): Значение установленной мощности для установки, создающей помехи, согласованное между пользователем’ и сетевой организацией*. В случае нескольких точек подключения для каждой точки может быть определено отдельное значение.

* В настоящем стандарте термин «заказчик (customer)» (применительно к установке) заменен на «пользователь*. термин «оператор системы, владелец (system operator, owner)» (применительно к системе электроснабжения) заменен на «сетевая организация».

3.3    пользователь (user): Физическое лицо, компания или организация, которые управляют установкой. подключенной или наделенной правом на подключение сетевой организацией к системе электроснабжения.

3.4    (электромагнитная) помеха ((electromagnetic) disturbance): Любое электромагнитное явление, которое, при его наличии в электромагнитной обстановке, может привести к отклонению качества функционирования электрического оборудования от его предназначенного качества функционирования.

3.5    уровень помехи (disturbance level): Величина или значение электромагнитной помехи, измеренные или оцененные установленным способом.

3.6    установка, создающая помехи (disturbing installation): Электрическая установка в целом (включая элементы, создающие помехи, и те. которые не создают помехи), которая может вызвать помехи в виде напряжений или токов в системе электроснабжения, к которой она подключена.

Примечание — В контексте требований настоящего стандарта к установкам, создающим помехи, относят не только потребляющие, но и генерирующие установки

3.7    электромагнитная совместимость; ЭМС (electromagnetic compatibility. ЕМС): Способность оборудования или системы удовлетворительно функционировать в их электромагнитной обстановке, не создавая недопустимых электромагнитных помех другому оборудованию или системам в этой обстановке.

Примечание 1 — Электромагнитная совместимость является условием электромагнитной обстановки, при котором для каждого явления уровень эмиссии помех является достаточно низким, а уровни устойчивости к помехам — достаточно высокими, так что все устройства, оборудование и системы функционируют по назначению

Примечание 2 — Электромагнитная совместимость достигается только в том случае, если уровни эмиссии и помехоустойчивости контролируют таким образом, чтобы уровни помехоустойчивости устройств, оборудования и систем в любом месте не превышались уровнем помех в этом месте в результате кумулятивной эмиссии от всех источников и других факторов, таких как полные сопротивления цепи Как правило, считается, что совместимость достигнута. если вероятность отклонения от качества функционирования по предназначению достаточно низкая (см IEC/TR 61000-2-1, раздел 4)

Примечание 3 — В контексте требований настоящего стандарта совместимость может относиться к одной помехе или классу помех

Примечание 4 — Электромагнитная совместимость — это термин, используемый также для описания области деятельности, связанной с изучением неблагоприятных электромагнитных эффектов, которые устройства, оборудование и системы испытывают друг от друга или от электромагнитных явлений

3.8    уровень (электромагнитной) совместимости ((electromagnetic) compatibility level): Регламентированный уровень электромагнитной помехи, используемый в качестве опорного в конкретной электромагнитной обстановке в целях координации при установлении норм электромагнитной эмиссии и устойчивости к электромагнитной помехе.

Примечание — По соглашению, уровень совместимости устанавливают таким образом, что существует лишь малая вероятность (например. 5 %) того, что он будет превышен фактическим уровнем помех

3.9    эмиссия (emission): Явление, при котором электромагнитная энергия исходит от источника электромагнитных помех.

(IEC 60050-161:1990, 161-01-08, модифицировано)

Примечание —В контексте требований настоящего стандарта термин «эмиссия* относится к явлениям, представляющим собой кондуктивные электромагнитные помехи, которые могут вызывать искажения, колебания или несимметрию питающих напряжений

3.10    уровень эмиссии (emission level): Уровень определенной электромагнитной помехи, эмитируемой конкретным устройством, оборудованием, системой или установкой в целом. Он оценивается и измеряется установленным методом.

3.11    норма эмиссии (emission limit): Максимальный уровень эмиссии, установленный для конкретного устройства, оборудования, системы или установки в целом.

3.12    генерирующая установка (generating plant): Любое оборудование, производящее электрическую энергию, совместно с любым непосредственно связанным или взаимодействующим с ним оборудованием. таким как единичный трансформатор или преобразователь.

3.13    помехоустойчивость, устойчивость к электромагнитной помехе (immunity (to а disturbance)): Способность устройства, оборудования или системы функционировать без ухудшения качества при наличии электромагнитных помех.

3.14    уровень помехоустойчивости (immunity level): Максимальный уровень определенной электромагнитной помехи, воздействующей на конкретное устройство, оборудование или систему, при котором они сохраняют способность функционировать с заявленным качеством функционирования.