Товары в корзине: 0 шт Оформить заказ
Стр. 1
 

49 страниц

532.00 ₽

Купить ГОСТ 33106-2014 — бумажный документ с голограммой и синими печатями. подробнее

Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО "ЦНТИ Нормоконтроль".

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

Способы доставки

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Распространяется на твердое биотопливо и устанавливает метод определения высшей теплоты сгорания при постоянном объеме и стандартной температуре 25 °C в калориметрической установке с использованием калориметрической бомбы и способ расчета низшей теплоты сгорания при постоянном давлении.

  Скачать PDF

Содержит требования EN 14918:2009

Оглавление

1 Область применения

2 Нормативные ссылки

3 Термины и определения

4 Сущность метода определения теплоты сгорания

5 Реактивы и материалы

6 Аппаратура

7 Приготовление пробы для испытаний

8 Калориметрическая процедура

9 Градуировка калориметра

10 Высшая теплота сгорания

11 Прецизионность

12 Вычисление низшей теплоты сгорания при постоянном давлении

13 Протокол испытаний

Приложение А (обязательное) Адиабатические бомбовые калориметры

Приложение В (обязательное) Изопериболические бомбовые калориметры и бомбовые калориметры со статическим кожухом

Приложение С (обязательное) Автоматизированные бомбовые калориметры

Приложение D (справочное) Перечень параметров и процедур, контролируемых при проведении калориметрических испытаний

Приложение Е (справочное) Примеры, иллюстрирующие основные расчеты, приведенные в настоящем стандарте, при работе на автоматизированном бомбовом калориметре

Приложение F (справочное) Принятые значения элементного состава биотоплива для вычисления теплоты сгорания

Приложение G (справочное) Схема проведения калориметрического испытания

Приложение Н (справочное) Обозначения показателей и индексов, примененных в настоящем стандарте

Приложение ДА (справочное) Справочные таблицы и информационные материалы

Библиография

Показать даты введения Admin

Нормативные ссылки

Стр. 1
стр. 1
Стр. 2
стр. 2
Стр. 3
стр. 3
Стр. 4
стр. 4
Стр. 5
стр. 5
Стр. 6
стр. 6
Стр. 7
стр. 7
Стр. 8
стр. 8
Стр. 9
стр. 9
Стр. 10
стр. 10
Стр. 11
стр. 11
Стр. 12
стр. 12
Стр. 13
стр. 13
Стр. 14
стр. 14
Стр. 15
стр. 15
Стр. 16
стр. 16
Стр. 17
стр. 17
Стр. 18
стр. 18
Стр. 19
стр. 19
Стр. 20
стр. 20
Стр. 21
стр. 21
Стр. 22
стр. 22
Стр. 23
стр. 23
Стр. 24
стр. 24
Стр. 25
стр. 25
Стр. 26
стр. 26
Стр. 27
стр. 27
Стр. 28
стр. 28
Стр. 29
стр. 29
Стр. 30
стр. 30

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ

(МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION

(ISC)

МЕЖГОСУДАРСТВЕННЫЙ

СТАНДАРТ

ГОСТ

33106-

2014

(EN 14918:2009)

БИОТОПЛИВО ТВЕРДОЕ

Определение теплоты сгорания

(EN 14918:2009, MOD)

Издание официальное

Москва

Стандартинформ

2015

Предисловие

Цели, основные принципы и порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

1    ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский центр стандартизации, информации и сертификации сырья, материалов и веществ» (ФГУП «ВНИЦСМВ») на основе собственного аутентичного перевода на русский язык международного стандарта, указанного в пункте 5

2    ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (Росстандарт)

3    ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 14 ноября 2014 г. № 72-П)

За принятие проголосовали:

Краткое наименование страны по MK (ИСО 3166) 004—97

Код страны по MK (ИСО 3166) 004—97

Сокращенное наименование национального органа по стандартизации

Азербайджан

AZ

Азстандарт

Беларусь

BY

Госстандарт Республики Беларусь

Казахстан

KZ

Госстандарт Республики Казахстан

Киргизия

KG

Кыргызстандарт

Россия

RU

Росстандарт

4    Приказом Федерального агентства по техническому регулированию и метрологии от 19 мая 2015 г. № 369-ст межгосударственный стандарт ГОСТ 33106-2014 (EN 14918:2009) введен в действие в качестве национального стандарта Российской Федерации с 1 апреля 2016 г.

5    Настоящий стандарт модифицирован по отношению к европейскому региональному стандарту EN 14918:2009 Solid biofuels — Determination of calorific value (Твердые биотоплива. Определение теплоты сгорания). При этом дополнительные положения, включенные в текст стандарта для учета потребностей экономики и/или особенностей межгосударственной стандартизации, выделены курсивом.

Перевод с английского языка (ел).

Официальные экземпляры европейского регионального стандарта, на основе которого подготовлен настоящий межгосударственный стандарт, имеются в Федеральном информационном фонде технических регламентов и стандартов.

Ссылки на международные и региональные стандарты, которые приняты в качестве межгосударственных стандартов, заменены в разделе «Нормативные ссылки» и в тексте стандарта ссылками на соответствующие межгосударственные стандарты.

Степень соответствия — модифицированная (MOD)

6    ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2015

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

ГОСТ 33106-2014

Предупреждение — Калориметрическая бомба представляет собой сосуд высокого давления и, чтобы избежать аварии, при работе с ней необходимо соблюдать осторожность и требования инструкции изготовителей. Следует регулярно проверять части бомбы для обнаружения износа и коррозии. Особое внимание необходимо уделять состоянию резьбы на крышке и на корпусе бомбы. При работе с несколькими однотипными бомбами необходимо следить за маркировкой частей бомб. Замена частей может привести к несчастному случаю.

6.2.2    Калориметрический сосуд

Калориметрический сосуд изготовляют из нержавеющего материала. Он имеет полированную поверхность и теплоизолирующую крышку.

Сосуд вмещает достаточное количество воды, чтобы полностью покрыть бомбу при перемешивании воды в сосуде. Если крышка неплотно закрывает калориметрический сосуд, температура воды в сосуде может снижаться за счет испарения воды, что приводит к увеличению продолжительности главного периода и искажению результатов испытания.

6.2.3    Мешалка

Мешалка должна быть отрегулирована так, чтобы обеспечивать постоянную скорость вращения. Часть мешалки, расположенная ниже крышки термостата, должна быть изготовлена из материала с низкой теплопроводностью и/или иметь малую массу, чтобы свести к минимуму передачу тепла к системе или от нее. Это особенно важно, когда ось мешалки непосредственно контактирует с ее мотором.

Примечание — Скорость перемешивания воды в калориметрах должна быть достаточно большой, чтобы в процессе быстрого подъема температуры калориметра в отдельных его точках не возникало перегрева и обеспечивалось выравнивание температуры в калориметрическом сосуде не более чем за 10 мин (главный период).

6.2.4    Термостат

Термостат (водяная рубашка, кожух с водой) в классическом калориметре представляет собой двустенный металлический сосуд с двойным дном и крышкой (рисунок 1). Пространство между стенками заполняют водой. В термостат помещают калориметрический сосуд с бомбой. Воздушный зазор между калориметрическим сосудом и термостатом составляет приблизительно 10 мм.

В зависимости от устройства термостата различают калориметры изопериболического (изотермического) и адиабатического типов.

В калориметрах изотермического типа большая масса воды в термостате и высокая теплоемкость обеспечивают постоянство температуры в термостате на протяжении всего испытания. В современных приборах изотермическая рубашка снабжена средством для поддержания постоянной температуры с погрешностью ±0,1 К. Критерии удовлетворительной работы термостата этого типа даны в приложении В.

В калориметрах адиабатического типа процесс протекает практически без обмена тепла между калориметрическим сосудом и окружающей средой, т. к. во время опыта температура воды в термостате автоматически поддерживается такой же, как в калориметрическом сосуде. Для этого в термостат помещают электроды или погружные нагреватели и мешалки. Допускается отставание температуры воды в термостате после зажигания пробы не более чем на 0,1 К. После установления равновесия в системе скорость изменения температуры воды в термостате не должна превышать 0,0005 К/мин. Критерии удовлетворительной работы термостата адиабатического типа даны в приложении А.

6.2.5    Устройство для измерения температуры

С целью измерения подъема температуры используют приборы с ценой деления 0,001 К, позволяющие определять изменения температуры в интервалах от 1,5 К до 3 К, с погрешностью не более 0,002 К.

Разрешающая способность прибора для измерения температуры должна быть не хуже 10~4 К.

Абсолютную температуру воды в калориметрической системе измеряют с погрешностью не более

0,1 К.

Устройство для измерения температуры должно иметь линейную или близкую к линейной зависимость выходного сигнала от изменения температуры в той области температур, в которой это устройство используют.

В качестве альтернативы традиционным стеклянным ртутным термометрам могут быть использованы такие датчики температуры, как платиновые термометры сопротивления, термисторы, кварцевые кристаллические резонаторы и т. д., которые в сочетании с подходящим мостом сопротивления, нуль-детектором, частотомером или другим электронным оборудованием способны обеспечить необходимую точность измерений. Краткосрочная повторяемость показаний устройств такого типа должна быть

0,001 К или выше. Долгосрочный дрейф выходного сигнала в течение шести месяцев эквивалентен изменению температуры не более чем на 0,05 К. Датчики с линейной зависимостью выходного сигнала (от температуры) менее подвержены его искажению, вызывающему погрешность в калориметрических измерениях, чем нелинейные датчики.

Ртутные стеклянные термометры должны соответствовать требованиям ISO 651, ISO 652 или ГОСТ 28498. Для считывания температуры с требуемой точностью используют лупу приблизительно с пятикратным увеличением.

С целью предотвращения залипания столбика ртути (см. 8.4) используют механический вибратор для легкого постукивания по термометру. Если такой механизм недоступен, перед снятием показаний по термометру постукивают рукой.

6.2.6 Цепь зажигания

Питающее напряжение цепи зажигания от 6 до 25 В обеспечивают от источника переменного тока через понижающий трансформатор или источника постоянного тока в виде электробатарей. Желательно включить в цепь световой индикатор для контроля подачи электроэнергии.

При проведении зажигания вручную необходимо соблюдать требования безопасной работы с электрооборудованием.

6.3    Тигель

Для сжигания проб используют тигли из кварца, хромоникелевого сплава, платины или другого химически инертного материала.

Тигель должен иметь диаметр от 15 до 25 мм, плоское основание и глубину приблизительно 20 мм. Кварцевые тигли должны иметь толщину стенок приблизительно 1,5 мм, а металлические — приблизительно 0,5 мм.

Если после сжигания пробы в бомбе обнаруживают сажу, то для последующих испытаний пробы может быть использован небольшой платиновый или хромоникелевый тигель с малой массой, например толщиной стенок 0,25 мм, диаметром 15 мм и глубиной 7 мм.

6.4    Система для наполнения бомбы кислородом

6.4.1    Регулятор давления (редуктор) для контроля за наполнением бомбы кислородом.

6.4.2    Манометр (диапазоном измерений 0—5 МПа) для измерения давления в бомбе с погрешностью ± 0,05 МПа.

6.4.3    Предохранительный клапан или диск-прерыватель, установленный на линии подачи кислорода в бомбу и срабатывающий при давлении 3,5 МПа, для предотвращения переполнения бомбы.

Предупреждение — Оборудование для работы с кислородом при высоком давлении следует предохранять от нефтепродуктов и смазки (в соответствии с инструкцией по эксплуатации прибора может быть использована высоковакуумная смазка, рекомендованная производителем). Не проверяйте и не градуируйте манометр углеводородными жидкостями.

6.5    Таймер

Таймер должен показывать минуты и секунды.

6.6    Весы

6.6.1    Весы аналитические лабораторные по ГОСТ OIML R 76-1 с пределом допускаемой погрешности ± 0,1 мг для взвешивания пробы, запала и т. п. (см. 8.2.1).

Если масса пробы менее 0,5 г, рекомендуется использовать весы с пределом допускаемой погрешности ± 0,01 мг по ГОСТ OIML R 76-1.

6.6.2    Весы лабораторные по ГОСТ OIML R 76-1 с пределом допускаемой погрешности ± 0,5 г для взвешивания воды в калориметрическом сосуде (если нет возможности отобрать необходимый объем воды с требуемой точностью, см. 8.3).

6.7    Термостат (поставляется отдельно от калориметра) для хранения воды. Дистиллированную воду (5.4.7) для наполнения калориметрического сосуда подготавливают перед каждым испытанием, устанавливая заданную температуру с погрешностью не более ± 0,3 К (см. 8.3).

6.8    Пресс механический или гидравлический для изготовления брикетов диаметром приблизительно 13 мм и массой (1,0 ± 0,1) г.

8

ГОСТ 33106-2014

7    Приготовление пробы для испытаний

Пробы биотоплива для определения теплоты сгорания отбирают по стандарту [1] и доставляют в лабораторию в опечатанной герметичной упаковке или контейнерах.

Проба биотоплива, предназначенная для определения теплоты сгорания, представляет собой пробу для общего анализа (измельченную до прохождения через сито с размером отверстий 1,0 мм), приготовленную по ГОСТ 33255. Пробу перемешивают и доводят ее влажность до состояния равновесия с атмосферой лаборатории.

Для многих видов биотоплива необходима процедура отделения мелочи с помощью сит с размером отверстий менее 1,0 мм (0,5 или 0,25 мм), что позволяет обеспечить необходимую прецизионность результатов и полное сгорание.

Вследствие малой плотности твердые биотоплива подвергают испытаниям в брикетированном виде. Брикеты массой (1,0 ± 0,1) г получают с помощью пресса (6.8) путем приложения давления, достаточного для образования компактной и прочной таблетки. Альтернативно можно проводить испытание биотоплива в виде порошка, помещенного в сгораемую упаковку или капсулу.

Одновременно со взятием навески биотоплива для определения теплоты сгорания отбирают навески для определения содержания аналитической влаги по ГОСТ32975.3, а также для определения зольности по ГОСТ 32988.

Содержание аналитической влаги используют для внесения соответствующих поправок в результаты испытаний аналитической пробы. Если содержание влаги в анализируемой пробе определяют позднее, пробу сохраняют в небольшом плотно закрытом контейнере.

Общую влагу определяют в поступившей в лабораторию пробе по ГОСТ EN 14774-1.

8    Калориметрическая процедура

8.1 Общие положения

( — начальная температура главного периода; ff — конечная температура главного периода; ( — температура термостата (кожуха); 1 — начальный период; 2 — главный период; 3 — конечный период; 4 — зажигание

Калориметрическая процедура состоит из двух отдельных определений, проводимых в одинаковых стандартных условиях: сжигания бензойной кислоты и сжигания биотоплива. Это позволяет устранить влияние систематических погрешностей, связанных, например, с неконтролируемыми потерями тепла, которые не могут быть учтены при оценке исправленного подъема температуры (0).

Отдельное определение состоит из полного (количественного) сжигания навески в бомбе под высоким давлением кислорода, анализа продуктов сгорания и определения изменения температуры воды в калориметрическом сосуде.

Измерения температуры воды, необходимые для оценки исправленного подъема температуры (0), проводят в течение начального периода, главного периода (времени протекания реакции) и конечного периода (рисунок 2). Для адиабатического калориметра продолжительность начального и конечного периодов определяется исключительно временем, необходимым для выравнивания температуры в системе до и после зажигания пробы соответственно (см. приложение А).

Рисунок 2 — Профиль изменения температуры воды в калориметрическом сосуде изопериболического калориметра при температуре термостата выше конечной температуры в калориметрическом сосуде

Для изопериболических (изотермических) калориметров и калориметров со статическим типом кожуха в начальный и конечный периоды должен установиться устойчивый равномерный теплообмен в калориметрической системе, что позволяет оценить истинное количество тепла, которым обменивают-

9

ся калориметрический сосуд и термостат в главном периоде, когда происходит сгорание пробы. Это требует большей продолжительности начального и конечного периодов (см. приложение В).

В процессе сжигания навески биотоплива верхняя часть бомбы нагревается сильнее других ее частей, поэтому необходимо интенсивно перемешивать воду в калориметрическом сосуде, чтобы при быстром нагреве системы температурный градиент воды оставался приемлемым. Мешалка должна работать стабильно в течение всего испытания для поддержания постоянной скорости перемешивания.

При испытании некоторых видов биотоплива постоянно происходит неполное сгорание навески из-за того, что воспламенение сопровождается взрывом. При этом в твердых продуктах сгорания обнаруживают несгоревшие частицы пробы или сажу. Для того, чтобы достичь полного сгорания таких проб, применяют следующие способы: смешивают навеску с известными количествами вспомогательного вещества (5.3); обертывают навеску в бумажную салфетку; помещают навеску в капсулу; используют запал из хлопковой нити; исключают добавление воды в бомбу перед испытанием; заполняют бомбу кислородом до меньшего давления.

Вспомогательное вещество (5.3) должно быть химически устойчивым, иметь известный состав и степень чистоты, иметь низкое давление пара и точно установленную теплоту сгорания. Теплота сгорания вспомогательного вещества должна быть установлена с точностью не менее 0,10 %. Количество вспомогательного вещества должно быть минимальным, т. е. не более того, которое необходимо для достижения полного сгорания пробы. Количество тепла, выделившееся за счет сгорания вспомогательного вещества, не должно превышать половины всего тепла, выделившегося при испытании. Оптимальное соотношение масс пробы и вспомогательного вещества зависит от свойств анализируемого биотоплива, и его определяют экспериментально.

Массу добавляемого вспомогательного вещества следует определять настолько точно, насколько это возможно, чтобы правильно оценить его вклад в выделившееся при испытании тепло. Это особенно важно, если в качестве вспомогательного вещества используют углеводород, теплота сгорания которого значительно выше теплоты сгорания биотоплива.

8.2 Подготовка бомбы к проведению испытания

8.2.1 Общая процедура

Навеску пробы биотоплива в виде брикета или порошка, помещенного в сгораемую упаковку или капсулу, взвешивают в тигле с точностью до 0,01 % массы пробы или выше. Это означает, что навеску 1 г (см. 9.2 и 10.2) взвешивают с пределом допускаемой погрешности ± 0,1 мг. Определяют массу проволоки для зажигания (5.2.1) и хлопчатобумажной нити (5.2.2) с тем же пределом допускаемой погрешности взвешивания или для всех испытаний принимают их массу постоянной (см. 9.4 и 9.6.1).

Закрепляют туго натянутую проволоку зажигания между электродами в бомбе (см. примечание ниже). Проверяют сопротивление цепи зажигания. Для большинства бомб это сопротивление не должно превышать 5—10 Ом при измерении между двумя клеммами цепи, выходящими наружу в верхней части бомбы, или между соединительным зажимом изолированного электрода и верхней частью бомбы.

Привязывают или надежно прикрепляют хлопчатобумажную нить к проволоке зажигания, помещают тигель на подставку и опускают нить в тигель, чтобы произошло ее соприкосновение с брикетом или капсулой. Положение тигля в собранной бомбе должно быть симметричным по отношению к стенкам бомбы.

Примечание — Если проволока для зажигания изготовлена из электропроводящего материала и сгорает при испытании, систему зажигания подготавливают альтернативным способом. Между электродами закрепляют более длинную проволоку, чтобы из нее можно было сделать открытую петлю. После установки тигля петлю опускают до соприкосновения ее с брикетом или капсулой. В некоторых случаях процесс зажигания протекает спокойнее, когда проволочная петля находится на небольшом расстоянии над брикетом пробы. Необходимо избегать любого контакта между проволокой зажигания и тиглем, особенно при использовании металлического тигля, т. к. это приводит к короткому замыканию в цепи зажигания. Более подробно подготовка бомбы к испытанию изложена в инструкции к прибору.

Добавляют в бомбу определенное количество дистиллированной воды, которое должно быть одинаковым при градуировке прибора и при испытании топлив (см. 9.2). При испытании биотоплив в бомбу добавляют, как правило, (1,0 ± 0,1) см3 дистиллированной воды. Для некоторых биотоплив (и в некоторых типах калориметров) полного сгорания можно достичь, если не добавлять воду в бомбу или применить вспомогательное вещество (5.3), способствующее сгоранию пробы. В некоторых случаях для полного поглощения газообразных продуктов сгорания увеличивают количество дистиллированной воды, добавляемой в бомбу (до 5 см3).

ГОСТ 33106-2014

Собирают бомбу и медленно заполняют ее кислородом до давления (3,0 ± 0,2) МПа без вытеснения из нее воздуха или сначала продувают бомбу кислородом при открытом выходном клапане в течение 30 с в соответствии с инструкцией изготовителя, а затем плавно закрывают выходной клапан и заполняют бомбу кислородом до давления (3,0 ± 0,2) МПа. Эта процедура должна быть одинаковой при проведении градуировки и испытаний. Если бомба заполнена кислородом до давления выше 3,3 МПа, испытание прерывают и начинают его сначала.

Предупреждение — Не наклоняйтесь над бомбой во время заполнения ее кислородом.

Бомба готова к установке в калориметрический сосуд.

8.2.2 Особенности использования вспомогательных веществ (5.3)

При добавлении жидкого вспомогательного вещества

Брикет пробы помещают в тигель и взвешивают. В тигель по каплям добавляют жидкое вспомогательное вещество, дают брикету впитать жидкость, а затем тигель вновь взвешивают для определения массы добавки.

При добавлении твердого вспомогательного вещества

Твердые вспомогательные вещества (например, бензойную кислоту) используют при испытании порошкообразного биотоплива. Смесь биотоплива и вспомогательного вещества после взвешивания тщательно перемешивают и помещают в сгораемую упаковку или капсулу.

Использование сгораемой упаковки или капсул

В соответствии с инструкцией изготовителя сгораемые капсулы, сгораемая упаковка или сгораемые тигли (из желатина, ацетобутирата или полиэтилена) с точно установленной теплотой сгорания могут являться добавкой для облегчения сгорания пробы (либо в сочетании с бензойной кислотой). Перед употреблением их взвешивают. Порошкообразное биотопливо и твердое вспомогательное вещество тщательно перемешивают в упаковке или капсуле перед испытанием.

8.3 Подготовка калориметра

Доводят температуру воды для калориметрических испытаний до выбранного начального значения с пределом допускаемой погрешности + 0,3 Ки заполняют требуемым количеством этой воды калориметрический сосуд. Количество воды в калориметрическом сосуде должно быть одинаковым для всех испытаний и отличаться не более чем на 0,5 г (9.6.1). Прежде чем сосуд будет помещен в термостат, убеждаются, что внешняя поверхность сосуда сухая и чистая. Помещают сосуд, содержащий требуемое количество воды, в термостат и устанавливают в сосуд бомбу.

Если в калориметре измерения и расчеты проводят на основе постоянной общей массы калориметра (9.6.2), используют альтернативную процедуру. В этом случае сначала устанавливают в сосуд с водой бомбу и только после этого проводят взвешивание. Общая масса калориметрического сосуда с водой и бомбой в сборе должна быть одинаковой во всех испытаниях и отличаться не более чем на 0,5 г.

Готовый к работе калориметр должен содержать достаточно воды, чтобы полностью покрыть верхнюю поверхность бомбы и ее крышку.

Примечание — Взвешивание воды с пределом допускаемой погрешности ± 0,5 г применяют, когда энергетический эквивалент калориметра составляет величину до 10 кДж/К.

После погружения бомбы в воду проверяют, нет ли утечки из нее газа. Если газовые клапаны не полностью покрыты водой, проверяют их на наличие утечек с помощью капли воды, наносимой на участки, не покрытые водой. Подсоединяют контактные провода цепи зажигания и устанавливают термометр.

Предупреждение — Если обнаружена утечка кислорода из бомбы, следует прекратить испытание, устранить причину утечки и начать анализ снова. Утечки кислорода представляют собой опасность и приводят к ошибочным результатам.

Включают оборудование для циркуляции охлаждающей воды, устройства для контроля температуры, мешалку и т. д. и проводят их регулировку в соответствии с инструкцией по эксплуатации прибора. Проверяют правильность работы мешалки. Обычно для достижения устойчивого равновесного состояния калориметра, снабженного термостатом или кожухом, требуется приблизительно 5 мин, независимо от типа калориметра. Критерии достижения равновесного состояния зависят от принципа работы калориметра (приложения А и В).

8.4    Сжигание пробы и измерение температуры

Сразу после достижения равновесного состояния калориметра начинают снимать показания термометра с точностью до 0,001 К или выше с интервалом 1 мин. Этого достаточно для установления скорости изменения температуры в начальном периоде и для подтверждения правильности работы адиабатической системы. Если температуру измеряют с помощью стеклянного ртутного термометра, то примерно за 10 с до каждого снятия показаний по термометру слегка постукивают. При снятии показаний положение глаза по отношению к шкале термометра должно быть постоянным.

В конце начального периода, когда установлена начальная температура главного периода, поджигают запал, и начинается процесс горения топлива. Цепь зажигания держат включенной ровно столько времени, сколько требуется, чтобы поджечь запал. Обычно ток в цепи автоматически прерывается, как только проволока для зажигания начинает гореть и частично плавится.

Предупреждение — Не наклоняйтесь над калориметром в момент зажигания и в течение 20 с

после этого.

Продолжают снимать показания термометра с интервалом 1 мин. Время, соответствующее показанию термометра fj является началом главного периода. В течение нескольких первых минут после зажигания, когда температура изменяется быстро, продолжают измерения температуры, но при этом точность измерений составляет 0,02 К. Возобновляют измерение температуры с точностью 0,001 К или выше сразу, как только это станет возможным, но не позже чем через 5 мин после начала главного периода. Критерии, по которым определяют продолжительность начального, главного и конечного периодов, а также необходимое количество измерений температуры, приведены в приложениях А и В.

8.5    Анализ продуктов сгорания

После завершения конечного периода и снятия необходимого количества показаний термометра бомбу вынимают из калориметрического сосуда, снижают давление, следуя инструкции изготовителя, и снимают крышку бомбы. Внимательно осматривают внутреннюю часть бомбы, тигель и твердый остаток с целью обнаружения признаков неполного сгорания. При наличии в бомбе несгоревших частиц пробы или сажи результаты данного испытания отбрасывают. Извлекают и взвешивают все несгоревшие кусочки проволоки зажигания.

Примечание — Другим признаком неполного сгорания топлива является присутствие монооксида углерода в газообразных продуктах сгорания. Газ медленно выпускают из бомбы, пропуская его через подходящую индикаторную трубку, которая позволяет обнаружить присутствие монооксида углерода и определить уровень его концентрации. Концентрация монооксида углерода в газе 0,1 см3/дм3 при объеме бомбы 300 см3 соответствует погрешности определения приблизительно 10 Дж.

Количественно переносят содержимое бомбы в химический стакан с помощью дистиллированной воды. Обмывают водой внутреннюю поверхность бомбы и крышки, а также электроды и тигель, собирая воду в тот же стакан.

При проведении градуировочных испытаний в смыве бомбы определяют содержание азотной кислоты методом ионной хроматографии (в виде нитрат-иона) в соответствии с EN ISO 10304-1 или разбавляют смыв водой до объема приблизительно 50 см3 и определяют содержание азотной кислоты титрованием раствором гидроксида натрия (5.4.3) до pH приблизительно 5,5 или до изменения окраски индикатора метилового оранжевого (5.4.5).

При определении поправок на серу и азотную кислоту смыв бомбы анализируют в соответствии с процедурами, описанными ниже [методы а)-с)], или эквивалентным методом. Если содержание серы в биотопливе и поправка на азотную кислоту известны, анализ смыва бомбы можно не проводить (см. 10.1).

a)    Определяют азотную и серную кислоты (в виде нитрат-ионов и сульфат-ионов соответственно) методом ионной хроматографии по EN ISO 10304-1.

b)    Смыв бомбы разбавляют водой до объема приблизительно 100 см3 и кипятят для удаления диоксида углерода. В горячем состоянии смыв титруют раствором гидроксида бария (5.4.1), используя в качестве индикатора раствор фенолфталеина (5.4.6). Затем приливают 20,0 см3 раствора карбоната натрия (5.4.2), фильтруют еще горячий раствор и промывают осадок дистиллированной водой. Когда фильтрат остынет, титруют его раствором соляной кислоты (5.4.4), используя в качестве индикатора раствор метилового оранжевого (5.4.5), игнорируя при этом изменение окраски фенолфталеина.

ГОСТ 33106-2014

с) Если содержание серы в биотопливе известно, горячий смыв бомбы после кипячения титруют по упрощенной процедуре — раствором гидроксида натрия (5.4.3) в присутствии индикатора фенолфталеина (5.4.6).

8.6 Исправленный подъем температуры
8.6.1    Наблюдаемый подъем температуры

Наблюдаемый подъем температуры (ff - fj) представляет собой разность между температурой в конце (ff) и в начале (в момент зажигания пробы, t) главного периода.

8.6.2    Изопериболические калориметры и калориметры со статическим кожухом

В изопериболических (изотермических) калориметрических системах при расчете исправленного подъема температуры воды в калориметрическом сосуде (0) вводят поправку на теплообмен между калориметрическим сосудом и термостатом, т. е. поправку на теплообмен между калориметрической системой и окружающей средой (A/ех) в соответствии со следующей формулой

t,-t, = Q±Atex.    (1)

Калориметрическая система может терять часть тепла от горения навески или поглощать тепло извне (рисунок 2) в зависимости от соотношения температур в калориметрическом сосуде и термостате в конце опыта. В первом случае наблюдаемый подъем температуры оказывается заниженным и поправку на теплообмен следует прибавлять, а во втором случае наблюдаемый подъем температуры оказывается завышенным и поправку на теплообмен следует вычитать

Q = (t,-t)±Atex.    (2)

Существуют различные методы оценки Л/ех. Наиболее общими из используемых являются метод Реньо-Пфаундлера и метод экстраполяции Диккинсона.

Примечание 1 — Метод Реньо-Пфаундлера автоматически учитывает изменения соотношения время— температура для систем различного типа и, следовательно, более надежен из этих двух методов.

Ниже приведены окончательные формулы расчета A/ех.

к = п-1

- I *к

к = 1

nfmf-

(3)

Метод Реньо-Пфаундлера

^ех=(^-^)9г+——

‘mf ‘mi

где xf — время окончания главного периода, мин;

Т| — время начала главного периода (время зажигания), мин; gf — скорость изменения температуры в конечном периоде, К/мин;

9i — скорость изменения температуры в начальном периоде, К/мин; fmf — средняя температура конечного периода, °С; fmi — средняя температура начального периода, °С; п — номер одноминутного интервала в главном периоде; fj — начальная температура главного периода (время зажигания), °С; ff — конечная температура главного периода, °С;

tk — показания термометра, считываемые в течение главного периода с интервалом 1 мин (^ — температура через одну минуту после начала главного периода, tn = ff), °С.

Метод экстраполяции Диккинсона

Afex = 9)(тх “ Ti) + 9f(Tf - тх),    (4)

где Qj и gf — скорости изменения температуры в моменты ij и xf соответственно (см. пояснения к формуле расчета по методу Реньо-Пфаундлера), К/мин; тх — время, в которое изменение температуры (тх - Т|) составляет 0,6 наблюдаемого подъема температуры (ff-/j), мин.

Примечание 2 — Альтернативно температура может быть выражена в других единицах (см. 3.6, примечание 2).

13

8.6.3    Адиабатические калориметры

В адиабатических системах теплообмен настолько незначителен, что им пренебрегают, и исправленный подъем температуры 0 равен наблюдаемому подъему температуры

0 = (ff-f,).    (5)

Интенсивное перемешивание приводит к равномерному изменению температуры в течение всего испытания и достаточно легко корректируется, но может увеличить общую продолжительность наблюдений за температурой.

Расчет исправленного подъема температуры 0 в адиабатическом калориметре с учетом поправки на дрейф конечной температуры приведен в А.5, приложение А.

8.6.4    Поправки термометра

Если для измерения температуры используют стеклянный ртутный термометр, то при определении начальной температуры fj и конечной температуры ^учитывают поправки, указанные в свидетельстве о поверке данного термометра.

8.7 Стандартная температура

Стандартной температурой каждого отдельного испытания является конечная температура главного периода tf.

9 Градуировка калориметра

9.1    Сущность градуировки

Сжигание эталонной бензойной кислоты (5.5) в стандартных условиях до газообразного диоксида углерода и воды в жидкой фазе позволяет определить количество тепла, необходимого для изменения температуры воды в калориметрическом сосуде на одну единицу. Классические калориметры (рисунок 1) достаточно долгое время сохраняют неизменными свои характеристики, такие как масса (теплоемкость), геометрия и поверхность теплообмена. Это позволяет проводить градуировку приборов как отдельную серию испытаний для определения энергетического эквивалента калориметра г.

Постоянная градуировки г не должна существенно изменяться в течение длительного времени при условии, что незначительные ремонты или другие изменения в системе корректно учитываются. Однако некоторые автоматизированные калориметры требуют более частых градуировок, иногда — ежедневных.

Систематические погрешности могут возникнуть, например, в результате испарения воды калориметра, бесконтрольного теплообмена и/или вследствие дефектов, а также из-за отставания системы управления температурой в адиабатических калориметрах во время горения пробы. Такие погрешности в значительной степени компенсируются при соблюдении одинаковых условий градуировочных испытаний и испытаний проб топлива.

9.2    Бензойная кислота
9.2.1    Условия сертификации

Значение теплоты сгорания эталонной бензойной кислоты устанавливают при следующих условиях: масса навески бензойной кислоты составляет 3 г на один литр внутреннего объема бомбы (то же условие для массы добавляемой в бомбу воды); начальное давление кислорода в бомбе равно 3,0 МПа; стандартная температура равна 25 °С. Продуктами сгорания являются газообразный диоксид углерода и вода в виде жидкости, которая насыщена диоксидом углерода и находится в равновесии с водяным паром. В продуктах сгорания определяют азотную кислоту, образующуюся из азота воздуха, и вводят поправку на теплоту образования и растворения азотной кислоты. Если градуировочные испытания выполняют в других условиях, теплота сгорания бензойной кислоты, указанная в сертификате, должна быть скорректирована. Корректировочные коэффициенты приводят в сертификате.

9.2.2    Условия градуировки

Условия градуировки полностью соблюдают при последующих испытаниях топлива. Для бомб внутренним объемом приблизительно 300 см3 навеска бензойной кислоты составляет 1 г и перед испытанием в бомбу добавляют 1 см3 воды. Для бомб объемом приблизительно 200 см3 предпочтительно использовать навеску бензойной кислоты 0,6 г и соответственно уменьшать количество воды (так же поступают при испытаниях проб).

14

ГОСТ 33106-2014

Примечания

1    Поправки, учитывающие отклонения условий градуировки от условий сертификации, взятые из типового сертификата бензойной кислоты, составляют (на 1 г бензойной кислоты): для первоначального давления кислорода в бомбе — 5 Дж/МПа, для массы навески — (1,1 Дж/г дм3)-1, для массы добавляемой воды — (0,8 Дж/дм3)-1, для стандартной температуры испытания — (-1,2 Дж/К).

2    Если начальное давление кислорода в бомбе сохраняется в пределах (3,0 ± 0,3) МПа, а стандартная температура — в пределах (25 ± 2) °С, поправка, связанная с отклонениями давления и/или температуры от условий сертификации, составляет не более ± 3 Дж/г и ее можно не учитывать.

3    Большее соотношение массы воды и бензойной кислоты, например 5 см3/г, является существенным отклонением от условий сертификации. Для бомбы объемом 300 см3 такое отклонение приводит к завышению теплоты сгорания бензойной кислоты, указанной в сертификате, на 11 Дж/г. В бомбе объемом 200 см3 сжигание 1,0 г бензойной кислоты в присутствии 5,0 см3 воды приводит к завышению указанного в сертификате значения на 20 Дж/г. Такое завышение результата вызвано, главным образом, увеличением количества диоксида углерода, растворенного в жидкости. Если при градуировке воду в бомбу не добавляют, получают результат, заниженный по сравнению со значением, указанным в сертификате, на 2 Дж/г.

9.3    Действительный рабочий диапазон энергетического эквивалента калориметра

Для устойчивой работы калориметра желательно, чтобы значение энергетического эквивалента калориметра существенно не менялось при изменении количества бензойной кислоты в пределах ± 25 %. Однако на практике этого достичь не удается. Для того чтобы значение энергетического эквивалента калориметра оставалось постоянным, необходимо ограничить пределы наблюдаемого подъема температуры воды в калориметрическом сосуде. Этого можно добиться, подбирая массы навесок биотоплива так, чтобы подъем температуры при их сжигании оставался в установленных пределах.

Чтобы оценить, насколько зависит энергетический эквивалент конкретного калориметра г от массы бензойной кислоты, проводят специальные испытания. Массу бензойной кислоты изменяют в пределах от 0,7 до 1,3 г, причем количество испытаний должно быть не менее восьми. Массу приливаемой в бомбу воды при этом не меняют.

Для проверки градуированной калориметрической системы сжигают бензойную кислоту, как неизвестное вещество. Проводят три испытания с навесками бензойной кислоты массой от 0,7 до 1,3 г и сравнивают среднеарифметический результат этих испытаний с теплотой сгорания, указанной в сертификате. Этого обычно бывает достаточно, чтобы установить постоянство энергетического эквивалента калориметра в данном диапазоне выделения тепла. Отклонение результатов определения теплоты сгорания в сторону занижения при сжигании навесок с большей массой свидетельствует о том, что при сжигании больших навесок бензойной кислоты значение г увеличивается. В первую очередь рекомендуется использовать бензойную кислоту в качестве контрольного вещества при проверке работы автоматизированных систем.

Диапазон параметров, в котором необходимо проверить значение энергетического эквивалента г зависит от диапазона значений теплоты сгорания биотоплив, которые предстоит анализировать. Тенденцию к умеренному колебанию значения £ в пределах ± 0,3 % при изменении наблюдаемого подъема температур в пределах ± 30 % можно компенсировать, выразив энергетический эквивалент в как линейную функцию наблюдаемого подъема температуры в определенном интервале. Аналогичным образом при использовании нелинейного датчика температуры значение в может быть выражено как линейная функция (ff-1), при этом должны быть установлены четкие границы изменения или tv

Обсуждаемые в настоящем разделе отклонения энергетического эквивалента £ от постоянного значения могут быть вызваны физическими характеристиками калориметра и/или дефектами системы контроля температуры прибора. Полную проверку настройки прибора, а также проверку влияния условий градуировки на значение £ проводят, если прибор новый или подвергался ремонту, если прибор был перемещен в другое место или произошло изменение системы контроля температуры. Адиабатические системы необходимо проверять чаще (см. приложение А). Некоторые автоматизированные калориметры необходимо градуировать, используя навески бензойной кислоты разной массы, как описано выше (см. приложение С).

9.4    Дополнительные составляющие теплоты сгорания

При градуировочном испытании к теплоте, выделяющейся при сгорании бензойной кислоты, добавляются такие составляющие, как теплота сгорания запала (запалов) и теплота образования и растворения азотной кислоты, образующейся из азота воздуха, оставшегося в бомбе. Составляющую от

15

сгорания запала определяют, исходя из массы сгоревшей части запала и теплоты сгорания соответствующего материала, для чего несгоревшую часть проволоки запала взвешивают.

Количество образовавшейся азотной кислоты определяют в смыве бомбы, например кислотнощелочным титрованием (8.5).

В большинстве калориметрических приборов теплота сгорания запала (запалов) приблизительно одинакова для всех испытаний (сжигание топлива или градуировка) и, следовательно, ее можно считать постоянной величиной. Для бомбы данной конструкции количество азотной кислоты, образующейся в градуировочных испытаниях, примерно одинаково.

9.5    Процедура градуировки

Для обычной градуировки калориметра проводят серию испытаний из пяти удовлетворительных сжиганий бензойной кислоты. Навески бензойной кислоты перед сжиганием брикетируют (5.5). Калориметрическая процедура описана в разделе 8. Рекомендации относительно массы пробы и количества добавляемой в бомбу воды приведены в 9.2.2. Для сжиганий бензойной кислоты лучше использовать тигель с малой массой. Начальную температуру выбирают такой, чтобы стандартная температура испытания, обозначаемая как tf (8.7), находилась в пределах выбранного диапазона для стандартной температуры.

Все условия градуировочных испытаний, касающиеся давления кислорода, количества добавляемой в бомбу воды, стандартной температуры, продолжительности начального, главного, и конечного периодов и т. д., должны соблюдаться при последующих сжиганиях навесок биотоплива.

Если энергетический эквивалент калориметра г не является постоянной величиной в требуемом диапазоне рабочих условий и его необходимо выразить как функцию (ff - fj) (см. 9.3), число градуировочных испытаний увеличивают до восьми или более. Массу навесок бензойной кислоты для отдельных испытаний подбирают так, чтобы получить разные значения подъема температуры, распределенные по всему рабочему диапазону этой величины, проводя при этом несколько измерений температуры вблизи конечных точек. Затем строят график зависимости г от (tf -1) и определяют наклон полученной кривой.

9.6    Расчет энергетического эквивалента калориметра

9.6.1 Для калориметров с постоянной массой воды

Для систем, в которых во всех испытаниях количество воды в калориметрическом сосуде одинаковое, энергетический эквивалент е рассчитывают по формуле

g _    (g)

0

где тЬа — масса навески бензойной кислоты, г;

QsV ьа — высшая теплота сгорания эталонной бензойной кислоты при постоянном объеме, указанная в сертификате, Дж/г;

Qfuse — количество теплоты, выделившейся при сгорании запала из хлопчатобумажной нити, Дж;

Qign — количество теплоты, выделившейся при сгорании проволоки зажигания, Дж;

Qn — количество теплоты, выделившейся при образовании и растворении в воде азотной кислоты (см. 8.5 и 9.2.1), Дж;

0 — исправленный подъем температуры, К или условные единицы (см. 3.6 и 8.6).

Примечание — Энергетический эквивалент е обычно выражают в единицах Дж/К. Если исправленный подъем температуры 0 выражен в других единицах, то е выражают в джоулях на соответствующую единицу измерения температуры, например Дж/Ом.

Вклад от сгорания хлопковой нити (запала) составляет 17500 Дж/г, а от сгорания хромоникелевой проволоки — 6000 Дж/г. Платиновая проволока плавится, а затем вновь затвердевает, поэтому не дает вклада в теплоту сгорания.

Поскольку сумма Qfuse + Qign во всех испытаниях отличается не более чем на несколько джоулей, ее можно считать постоянной. Обычно поправку Qfuse + Qign не учитывают при определении г, если эта поправка невелика, а изменения значений 0 укладываются в интервал ± 20 %.

Количество теплоты, выделившейся при образовании и растворении азотной кислоты, составляет 60 Дж/ммоль.

16

ГОСТ 33106-2014

Содержание

1    Область применения .................................................................1

2    Нормативные ссылки .................................................................1

3    Термины и определения...............................................................2

4    Сущность метода определения теплоты сгорания..........................................3

5    Реактивы и материалы................................................................4

6    Аппаратура .........................................................................5

7    Приготовление пробы для испытаний....................................................9

8    Калориметрическая процедура.........................................................9

9    Градуировка калориметра ............................................................14

10    Высшая теплота сгорания ...........................................................18

11    Прецизионность ...................................................................21

12    Вычисление низшей теплоты сгорания при постоянном давлении ..........................22

13    Протокол испытаний................................................................23

Приложение А (обязательное) Адиабатические бомбовые калориметры........................24

Приложение В (обязательное) Изопериболические бомбовые калориметры и бомбовые

калориметры со статическим кожухом.......................................27

Приложение С (обязательное) Автоматизированные бомбовые    калориметры ...................29

Приложение D (справочное) Перечень параметров и процедур, контролируемых при проведении

калориметрических испытаний.............................................31

Приложение Е (справочное) Примеры, иллюстрирующие основные расчеты, приведенные в настоящем стандарте, при работе на автоматизированном бомбовом

калориметре............................................................34

Приложение F (справочное) Принятые значения элементного состава биотоплива для вычисления

теплоты сгорания........................................................37

Приложение G (справочное) Схема проведения калориметрического испытания.................38

Приложение Н (справочное) Обозначения показателей и индексов, примененных в настоящем

стандарте ..............................................................39

Приложение ДА (справочное) Справочные таблицы и информационные материалы..............41

Библиография........................................................................43

ГОСТ 33106-2014

Значение QN, Дж, вычисляют по результату определения содержания нитрата в смыве бомбы (N03), мг, методом ионной хроматографии, используя формулу

Qn = 0,97(NO3),    (7)

или по результату титрования смыва бомбы V, см3, раствором гидроксида натрия (5.4.3), используя формулу

Qn = 6,0V.    (8)

9.6.2 Для калориметров с постоянной общей массой

В калориметрической системе, где все измерения и расчеты проводят на основе постоянной общей массы калориметра, т. е. суммарной массы воды в калориметрическом сосуде и бомбы в сборе, масса воды в сосуде для отдельных испытаний колеблется незначительно, поскольку эти колебания связаны в основном с массой тигля, используемого при испытании. Для таких систем удобно пользоваться величиной е0, названной энергетическим эквивалентом гипотетического калориметра без тигля в бомбе, который рассчитывают по формуле

£0 в* + mcrCp gqi    (9)

где е* — равен е, который определяют по 9.6.1;

/псг — масса тигля, используемого в градуировочном испытании (см. примечание ниже), г;

Ср aq — удельная теплоемкость воды, Дж/г-К (если г выражен в единицах Дж/К). При 25 °С удельная теплоемкость воды равна 4,18 Дж/г-К.

При использовании других единиц измерения температуры значение ср aq должно быть пересчитано соответствующим образом. Для этого необходимо знать соотношение между градусами Кельвина и используемой единицей температуры с точностью ±10 %.

В формуле (9) второе слагаемое представляет собой в полном виде следующее выражение:

mcr(cp, aq ср, сг) + msample(cp, aq ср, sample)'

где ср сг — удельная теплоемкость материала тигля, Дж/г-К;

Ср samp|e — удельная теплоемкость пробы, Дж/г-К;

^sample — масса навески пробы, г.

Второе слагаемое выражения (см. выше) может быть исключено без потери точности, поскольку его значение при градуировке и при испытаниях топлива отличается не существенно, следовательно выражение может быть представлено в сокращенном виде:

mcr(cp, aq “ ср, сг)'

а в большинстве случаев может быть упрощено до mcrcp aq, как дано в формуле (9) для е0. Однако, когда используют различные тигли, может возникнуть необходимость учитывать теплоемкость тигля. Например, если для градуировочных испытаний используют платиновый тигель массой 10 г, а для сжигания биотоплива — кварцевый тигель массой 10 г и если значение ср сг не принять во внимание, погрешность составит 6 Дж/К, т. е. при подъеме температуры на 3 К погрешность достигнет 18 Дж. Таким образом, наиболее корректная формула для расчета следующая

£0 = £* + тсгр ац - ср сг).    (10)

Удельные теплоемкости платины, кварца и стали равны 0,133, 0,74 и 0,45 Дж/г-К соответственно.

9.7 Прецизионность определения энергетического эквивалента калориметра £

9.7.1 При значении г, являющимся константой

По результатам определения энергетического эквивалента е (9.6.1) или е0 (9.6.2) при градуировке калориметра вычисляют среднеарифметическое значение и стандартное отклонение. Стандартное отклонение не должно превышать 0,20 %. В расчеты включают все результаты данной серии градуировочных испытаний, за исключением тех, которые имеют признаки неполного сгорания.

Если требуемая прецизионность градуировочных испытаний достигнута, то среднеарифметические значения или г0^ принимают за энергетический эквивалент калориметра. В противном случае устанавливают причины неудовлетворительных результатов, устраняют их, а затем проводят новую серию градуировочных испытаний.

17

Введение

Настоящий межгосударственный стандарт гармонизирован с европейским региональным стандартом EN 14918:2009 «Биотопливо твердое. Определение теплоты сгорания». Стандарт EN 14918 подготовлен Техническим комитетом CEN/TC 335 «Твердое биотопливо» и введен в действие национальными организациями по стандартизации стран, входящих в Европейский Союз.

Европейский региональный стандарт EN 14918:2009 разработан на основе международного стандарта ISO 1928:2009 «Топливо твердое минеральное. Определение высшей теплоты сгорания методом сжигания в калориметрической бомбе и расчет низшей теплоты сгорания», модифицированного для твердого биотоплива путем внесения дополнений и изменений, учитывающих свойства данного вида топлива.

Теплота сгорания является важнейшим показателем качества твердого биотоплива как источника тепловой энергии.

Настоящий стандарт регламентирует метод определения высшей теплоты сгорания твердого биотоплива при постоянном объеме. Определение проводят в бомбовом калориметре, градуированном путем сжигания эталонной бензойной кислоты. Общие принципы и процедуры градуировки и испытания биотоплива изложены в основном тексте стандарта, а особенности работы на калориметрах разного типа и рекомендации по технике безопасной работы — в приложениях А — Е.

Настоящий межгосударственный стандарт является модифицированным по отношению к европейскому региональному стандарту EN 14918:2009.

В настоящий стандарт включены дополнительные требования, отражающие потребности экономики и/или особенности межгосударственной стандартизации:

-    добавлено приложение ДА, в котором собраны информационно-справочные материалы, необходимые для пользования стандартом;

-текст стандарта EN 14918 отредактирован и изложен в соответствии с требованиями ГОСТ 1.5 и ГОСТ 1.3;

-    из текста стандарта исключено описание калориметра, в котором вода заменена металлическим блоком, поскольку настоящий стандарт распространяется на жидкостные (водные) калориметры.

IV

ГОСТ 33106-2014 (EN 14918:2009)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

БИОТОПЛИВО ТВЕРДОЕ Определение теплоты сгорания

Solid biofuel. Determination of calorific value

Дата введения — 2016—04—01

1    Область применения

Настоящий стандарт распространяется на твердое биотопливо и устанавливает метод определения высшей теплоты сгорания при постоянном объеме и стандартной температуре 25 °С в калориметрической установке с использованием калориметрической бомбы и способ расчета низшей теплоты сгорания при постоянном давлении.

Калориметрическую установку градуируют с помощью образцовой (эталонной) меры теплоты сгорания — бензойной кислоты (далее — эталонная бензойная кислота).

При определении теплоты сгорания в калориметрической бомбе получают значение высшей теплоты сгорания анализируемой пробы при постоянном объеме. Продукты сгорания находятся в газообразном состоянии, за исключением воды, образующейся при сгорании пробы и конденсирующейся в жидкость.

На практике биотопливо сжигают при постоянном атмосферном давлении, все продукты сгорания находятся в газообразном состоянии, вода не конденсируется, а удаляется в виде пара с дымовыми газами. В этих условиях реальной теплотой сгорания биотоплива является низшая теплота сгорания при постоянном давлении. Можно рассчитать также низшую теплоту сгорания при постоянном объеме. В настоящем стандарте приведены формулы для расчета обеих величин.

Для определения высшей теплоты сгорания твердого биотоплива при постоянном объеме используют разные типы калориметров, отвечающие основным требованиям, которые регламентированы в настоящем стандарте.

2    Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ OIML R 76-1—2011 Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

ГОСТ 2179—75 Проволока из никеля и кремнистого никеля. Технические условия

ГОСТ 5307—77 Проволока константановая неизолированная. Технические условия

ГОСТ 5583-78 (ИСО 2046—73) Кислород газообразный технический и медицинский. Технические условия

ГОСТ 6309—93 Нитки швейные хлопчатобумажные и синтетические. Технические условия

ГОСТ 6709—72 Вода дистиллированная. Технические условия

ГОСТ EN 14774-1—2013 Биотопливо твердое. Определение содержания влаги. Метод с применением сушки в сушильном шкафу. Часть 1. Общая влага. Стандартный метод1)

ГОСТ 18389—73 Проволока из платины и ее сплавов. Технические условия

^ На территории Российской Федерации действует ГОСТ Р 54186-2010 (EN 14774-1:2009) «Биотопливо твердое. Определение содержания влаги высушиванием. Часть 1. Общая влага. Стандартный метод».

Издание официальное

ГОСТ 28498-90 Термометры жидкостные стеклянные. Общие технические требования. Методы испытаний

ГОСТ 32975.3-2014 (EN 14774-3:2009) Биотопливо твердое. Определение содержания влаги высушиванием. Часть 3. Влага аналитическая

ГОСТ 32985-2014 (EN 15104:2011) Биотопливо твердое. Определение углерода, водорода и азота инструментальными методами

ГОСТ 32988-2014 (EN 14775:2009) Биотопливо твердое. Определение зольности

ГОСТ 33103-2014 (EN 14961-1:2010) Биотопливо твердое. Технические характеристики и классы топлива. Часть 1. Общие требования

ГОСТ 33255-2015 (EN 14780:2011) Биотопливо твердое. Методы подготовки проб

ISO 651:1975 Термометры палочные калориметрические1)

ISO 652:1975 Термометры с вложенной шкалой калориметрические2)

EN 15296:2011 Биотопливо твердое. Пересчет результатов анализа на различные состояния топлива3)

EN ISO 10304-1:2009 Качество воды. Определение растворенных анионов методом жидкостной ионной хроматографии. Часть 1. Определение бромидов, хлоридов, фторидов, нитратов, нитритов, фосфатов и сульфатов (ISO 10304-1:2007)

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1    высшая теплота сгорания при постоянном объеме: Количество теплоты, которое выделяется при полном сгорании единицы массы твердого биотоплива в калориметрической бомбе в среде сжатого кислорода в установленных стандартом условиях.

Примечание — Остаточными продуктами сгорания являются газы: кислород, азот, диоксид углерода и диоксид серы, а также вода в виде жидкости, которая находится в равновесии с водяным паром и насыщена диоксидом углерода, и твердая зола, причем все продукты сгорания находятся при стандартной температуре.

3.2    низшая теплота сгорания при постоянном объеме: Количество теплоты, которое выделяется при полном сгорании единицы массы твердого биотоплива в калориметрической бомбе в среде сжатого кислорода при условии, что вся вода в продуктах сгорания остается в виде водяного пара (в гипотетическом состоянии при давлении 0,1 МПа), а остальные продукты сгорания являются теми же, что для высшей теплоты сгорания, причем все продукты находятся при стандартной температуре.

3.3    низшая теплота сгорания при постоянном давлении: Количество теплоты, которое выделяется при полном сгорании единицы массы твердого биотоплива, сжигаемого в среде кислорода при постоянном давлении и при условии, что вся вода, образующаяся при сгорании, остается в виде водяного пара (при давлении 0,1 МПа), а другие продукты сгорания являются теми же, что для высшей теплоты сгорания, причем все продукты находятся при стандартной температуре.

3.4    стандартная температура: Международная стандартная термохимическая температура, равная 25 °С, принятая в качестве стандартной температуры для калориметрии.

ГОСТ 33106-2014

Примечания

1    См. 8.7.

2    Зависимость теплоты сгорания биотоплива от температуры незначительна и составляет менее 1 Дж/(г-К).

3.5    энергетический эквивалент калориметра: Теплоемкость калориметрической системы, которую определяют как количество теплоты, необходимое для изменения температуры этой системы на 1 °С.

3.6    исправленный подъем температуры: Изменение температуры воды в калориметрическом сосуде, вызванное исключительно процессами, проходящими в калориметрической бомбе.

Примечания

1    Исправленный подъем температуры представляет собой общий наблюдаемый подъем температуры воды в калориметрическом сосуде после внесения поправки на теплообмен с окружающей средой.

2    Изменение температуры может измеряться в градусах или в других единицах: сопротивление платинового или термисторного термометра, частоты кристаллического кварцевого резонатора и др., при условии, что установлена функциональная зависимость между этими свойствами и изменением температуры.

4 Сущность метода определения теплоты сгорания

4.1    Высшая теплота сгорания

Сущность метода определения высшей теплоты сгорания при постоянном объеме заключается в полном сжигании навески твердого биотоплива в атмосфере сжатого кислорода (3 МПа) в герметично закрытом металлическом сосуде — калориметрической бомбе, которую погружают в определенный объем (или массу) воды, находящейся в калориметрическом сосуде. По увеличению температуры воды в калориметрическом сосуде устанавливают количество теплоты, выделившейся при сгорании биотоплива и вспомогательных веществ, а также при образовании водных растворов азотной и серной кислот в условиях испытания.

Прибор для определения теплоты сгорания называют калориметрической установкой или калориметром.

Энергетический эквивалент калориметра определяют при градуировочных испытаниях путем сжигания навески эталонной бензойной кислоты в условиях, аналогичных условиям проведения калориметрических испытаний топлива.

Исправленный подъем температуры определяют, измеряя температуру воды в калориметрическом сосуде до, во время и после сжигания навески анализируемого вещества. Продолжительность и частота наблюдений зависят от типа калориметра.

До начала определения в бомбу добавляют определенный объем дистиллированной воды, чтобы еще до сжигания создать газовую среду, насыщенную водяными парами. Это способствует полной конденсации воды, которая образуется из водорода и влаги пробы (жидкая фаза продуктов сгорания).

Высшую теплоту сгорания при постоянном объеме вычисляют по исправленному подъему температуры и энергетическому эквиваленту калориметра с учетом выделения тепла при сгорании части запальной проволоки и/или хлопчатобумажной нити, а также при образовании и растворении в воде азотной кислоты. При вычислении высшей теплоты сгорания вводят также поправку на теплоту образования водного раствора серной кислоты из диоксида серы и жидкой воды. Теплотой растворения в воде газообразного хлористого водорода можно пренебречь, поскольку содержание хлора в большинстве биотоплив обычно мало и эта поправка незначительна.

Примечание — Типичная массовая доля хлора в топливе на основе древесины составляет менее 0,05 %, в топливе на основе травяной биомассы — от 0,1 % до 1 %, в топливе на основе плодовой биомассы — менее 0,2 % в пересчете на сухое состояние.

4.2    Низшая теплота сгорания

Низшую теплоту сгорания биотоплива при постоянном объеме и низшую теплоту сгорания биотоплива при постоянном давлении определяют расчетным путем, исходя из высшей теплоты сгорания при постоянном объеме, полученной при анализе пробы. Для расчета низшей теплоты сгорания при постоянном объеме требуются данные о содержании водорода и общей влаги в анализируемой пробе. Для расчета низшей теплоты сгорания при постоянном давлении требуются данные о содержании общей влаги, водорода, кислорода и азота в пробе.

3

5 Реактивы и материалы

5.1    Газообразный кислород

Газообразный кислород в баллоне по ГОСТ 5583 для наполнения калориметрической бомбы до давления 3 МПа, с объемной долей кислорода не менее 99,5 %, не содержащий горючих примесей и водорода.

Примечание — Категорически запрещается использовать кислород, получаемый методом электролиза воды, т. к. он может содержать до 4 % объемной доли водорода.

5.2    Запал

5.2.1    Проволока для зажигания, одна из перечисленных ниже:

-    хромоникелевая диаметром 0,16—0,20 мм по ГОСТ 2179;

-    константановая диаметром 0,10—0,15 мм по ГОСТ 5307;

-    платиновая диаметром 0,05—0,10 мм по ГОСТ 18389;

-    медная диаметром 0,10—0,15 мм

или другая подходящая проволока с известными тепловыми характеристиками.

5.2.2    Хлопчатобумажная нить из белой целлюлозы по ГОСТ 6309 или эквивалентного материала.

5.3    Вспомогательные вещества

Вещества с известной теплотой сгорания, которые добавляют к навеске биотоплива для достижения полноты сгорания в калориметрической бомбе (9.2.1).

В качестве вспомогательных веществ используют:

-    бензойную кислоту (5.5);

-    п-додекан;

-    парафиновое масло для калориметрии;

-    капсулы или упаковку из горючего материала.

5.4    Растворы для определения азотной и серной кислот в смыве бомбы (см. 8.5, 9.4 и 10.1)

5.4.1    Бария гидроксид, раствор концентрацией с[Ва(ОН)2] = 0,05 моль/дм3: 18 г Ва(0Н)2-8Н20 растворяют приблизительно в 1 дм3 горячей воды в большой колбе. Закрывают колбу пробкой и дают раствору отстояться два дня или до тех пор, пока полностью не выпадет в осадок карбонат бария. Декантируют или сливают с помощью сифона прозрачный раствор через плотный фильтр в бутыль, которую закрывают пробкой с вставленной в нее трубкой с натронной известью для предотвращения взаимодействия раствора с диоксидом углерода.

Концентрацию полученного раствора определяют титрованием его раствором соляной кислоты 0,1 моль/дм3 (5.4.4) с использованием в качестве индикатора фенолфталеина (5.4.6).

5.4.2    Натрия карбонат, раствор концентрацией с(Ыа2С03) = 0,05 моль/дм3: растворяют в воде 5,3 г безводного карбоната натрия (Ыа2С03), высушенного в течение 30 мин при температуре от 260 °С до 270 °С, но не более 270 °С. Раствор количественно переносят в мерную колбу вместимостью 1 дми разбавляют водой до метки.

5.4.3    Натрия гидроксид, раствор концентрацией c(NaOH) = 0,1 моль/дм3; готовят из стандарт-титра по прилагаемой инструкции.

Альтернативно растворяют 4,0 г безводного гидроксида натрия (NaOH) в воде. Раствор количественно переносят в мерную колбу вместимостью 1 дм3 и разбавляют водой до метки. Концентрацию полученного раствора определяют титрованием его раствором соляной кислоты 0,1 моль/дм3 (5.4.4) с использованием в качестве индикатора фенолфталеина (5.4.6). Раствор хранят по 5.4.1 для предотвращения его взаимодействия с диоксидом углерода.

5.4.4    Соляная кислота, раствор концентрацией с(НС1) = 0,1 моль/дм3; готовят из стандарт-титра по прилагаемой инструкции.

Альтернативно растворяют 9 см3 соляной кислоты (плотностью 1,18 г/см3) в 1 дм3 воды. Точную концентрацию полученного раствора определяют титрованием его раствором карбоната натрия (5.4.2) в присутствии индикатора метилового оранжевого (5.4.5).

ГОСТ 33106-2014

5.4.5    Метиловый оранжевый, индикатор, раствор концентрацией 1 г/дм3: растворяют 0,25 г метилового оранжевого и 0,15 г бромкрезолового синего в 50 см3 этилового спирта (объемная доля спирта — 95 %) и разбавляют водой до 250 см3.

5.4.6    Фенолфталеин, индикатор, раствор концентрацией 10 г/дм3: растворяют 2,5 г фенолфталеина в 250 см3 этилового спирта (объемная доля спирта — 95 %) или 2,5 г водорастворимой соли фенолфталеина растворяют в 250 см3 воды.

5.4.7    Вода дистиллированная по ГОСТ 6709.

5.5    Бензойная кислота

Эталонная бензойная кислота является образцовой мерой теплоты сгорания.

Используют образец ГСО1') 5504—90 (МСО2) 1750:2011) «Бензойная кислота К-3». Молярная доля основного компонента — 99,99 %. Теплота сгорания составляет (26454 ± 5) Дж/г при взвешивании на воздухе. Применяют в соответствии с Инструкцией по применению ГСО, прилагаемой к паспорту.

Бензойная кислота — вещество, рекомендуемое для градуировки калориметров с калориметрической бомбой. Бензойную кислоту сжигают в виде брикета.

Бензойную кислоту следует сжигать в условиях, максимально приближенных к условиям сертификации; существенные отклонения от этих условий должны быть обоснованы в соответствии с указаниями в сертификате. Для расчета энергетического эквивалента калориметра используют значение теплоты сгорания эталонной бензойной кислоты.

Примечание — Бензойную кислоту предварительно сушат в эксикаторе с эффективным осушителем в течение 48 ч. Готовые брикеты бензойной кислоты также рекомендуется хранить в эксикаторе с эффективным осушителем (например, Р205) 2—3 сут до использования.

5.6    Вещества для контрольных испытаний

Для проверки правильности калориметрических измерений используют контрольные вещества, например л-додекан, бензойную кислоту. Контрольные вещества используют главным образом для того, чтобы доказать, что особенности пробы, например скорость горения или химический состав, не вносят систематических погрешностей в результаты испытаний. Контрольное вещество должно иметь необходимую степень чистоты и точно установленную теплоту сгорания.

6 Аппаратура

6.1 Общие положения

Настоящий стандарт допускает использование калориметров различного типа, удовлетворяющих функциональным требованиям, а также требованиям к прецизионности результатов определения теплоты сгорания (раздел 11).

Тип калориметра должен быть сертифицирован и зарегистрирован в Государственных реестрах средств измерений Российской Федерации и стран СНГ и допущен к применению в этих государствах.

Типичный калориметр (калориметрическая установка) состоит из следующих основных частей:

-    бомба для сжигания в сборе;

-    калориметрический сосуд с крышкой;

-    мешалка;

-    термостат;

-    устройство для измерения температуры;

-    устройство для зажигания пробы.

На рисунке 1 приведена принципиальная схема калориметра классического типа для определения теплоты сгорания биотоплив.

При работе на автоматизированных калориметрах необходимо соблюдать основные требования, регламентированные настоящим стандартом, касающиеся условий градуировки, соотношения массы пробы и объема бомбы, давления кислорода, жидкости в бомбе, стандартной температуры измерений и повторяемости результатов (см. приложение С).

“0 Государственный стандартный образец.

2) Межгосударственный стандартный образец.

5

1 — крышка термостата; 2 — контактные провода системы зажигания; 3 — термометр; 4 — калориметрический сосуд;

5 — термостат; 6 — калориметрическая бомба; 7 — мешалка

Рисунок 1 — Калориметр классического типа с термостатом и калориметрической бомбой для сжигания

Поскольку условия в помещении, где проводят испытания (изменение температуры, вентиляция и др.), могут повлиять на прецизионность результатов испытаний, необходимо следовать рекомендациям изготовителя при выборе места для прибора.

Описание оборудования для определения теплоты сгорания биотоплива приведено в 6.2—6.8.

6.2 Калориметр с термостатом

6.2.1 Калориметрическая бомба для сжигания

Калориметрическая бомба должна выдерживать давление, которое создается в процессе сжигания. Конструкция бомбы позволяет без затруднений удалять из нее жидкие и твердые продукты сгорания. Бомбу изготовляют из кислотостойкого материала. Внутренний объем бомбы составляет от 250 до 350 см3.

1

^ На территории Российской Федерации действует ГОСТ Р ИСО 651-94 «Термометры палочные калориметрические».

2

)    На территории Российской Федерации действует ГОСТ Р ИСО 652-94 «Термометры с вложенной шкалой калориметрические».

3

)    На территории Российской Федерации действует ГОСТ Р 55113-2012 «Биотопливо твердое. Пересчет результатов анализа на различные состояния топлива».