ТИПОВЫЕ КОНСТРУКЦИИ, ИЗДЕЛИЯ И УЗЛЫ ЗДАНИЙ И СООРУЖЕНИЙ
ШИТРР 774 КМ

СТАЛЬНЫЕ КОНСТРУКЦИИ ПОКРЫТИЙ ОДНОЭТАЖНЫХ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ ИЗ ПРОКАТНЫХ ПРОФИЛЕЙ С РАЗРЕЖЕННОЙ РЕШЕТКОЙ ПРОЛЕТОМ 18 И 24м. типа "МОСКВА" ТИПОВЫЕ КОНСТРУКЦИИ, ИЗДЕЛИЯ И УЗЛЫ ЗДАНИЙ И СООРУЖЕНИЙ IIIU中P 774KM

CTANGHGE KOHCTPYKLINU MOKPGTUÚ OAHOJTAЖHGIX ΠΡΟΝ3ΒΟΔCTBEHHЫХ 3ΔΑΗΝΉ Ν3 ΠΡΟΚΑΤΗЫХ ΠΡΟΦΝΛΕЙ

C PA3PEXEHHOÚ PEWETKOÚ NPONETOM 18 и 24м TUDA "MOEKBA"

HEPTEH(N KM

НАТПЛАЧЕА LHHHRPOEKTAETKOHCTP4KUHЯ

TA. WHIMEHED WICTUTATA ГА КОНСТРУКТОР ИНСТИТУТА УЧЕСТВОВ А.Н НАЧ ОТДЕЛА ТОВ ДОРОЖИНА Т.В. Гл. КОНСТРУКТОР ПРОЕКТА БИЛДАЛАТОВ МД. THANCK NW KAAEBEHKO

BAM, DUPEKTOPA HACTUTYTA LUCK MADO VIGADIL N NT 30HPNAD MONANTA BAE МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ

Старший научный сотрудник //

YTE EPXAEHLI Горгинченка В.М.

ВППСО "Союзлегконструкция" МИНМОНТАЖСПЕЦСТРОЯ СССР RPOTOKOA JE 435 OT 18 AEKAGIPS 1987 F.

УКРНИИПРОЕКТ СТАЛЬКОНСТРУКЦИЯ

AMPEKTOP MHCTHTYTA TA. HHXCHEP HHCTHTYTA Dogovani: HAYAALHIK DTAEAA CATID ORILLIIK KPENNAHDARKHI RII Гл. инженер проекта

шимановский Р.Н. TOPACEB BH CHAHEHKOB H.M.

TPDOWNOR R.U.

М.А ВОНОНЧАЛ

	Coverning mapy com Topic of the series series	7 73	M. NEWTP.
	т 33/10 (вар. «), т / 1 Номенклатура төрцевых ферн. Схема усилы		Hay and Dopozuma ANY
	1 33/6/1710 1 33/6/8(Bap. 2); 17	44	774-00
	1 93mbi 1113 1 93mbi 1416	43	
	1 93/hi 8 (emp. 1) 10	42	-47KM 43NH 911
	Yanbi 57	40	-46KM 43AW 7,8
	43nb 3,4	39	-45KM 43A6I 5,6
·	Узлы 1, 2	38	-44KM 43.7H
	Paspers 3-3; 4-4	37	-43KM 43AM 1, 2
	Сжема блока покрытия спл 24-610К	36	-42КМ Разрезы 4-4 6-6
	Сжена блока покрытыя СПМ 24-540К	35	-41км Разревы 1-1 3-3
	Схема блока покрытия слм 24- 450К	34	-40KM Comma Snoka nakphimus CNM + 24-610K
- 12KM	Схема блока покрытия СПМ 24-360К	33	-39KM Схема блока покрытия СПМ ф 24-510K
-Arm	CIENA BAOMA HONDONNIA CAM 18-630K	32	-38KM Схема блока покрытия CПМ ф 24-450K
-10KM	Сжени блока покрытия спи 18-520К	31	-37RM Caemal Enaka nakawan CRM & 24-368K
-09KM	Сжена блака покрытия СПМ18-410К	30	-36km Схема блака покрытия CПП ф 18-630K
-08KH	Слена блоки покрытия СПМ18-300К	29	-35км Схема блока покрытия CПМ 4 18 - 520k
-07KM	Разрезы 1-1, 2-2	28	- 34KM Citemed Brokes notepulmus com 4 18 - 440K
	Схена блака покрытия СПН 24-630	27	-33km Схена блока покрытня cnm ф 18-300k
	Схеми блоки покрытия СПМ 24-540	26	-32км Схено блака пакрытия спт ф 24-630
	Cxema Enera nametimina CAM 24-450	25	-ЗІКМ Схема блака пакрытия спіт ф 24 - 540
- 03KM	Courted Energy nekptimus COM 24-360	24	-29км Схема блока покрытия СПМф 24-360 -30км Схема блока пекрытия СПМф 24-450
	SACROS REPLIMINA		Блоков покрытия (поперечный разрез) — 29км (земя Бермя перерыния Спи ф. 24-360
	Унифицированная геогенрическая схена	22	and singular street, state of the street, state of
- 0/4	ты узловыты соединанияти. Нопанклатира Бланав пекрытия	21	- 27KM Hariehkhamypa Bhakas nokoburug - 28km Halabuupaaanna reprempunerka esend
	"Посква из стерхневых элементов с болтовы	-	па "Москва"из плоскастных сверных ферм
	Раздел I. Чертежи КП блоков покрытий типа		Раздел] Чертежи КМ блокав покрытия ты
777 0011367	Constitution of the state of th	20	CRM 24-360 CRM 24-610K
774 - 00 (13 KM		5	- 28КМ споцификация металла на Блоки
ОБозначени е	Манменование ·	CAID	-25км торцевая ферма

WAR Nangh. Medines w dera Bach ung NE

Обозначение	Наименование	Cmf
	43.nbi 12,13	73
	1 Спецификация металла на Блаки	74
	CNM 24- 360 CNM \$ 24-610K	
	Раздел III. Конструктивные решения покры	76
	тий зданий и путей подвесного	
	транспарта	
-50A	М Схена расположения элементов покры-	77
	тия при пролетах зданий 18м	
-51×	т Схема расположения элементов пакры-	78
	тия при пролетах зданий 24м	
-524	м Разрезы 3-36-6	79
-53k	м Разрезы 7-7; 8-8	80
Control of the last of the las	Разрезы 9-9; 10-10; 13-13	81
	4 4anbi 1; 2	82
- 56K	4 Yanbi 3;4	83
	4 43AN 58	84
-58K	ч Сжемы раскладки профиченила на блаках	85
	покрытый. Таблица несущих способностей настипов. Узел 9.	
-59KI	Скемы расположения зенитных фонорей и крыш-	87
	ных вентиляторов при пролетак эдоний 18м	
-60KI	я Схены расположения з енитных фонарей и крыш-	88
	ных вентиляторов при пролетах заиний Ин.	
- 61 KI	1 4.3.16 10,11	89
- 62k	Ч 3351/2. Опорные рамы для крышных вентыявторов.	91
- 63A	М Схемы расположения путей подвесных кранов в	92
	эданиях сблакани пакрытий из стержневых элемент,	
- 6 4k	M Уэлы 13,14	93
- 65 K	M 43nbi 15,16	94

-66KM	хынэ забол йэтүп Финэжололора ымэхЭ	95
	кранов в зданиях с блоками покрытий	
	из сварных ферм.	
-67KM	Узлы 17,18	96
-68KM	43.7bi 19; 20	97
- 69KM	Схемы расположения монорельсовых	98
	กระกรับ	
- 70KM	Схемы расположения манарельсовых	99
	NYMEN. YSEN 24	
-71KM	43.161 21: 22: 25, 26	100
- 72KM	Фрагменты подвески монорсльсавых	101
	путей. Узел 23.	
	Раздел IV. Методика проектирования покры-	102
	тий зданий и расчетные материалы	
- 73KM	Общая часть. Методика расчетов по определе-	103
	MUIO SKBHBANEHITHINE HAIPYSOK.	
- 74KM	Эквивалентные нагрузки от единичных рамных	107
.,,,,,-	сил и ветровой нагрузки.	-
- 75KM	Эквивальніпные нагрузки от подвесных кранов	113
	PRBUBANEMENTALIO HAIPYSKA OTERUHUMHAY BEPTAKANAN CAN	116
	Эквивалентные нагрузки от крышных вентилитеря	117
	Эквивалентные нагрузки от загружения консол. Блаков	121
	Эквивалентные нагрузки от сметовых мешков	122
	у перетадов высаты здания	-
- 80KM	Подбор блакав пакрытия для условий страи-	130
	тельства в сейстических районах	
- Bikn	Ментодика проектирования покрытия	136
	Расчетные несущие способности элементов	142
	THE THE THE THE CHOOL OF THE THE THE	_

ЦНИИСК им Кучеренка - ведущая организация/технические решения конструкций, разработка методики расчетов, проведение основных расчетов и испытании опытных образцов конструкций).

ЦНИИпроекттееконструкция Минмонтажопецстроя СССР (установление номенклатуры конструкций, унификация их элементов конструктивные прорабатки Оформление альбома).

УкрНИИ проектстальконструкция Госстроя СССР (расчеты по определению эквивалентных наерузак);

В работе принимали участие ЭКБ ЦНИИСК, ПКВ и Житомирский ЗОК РПО, "Укрстальконструкция" (конструктивные разработки Опытных образуов) и институт ВНИИПИ прометальконструкция Минмонтажепецстроя СССР (вопросы сворки и монтажа, участие в испытании фланцевых соединений).

При разработке альбома использованы авторское свидетельство N488899, результаты экспериментально-теоретических исследований, проведенных ЦНИИСК им. КУЧеренко, результоты испытаний опытных образурб блоков СПМ-24-450 и СПМ-р 24-450, о также положительный опыт изготовления, транспортирования, монтажа и конструктивных решений узлов структурных конструкций покрытий из прокатных профилей типа ЦНИИСК " (Серия 1.460-6/81).

1.е. Альбом состоит из пояснительной записки и 5 разделов:

Раздел I. Чертежи КМ влоков покрытий типа "Масква" из стержневых элементов с болтовыми узловыми соединениями (вариант влоков 1).

Раздел ... Чертежи КМ блоков покрытий типа, Москва" из плоскостных сварных ферм (Вариант блоков 2)
Раздел ... Конструктивные решения покрытий зданий и путей подвесного транспорта.

Раздел<u>іў</u>. Методика проектирования покрытий зданий и расчетные материччы.

Раздел ў. Пример расчета каркаса здания и подбар марок блоков покрытия.

1.3. Материалы настоящего альбома предказначены для разроботки радочей документации на стадии КМД и для проектирования конкретных объектов ма стадии КМ.

1.4. Конструкции настоящего выпуска должны применяться в строгом соответствии с требованиями "Технических правил по экономному расходованию основных строительных материалов" ГЛ 101-85.

1.5. Конструкции разработаны под технологические возможности «Китомирского Завода ограждающих конструкций Минмонтажспецстроя УССР и предназначены для замены типовых конструкций по серии 1.460-6/81,, Структурные конструкции покрытий одноэтажных производственных эдоний пролетами 18 и 24м из прокатных профиней типа, ЦНИИСК" поскольку они инеют значительно лучиие показатели по метоллоем кости, трудовникости изготовления и монтажа"

Hay. om 8 . A O PO KUI	0 100	7	774-00N3KM		
Н. КОНТР.	-		Cmalus Sycm Sucmot		
A.KOHEM AANOMO	8 Back	Пояснительная	7		
Bed KOH. CEPROES	a our	7	,		
Moder Maknot		- 30nucka	ЦИШправктлевконстру кц		

2. Область применения

2.1. Конструкции покрытий предназначены для применения в отопливаемых одноэтажных промышленных Зданиях с неыгрессивной и слабоагрессивной средой. ROJBOOLINE:

- -BT-₽ paūonas no Becy cheroBoro nokpo8d;
- BI-VII paughas no скаростнаму напару ветра;
- в районах с расчетными температурами наруж-HOTO BOSBYXE MUNIC 40°C N BULLE, OM MUNIC 44°C do manye 65°C;
- в районах несейстических и с расчетной сейсмичностью 7,8 и 9 баллов (при отсутствии в 3ddmum nependdos sucom);

2.2. Канструкции покрытий могут применяться при следующих схемах и параметрах зданий:

- пролеты 18 и 24 m, в мобых сочетаниях:
- шаг каланн 12 м, по крайнин и среднин рядан;
- высота зданий 4.8; 6,0;7,2;8,4;9,6;10,8 m / по условиям, вамплектнай поставки злементов каркасов зда-MUN BIO "CONSCIENCE ROHCEMPURALIN" " POO " HERCHARD -KONCHIPHRUME ");
- здания аднопролетные и мнагапралетные без перепадав высот и с перепадами высот (- " снеговых районах в Зависимости от высоты перепа-∂a);
 - звания бесфанарные и с зенитными фанаря-MU:
- здания бескрановые, с маставыми кранами легкого и среднего режинов работы грузаподъенностью Bo 201:
- с тельфераны и подвесными кранами грузападьемностью do 3,2 r;

- задния с внутренним водоотводом и малоуклонной кровлей (1,5%).
- 2,3.Конструкции покрытий допускают установку деф. лекторов, виброизолированных центробежных крышных вентиляторов (с характеристиками, приведенными в серии 1.469-7, выпуск 4), и также подвеску венткоробов, трубопроводов и других инженерных контуникаций. Эквивалентные нагрузки на блоки покрытий от различных воздействий приведены в разделе !!
- 2.4. Конструкции предназначены для блочного и конвеерно-блочного монтажа. Последний целесообразно применять в зданиях площадью более 5 тыс. м?

Канструктивные решения.

3.1. Общая компановка покрытия.

3.1.1. Стальные конструкции покрытий зданий состоят из блоков пакрытий типа "Масква", эгланы опирающихся на коланны; стального профилированного настила прикрепленного к верхним поясам блаков; консолей для опирания крайних листов профилированного настила, расположенных с шагам 3,88м вдаль прадольных стен зданий и продольных температурных швав; элементов, соединяющих смежные блоки; опорных рамок для крышных вентиляторов, поддонав для водосточных варонок и нашельников по настилу, располагаемых между Блоками и стенанира также между смежными блоками и в тенпературных (антисейстических) швах.

В подвижных опорных узлах блоков (применяются для снижения температурных напряжений-см. п. 3.1.8) высокопрочные болты не преднапрягаются, а шайбы--пластины не привариваются к плитам опорных узлов.

3.1.3. Спежные блаки пакрытий в пределах одного температурного или антисейснического атсека соединяютея между собой в уровие верхних поясов с целью обеспечения совместной работы при вертикальных и горизантальных нагрузках. Шаг соединительных планак одаль длинных сторон блаков—6,0м. В даль кароткий сторон с шагом 3,88м устанавливаются кретежные элементы с фланцевыми соединениями по комцам. Кремление соединительных элементов и планов осущестыяется на болтах нормальной точности М 20 (допускается примененые монтажной сварки).

3.1.4. Крайние провольные верхние пояса блокав покрытия выполняют функции ригелей в поперемных рамах зааний и восприничают дополнительные провольные усилия, вызванные воздействием на каркас ветря, мостовых кранав, массы стенового ограждения, сейсмических сил и перепада температуры.

3.1.5. Крайние верхние поперечные пояса блоков (канструктивно являются верхними паясами тарцевых ферм) помимо продольных усилий от вертикальных магрузак на блоки даполнительна воспринимают пробольные силы от воздействия ветра на тарцы здания, тармажения падвесных кранав, горизантальные сейстические силы, передающиеся на связи по колоннам и силы, вызываемые перепадами температуры.

3.1.Б. Размеры температурных и антисейстических атсеков регламентируются требаваниями СН и П $\underline{\mathbb{I}}$ - 23-81 и СН и П $\underline{\mathbb{I}}$ - 7-81, а также типовыни сериями стальных колонн: 1.423.3-8, вып.3 и 1.424.3-7, вып. 3.

При применении типовых сборных железобетонных колонн следует учитывать указания, приведенные в чертежах соответствующих серий.

3.1.7. Мемпературные и антисейстические швы осуществляются как правила на парных колон-нах, расстояние между осяни катарых составляет 1,0 м в продальных швах и 0,5 м ~ в поперечных швах.

31.8. Для уменьшення температурных напряжений в верхних паясах тарцевых ферм блакав покрытий, а следавательно, для увеличения длин температурных отсеков, допускается установка распарак па оголовкам колонн (см. серий 1.423.3-8, вып. 3 и 1.424.3-7, вып. 3) либа устрайства дополнительных температурных швав на одиначных колоннах.

Во втором случае для блоков, расположенных с одной староны от оси температурного има предустатривается обычное решение опорных узлов, а с другой - блоки должны иметь подвижные опорные узлы с прокладками из фторапласта (фторопластовой пленки)

3.2. Конструктивные решения блоков покрытия.

Общие положения.

3.21. Блоки покрытий имеют номинальные размеры в плане 12×24 (пролет 24 м), 12×18 м (пролет 18 м), высоту 1,94 м (по осям поясов) и по своему принципиальному конструктивному решению полностью соответствуют авторскому свидетельству ~488899, выданному ЦНИИСК им. Кучеренка.

3.2.2 В статическом отношении каждый блак представляет собой пространственную стержневую конструкцию, включающую контурные трехгрянные (трехпоясные) ферты (две продольные и две поперечные), дополнительную пространственную ферму, связывающую в середине пролета две продольные фермы, а также распорки по вержним поясам. Дополнительная поперечная ферма увеличивает крутильную эссеткость продольных ферм, необходимуй для восприятия несиметричных нагрузак на блок, и обеспечивает регулярность увляемия путей подвесных кранов и другото технологического оборудования.

3.2.3. Верхние продольные паяса блоков пакрытия одновременно выполняют функции опорных
элементов для профнастила пакрытия, Устойчивость наяса в горизантальной плоскасти (в пределах одной панели) обеспечивается стальным профилированным настилом. Пояса запроектированы из двутавров с параллельными
гранями палок по ГОСТ 25020-83. Фо освоения
производства данных профилей заводом-изготовителем разрешается по сагласованию с
разработниками серии производить замены на
двутавры по ГОСТ 8239-72. Производитые замены должны оговариться в договарах на поставку конструкций и учитываться в оптовых
ценах.

3.24. В данной серии разработамы два варианта конструктивного решения блоков, отличающиеся в основном степенью заводской готовнасти и узловыми соединениями.

Вариант 1. Блаки покрытий типа "Москва" из стержневых элементов с болтовыми узловыми соединениями (предназначены для отдаленных районов). Блаки собираются на тонтажной площадке из двух торуевых ферм пролетом 12м (из адиночных угалкав со сварными или болтовыми узлами), восьми элементов верхних поясов (длиной 9 или 12м), четырех элементов нижних поясов, распорак и растяжек. Узловые соединения выполняются на болтах нормальной точности М 20.

Вариант 2. Блаки покрытий типа "Масква" из плоскастных сварных ферм (является вариантом повышенной заводской готовности). На стройплощадки поставляются плоскостные сварные фермы пралетом 24 и 18 м (в виде молуферм длинай 12 и 9м), сварные треугольные фермы, распорки и растяжки. Продольные пространственные фермы блака сабираются из четырех наклонна распалагаемых ферм; основные поперечные фермы, расположенные у тарцов блока - из торцевой Фермы длиной 12м и доборной треугальнай длинай 3,88м; дополнительная пространственная ферма сабирается из четырех треугольных ферм. В узлах укрупнительной сборки поясов прадальных ферм используются фланцевые соединения на высокопрочных Болтах М24. Остальные элементы: доборные треугольные фермы, растяжки и распарки крепятся на болтах нармальной точности М 20. Канструктивное решение блокав по этоми варифнту соответствует заявке ЦНИИСК им. Кучеренка на предпалагаетое изобре-MEHUE 14303116/33 om 11.09.87r.

3.26. Вериант канструктивного решения Блока выбирается заводот изгатовителем, исходя из технологических возножностьй произвадства, а также в зависимости от отдаленности и условий районов, в которые осуществляются поставки.

3.2.7. Разработанная в альбоме номенклатура конетрукций вклачает блаки покрытий для отапливаемых званий, возвадимых в районах с расчетной температурой наружного воздуха минис 65°C и выше. По своему назначению блоки покрытий падразделяются на два типа: обычные и крановые.

Обычные Блоки предназначены для зданий без нодвеснаго кранового оборудования и зданий с подвесными кранани, либо тельферами грузоподъемносью до 1 т.

Кранавые блаки предназначены для зданий с подвесными кранами грузоподъемностью (0:3,27 по ГОСТ 7890-73 (при двух кранах на колее), но могут применяться вместо обычных блоков. Во втором случае резерв несущей способности блока мажет быть использован для восприятия дополнительных вертикальных нагрузак ат снега, инжемерных каммуникаций и т.д.

Крановые блоки тяжелее обычных на 3-9% и отличаются от них сечениями некоторых элементов, а также наличием падвесок для крепления крановых путей.

3.2.8. В целях сокращения мотенклатуры блоки пролетан 18м разработаны только в крановам варианте.

3.2.9. Все блоки являются универсальными по тесту расположения в саставе покрытия здания т.е. могит располагаться в торцах покрытия и в середине, у температурных швов и т.д.

з.2.10. Наменклатура блоков покрытия включает 12 марок каждаго варианта конструктивного исполнения и приведена на 1 км и 27 км. Примеры Записи условных обозначений марок блокав: структурный блок типа "Масква" из стержневых элементов с балтовыми узловыми соединениями пралетом 24м, под нагрузку 360 кгс/п² обычный: СПМ 24-360; блок покрытия типа, Масква"
из стержневых элементов с болтовыми узловыми соединениями, пролетом 18м, под нагрузку
300 кгс/п² крановый: СПМ 18-300 к; блок покрытия
типа "Масква" из пласкостных сверных ферм,
пролетом 24м, под нагрузку 450 кгс/м² обычный:
СПМф 24-450; блок покрытия типа "Масква" из
пласкостных ферм, пролетом 18м, под нагрузку
520 кгс/м², крановый: СПМф 18-520 к. Индекс-"Х" в
конце нарок означает, что они предназначены
для: - 44° с≥ t≥ -65° С.

3.3. Стальной профилированный настил.
3.3.1. Ограждающие конструкции покрытий выполняются из стального оцинкованного профилированного мастила по ГОСТ 24045-86 с высотой гофра
57,75 и 114 нт. Варианты раскладки профнастила
на блоках покрытии при их сборке приведена
на листе 58 км.

3.2. Листы профистила преинущественна инеют влину 4,95н (не более) и работают по трехопорной схеме, с величиной пролета 3,88н. При маличии на блоках покрытий проетов вля зенитных фанарей, крышных вентиляторов и др. приненяются листы настила, работающие по двухпролетной и однопролетной схемам.

3.3. В случае, если листы настила, работающие по двухпролетной и однопролетной схенан, образуют участок длиной более 3,0 г (т.е. более одной панели верхнего пояса блока) необходино учитывать перераспределение усилий нежду прадольными верхнини поясани, вызванное изменением расчетной схемы настипа по сравнению с основной расчетной трехпролетной схемай. Соответствующие эквивалентные нагрузки приведены в разделе Т.

3.3.4. Применение настила двух толщин при тон же профиле в пределах покрытия не дапускается.
3.3.5. Наменклатура профилированных листов настила

и их несущая способность в зависимости от расчетной схемы приведена на листе 58КМ.

3.3.6. Листы профилираванного настила крепятся к продольным верхним поясам блоков самонарезакащими винтами 86×25 в каждай валне. К средним поясам блоков допускается произвадить крепление настила мерез одну волну, кроме следующих случаев:

— В блоках, приныкающих к продольным и тарцевым стенам зданий;

- в Блоках с крышными **вентилятора**ми;

- В местах правтов в настиле, предназначенных для установки зенитных фанарей и другаго оборудавания;

— в блаках пакрытий зданий, вазводимых в 🎹 и <u>VII</u> ветровых районах.

3.3.7. Для крепления профилированного настыла к верхним поясим блаков дапускиется использовить высокопрочные нагели. Соединения на нагелях должны быть расчитаны в свответствии с "Руководством по применению нагелей для крепления профилированного стального настила в покрытиях производственных зданий, М., ВНИПИпронстальконструкция, 1982r.

3.3.8. Крепление листов профилированного настила между сабай оснществляется камбинираванными заклепкани 3К-12 с шагон 400нн, а при расчетнай сейсмичности зданий 8и 9 баллов - с шагам 300 мм.

з.з. в блоках располаженных по торцам зданий, при значениях горизантальных сил, передаваеных на блоки стойкани фазверка, более 30т, профнастил крепить к трен крайнин прадальным паясан в каждей велне двумя самонарезающими винтами В 6-25, расположенными синметрично относительно етенки двутавра, с листы настила соединять межву собой закленками ЗК-12 е шагом 300 мм.

ч. Основные расчетные положения.

4.1. Расчет блоков покрытий проведен в Цнииск ин. Кучеренка в соответствии са СН и П 11-А.10-71 "Строительные канструкции и аснования. Основные положения проектирования, СМи П 🛚 -6-74 "Нагрузки и ваздействия," СНи П 🔟 - 23-81 "Стапьные конструкции.

Нармы праектирования:" СН и П 🗓 - 7-81 " Страительство в сейстических районах. Нармы проектирования." и "Рекомендациями по проектированию структурных канструкций. Масква, 1984г.

Для расчетов использовались ЭВМ и универсальные программы, реализующие метад конечных элементов в геометринески линейнай постановке

4.2. Принято шарнирно-стержневая расчетная модель на один Блак, включающая неразрезные изгибно-жесткие элементы верхних продольных паясов тарцевых ферм. Для верхних прадольных двитавравилаясав Учтены эксцентриситемы в вертикальной плоскости, узловая податливасть фланцевых соединений этих поясов в кань ковых узлах принята равной средней величине между шарниром и жесткой заделкой. Остальные элементы приняты центрально нагруженными.

Работа стального профилированного настила, обеспечивающего устойчивають верхних поясов в гори-Зонтальной пласкости, при определении расчетных усилий в элементах блаков не учитывалась.

4.3. В расчетах рассматривались комбинации постоянной нагрузки от веса блоков, элементной кровли и технологической нагрузки, а также временной снеговой нагрузки по следующим вариантам: равномерно-распределенная магрузка по всей поверхности блока при С=1; загружение полавины, поверхнасти блака вволь и паперек при С=1. Расчетные нагрузки по типан Блаков приведены в табл. 2 листа 13 КМ.

44. В расчетах сабственный вес блока и технологическая нагрузка приводилась к сасредотаченным силам, приложенным в узлах верхних поясов. Нагрузки от собственнога веса ограждающих конструкций (настил, пароизолящия, утеплитель, гидроизоляционный кивер и гравийная защита и т.д.) и вес снега имитировались равнамерна-распределенной нагрузкой вдоль продольных верхних поясов. Распределение равнотерный нагрузки между крайными и средними поясоний принята с учетом работы профилированного настила нак трехпролетный неразрезной балки с упруга вседающими опорати.

4.5. Фля всех блоков в расчетах учтена нагрузка от консолей вдоль короткой стороны с вылетом - 0,43 м.

5. Материалы конструкций

5.1. Элементы блоков покрытий следует изготавливать:

5.1.1. Вержние пояса двутаврового сечения - из низколегированной стали с расчетным сапротивлением по пределу текучести Ry=3150 кг/м²

марки 0912C-6 или 14Г2-6 no ГОСТ 19281-73.

5.1.2. Элементы Блаков из равнополочных уголков по ГОСТ 8509-12:

- в Блоках марок СПМ (I вариант блоков):
 при угалках от 90×7 до 200×14 из низкалегированнай стали с расчетным сопротивленисм по пределу текучести Ry = 3150 кг/н² марки 09°20-6 или 14°2 по ГОСТ 19281-73;
 при угалках 63×5, 70×5, 80×6 малауглеродистой
 стали с расчетным сопротивлением по пределу текучести Ry = 2350 кг/см² марки ВСт 3 пс 6 или
 ВСт 3 Гпс 6 па ГОСТ 380-71;
- -6 Блоках марок СПМ (ІІ Вармант блоков):
 при уголках от 80×6 до 200×14 из низколегиро
 ванной стали с расчетным сопротивлением по
 пределу текучести Ry = 3150 кгс/м² марки 09г2С-6
 или 14г2 по ГОСТ 19281-ТЗ;
 при уголках 63×5 и 70×5 из малоуглеродистай
 стали с расчетным сопротивлением Ry = 2350 кг/м²
 марки в Ст3пс6 или в Ст3гпс6 по гОСТ 380-Т1.

5.1.3. Фасонки ферм и прочие листовые детали блоков (кроме оговоренных в пункте 5.1.4)

— из` малоуглеродистой стали с расчетным сопротивлением по пределу тежучести Ry = 2350 кг/см² марки ВСт 3 Г пс 5 или ВСт 3 сп 5 по ГОСТ 380-71. 5.1.4. Фланцы стыка нижних поясов (в середине про-

лета Блоков марок СПМ & — из листовой горячекатанной стали для фланцевых соединений по ГОСТ 19903-74, марки стали 1412AP-15 no TY14-105-465-82 UNU D912C-15 no

5.1.5. Допускается приненение других марок сталей, взамен нказанных в пинктах 5.1.1-5.1.4, рекомендуемых СН и П 1-23-81 и имеющих аналогичные физика- межанические свойства. 5.1.6. Вместо низкалегированной стали марак мически упрочненнию сталь С390 по ТУ14-15-146-85 c пределам текучести не менее 3900 kr/cm² CHU [IT- 23-81. ГОСТ 7798-70 класса прачности 5,6 по таблице 1 ложения 1 с допалнительными испытаниями по пунктан 3,4,7 таблица 10;

Шайбы 20,30 na ract (1371-68;

Шайбы пружинные 20-65г по ГОСТ 6402-70;

FOCT 19282 - 13. 09120-6 и 1412-6 разрешается применять тер-5.2. Для соединения элементов блоков в излаж и крепления блоков к колонном следцет применять: 5.2.1. Сварочные материалы - в соответствин со 5.2.2. Болты М20, М30 нармальной тачности по испытаниями по п.п. 3 и 7 табл. 10 ГОСТ 1759-70* и высакопрочные болты по пункту 5.2.3. ГОСТ 1759-70, изготовленные по технологии 3 при-5.2.5. Элементы вля соединения смежных блоков покрытия, консоли для опирания настила у продольных стен и температурных швах и элемен-Гайки м 20, м 30 нормальнай точности по ГОСТ 5915-70 ты канструкций для установки крышных вентикласса прочнасти 4, изготовленные по технололяторов изготавливать из стали нарки встэлев гии 1 приложения 2 с дополнительными испыта-NO FOCT 380-71. HURMU NO N.1 md6.1. 1.

5.2.3. Болты высокопрочные M24-6g. 110 X Л1 и M30-6q. 110 х л 1. класов точности В из стали 40 х "Селект по ГОСТ 22353-77. "Канструкция и размеры" и ГОСТ 22356-77 "Общие технические условия"; Гайки высокопрочные М24-6Н.110 и М30-6Н.110 класса тачнасти В из стали 40Х " Селект" по TOCT 22354 - 77 M FOCT 22356 - 77; Шайбы 24 и 30 класса точности С к высакапрочным δολιτίαν πο ΓΩCT 22355-17 μ FOCT 22356-17; 5.2.4 В блоках, предназначенных для применения в районах с расчетными температурами от минис 41°C до минис 65°C все элементы (детоли) изготавливать из стали марок 09120-6, 1412-6 по ГОСТ 19281-73 и 19282-73 или из малацглерадистай термически упрочненнай стали С 390 ТН-14-15-М6-85 с пределан текучести не менее 3900 кг/см2; 8 узловых соединениях применять Болты мормальной точности М20 класса прочности 8.8 по гост 1798-70 из стали марак 35 х и 38 х А с дополительными

5.2.6. Распределительные балки для крепления стаек продольнога фажверка, элементы канструкций для установки дефлекторов и водосточных воронок, элементы для крепления зенитных фонарый изготавливать из стали в Ст 3 кл 2

по ГОСТ 380-71*
527. Марки сталей для элементав путей подвесных кранов и тельферов, сварочные материалы и крепежные детали приничать па серци 1.4262-3. Выпуск 2.

6. Требования к изготовлению и монтажи.

6.1. Изготовление блоков покрытий из прокатных профилей необходина произвадить на снециализираванных заводах неталлоконструкций в соответствий с требованияли главы сни П № -18-15 , Металические канструкции. Правила произвадства и приенки работ и технических уславий ТУ 36.25-7-87. "Канструкции покрытий пространственные типа "Масква" из пракатных профилей."

ны саблюдаться следующие даполнительные требавания: 62.1. Образование отверстий производить групповым прокалыванием, « для блаков, предназначенных для районов с расчетной температурой ниже минус 40°Ссверлением по кондуктору;

6.2. При изгатовлении элементов блоков долж-

8.2.2 Сварку произвадить в среде углекислаго га-

за по ГОСТ 8050-76 с применением сварочной проволоки Св-08Г2С по ГОСТ 2246-70°, чли порошковой проволоки ПП-АН-8; 6.2.3. При ручной дуговой сварке применять:

- для деталей из низколегированных марок сталейэлектроды 350 A по ГОСТ 9467-75;

- для деталей из углеродистой стали- 342 по ГОСТ 9467-75; 6.2.4. При изготовлении сварных элементов блока

из термоупрочненной стали марки С 390 применять те же способы и материалы, что и для низколегированной стали; 6.2.5. Фланцы стыков нижних поясов блаков (в съредине блаков из сварных ферм) должны быть

праверены на отсутствие расслоеный па талцине при понаци ультрозвукавага дефектаскапическаго кантроля после Приварки их к эленентан наясов. 6.3. Сборку Блакав покрытий праизводить в жестких кондуктарах (стендах) разнерани

12×18 м и 12*24м, абеспечивающих фиксацию сборочных единиц и требуетые атклонения размеров собранных блокав от номинальных. Чертежи кандуктаров следует разрабатывать в составе ППР или использовать разработанные ВНИПИПСК. 6.4. Для структурных блоках типа СПМф (вариант исполнения из сварных ферм) натяжение высокапрачных болтов М24 до проектных уси-

лий неабходино праизводить в кандукторе:

774-00 N3KM

d) для зданий без подвесного транспорта при величине временной нагрузки на покрытие не превышающей 35% от суммарной для всех фланцевых спединений - Ютс:

б в остальных сличаях: для средних узлав нижнего пояса - 25 тс., для излав примыкания нижнего пояса к торцевым фермам и для фланцевых соединений верхнего паяса - 10 гс.

6.5. Распорки и растяжки блаков из адиначных уголков мантировать обушком вверх.

6.6. Болты устанавливать головкой преинишественно со стороны Более танкого Элемента. Заход резьбы в пакет спединяемых деталей нь допискается. Количество шайб, устанавливаемыж со стороны головак болтов, не должно ~ превышать 3-ж, под гайки устанавливать до двих обычных шайб и одни прижиннию На блоках с крышными вентиляторами дополнительно ставить контредики или зачеканивать резьбу (долускается прихватка гаек к болтам электросваркой).

6.1. Монтаж блаков пакрытый производить блочным и конвеерно - блочным методами. Фля удобства монтожа предусмотрены скосы палак верхних поясов торцевых ферм и атверстия в деталях опарных узлов.

6.8. Подъем блоков покрытий и установку их в проектное положение производить тольно при уложенном и полнастью закрепленном профилированном настиле (в соответствии с

настоящим альбомом или указаниями конкретных npoekmos).

6.9. В опорных узлах блоков покрытни после установки их в проектное положение шайбы -- пластины (перекрывающие отверстие в опорной плите диаметром 60) должны быть обварены по двим старонам, а зазары межди шайбами и ребрами опорных узлов зачеканены листовыни прокладками. В температурных швах на одиночных колоннах шайбы подвижных излов блоков не обвариваются, а в случае крепления на высокопрочных болтах они не преднапрягаются. В блоках, приныкающих к жемпературному шву на парных калоннах, устанавливаются шайбы - пластины как и в рядовых блакаж и крепятся аналогично.

6.10. При сборке и монтаже блоков покрытий волжны оформляться акты на следующие скрытые работы:

а) превышение канька верхних паясав над опарами

б), аттетки опор при укладке и закреплении профилираваннога настила;

в.) крепление профилированного настила;

г.) усилия натяжения высокопрочных болтов;

д), крепление опорных узлав Блакав к каланнам и саединение блоков между сабой.

т. Указания по применению материалов выпуска.

7.1. При проектировании здании с применением раз-работанных в настоящем альбоме блоков по -Крытий следует применять колонны по серии 4. 423. 3 - 8. Вып. З "Стольные колонны одноэтажных производственных эданий без мостовых опорных кранов." Колонны для зданий с применением несущих конструкций покрытий типа, Молодечно" и ЦНИИСК высотой от 4,8 м до 8.4м и серии 1.424. 3-7. Вып. 3 "Стальные колонны одноэтажных производственных эданий, оборудованных мостовыми кранами. Колонны для зданий с применением конструкции покрытий типа "Молодечно" и ЦНИИСК высотой от 8,4 м до 10.8м с мостовыми электрическими опорными кранами общего назначения грузоподъемностью до 20/5 тс. Отметки верха колонн, при этом, следует увеличить на 500 мм. для обеспечения стандартных высот зданий (4,8;6,0;7,2,8,4;96; 10,8м) Используя вышвука занные серии при подборе морок колонн по соответствующим ключам, значения, М"и, М" (полученные при расчете), принимать с дополнительным коэффициентом:

- для однопролетных бескрановых зданий К=1,1;

- для однопрометных эданий, оборудованных мостовыми в ранами, высотой 40 $R_N - K = 14$

к ранами, высотой 10,8м - К = 1,1
При этом для дескрановых зданий и зданий с подвясными кранами, высотой в,4 и Т. Ем соответственно исключить сечения 40Ш и 35 Ш 1. Во всех остольных случаях морки колонн принимаются соеласно вышеуказанным сериям. К выбранным маркам колонн необходимо добавлять индекс, , И n . Для \underline{Y} и \underline{Y} ветровых районов колонны разрадатываются в составе провых районов колонны разрадатываются в составе провых районов колонны разрадатываются в

1.2. Размеры температурных и антисейсмических отсеков принимать в соответствии с указаниями пояснительной записки. Допускается проектирование здании без учета температурных напряжений в элементах каркаса (покрытия) если длина здания (отсека) не волее 84м, ширина - не волее 12м и связи по колонном росположены в середине отсека (только адма связевая памель) 1.3. Стойки продольного и торцевого фахверка следует

фохверка одноэтажных производственных эданий. Чертежикм, в принятых марках стоек изменяются только длины их верхних частей (ступеней) из-за увеличения отнеток верхних поясов блоков типа "Москва" на 450 - 500мм и узлы их крепления к блокам (см. лист 57 км.).

применять по серии 1.427. 3 - 4. Вып.1. "Стальные стойки

Принятые в проекте марки стоек должны иметь индекс, И" A ля \overline{V} $\frac{1}{2}+\overline{V}$ ветробых районов стойки фахверков разрабатываются в составе проектов "КМ" по анологии с серией 1.427.3-4 вып. 1. Привязка стоек продольного и торцевого фахверка к разбивочным осям здании принята равнои 250мм, в соответствии с серией 1.427.3-4. Вып. 1. При обосновании допускается "нижевая" привязка стоек торцевого фахверка.

7.4. Применение конструкций в зданиях с подвесным транспартом.

7.4.1. Пути надвесных кранов могут располагаться вдоль пролетов зданий. Основные сжемы подвески даны на листаж 63 км и 66 км. Соответствующие эквивалентные нагрузки принимать по
листу 15 км раздела $\overline{\Psi}$.

7.4.2. Пути подвесных кранов крепятся к нижним узлам блоков покрытий через подвески, входящими в состав блоков. Крепление балок подвесных путей к элементам (подвескам) блоков производится в соответствии с серией

1.426.2-3. Вып. 2. "Стальные подкрановые балки, Пути подвесного транспорта пролетом 3;4 и 6 м.". 7.4.3. В случае применения в зданиях схет под-

вески крамов, не предусмотренных в данном аль-Боме, соответствующие эквивалентные нагрузки определяются по узловым реакциям крановых путей с использованием данных листа 16 км. раздела TV.

7.4.4. Манарельсовые пути тельферов могут располагаться как вдаль, так и паперек пролетов зданий.

В альбоме предусматривается крепление монорельсовых путей к узлап как верхних, так и нижних поясов блаков. При расположении путей между узлами блаков применяются вспомогательные (перекидные) балки, сечения компорых подбирается в зависимости от конкретных нагрузак на монорельсовые пути Эквивальнтные нагрузки определяются по данным раздела \overline{V} (лист 16 км).

7.5. Установка на покрытне крышных вентиляторов и дефлекторов.

7.5.(. Крышные вентиляторы, дефлектары, вентшахты или технологическое обарудавание необходимо устанавливать равномерно по площади блоков покрытий. При этом следует учитывать, что не допускается устрайство проемов в профнастиле блоков в зоне двух средних панелей верхних поясов (т.е. на расстоянии менее 3 м. от канька).

15.2. Крышные вентиляторы рекомендуется располагать в приопорных ячейках верхних поясов. Возгожные варианты установки приведены на листах 59КМ и 60КМ, соответствующие эквивалентные нагрузки (в зависимости ат тина вентиляторов и их количества на блаке приведены на листе 77КМ раздела [V]

1.5.3. Вентиляторы Устанавливаются на специальные впорные конструкции (ранки), разработанные в составе настоящего альбома. Опорные рапки крепятся к верхнип поясан блоков, допускается расположение ранок в середине панелей верхних паясов блоков.

7.6. Установка на покрытие зенитных фанарей.

7.6.1. Реконендуется применять зенитные фанари размером 3^{*4} на чертежан шифр 3^{*6} -м.00.00.00.00. (откорректираванные чертежи шифр 1-501 институтом "Гипроспециегконструкция"

разработанным институтом "ЦНИИпроектлегконструкция и типовые по серии (после освоения серии)

7.6.2 Снеговые и постоянные вертикальные нагрузки на покрытия зданий с фонаряни учтены в расчетах по определению усилий в элементах блоков.

7.6.3. Ветровые нагрузки на здание от фанарей принимать по СНи Π $\overline{\Pi}$ -6-74.

1.6.4. Варианты распаложения Зенитных фонарей на пакрытиях зданий и узлав их крепления приведены на листах 59км и 60км. В случае установки фонарей в двих пане-

лях одного ряда верхных продольных поясов Блока, необходино учитывать эквивалентные нагрузки от изнечения с<u>хе</u>мы работы

настила (по данным раздела <u>ТГ)</u> 7.7. Применение канструкций в зданиях

с перепадаты высот. 17.1. Перепады высот допускаются толька в зданиях, возводитых в Т-ТУ снеговых районах.

7.1.2. Блоки пакрытий могут примыкать к осям зданий, у каторых имеют место перепады высот как длиннай сторонай, так и короткой. Соответствующие эквивалентные нагрузки прининаются по данным раздела [[//ии/79км]].

7.8. Приненение конструкций в районах с расчетной температурай ниже минус 40°C

7.8.1. Применение блоков покрытий в районах с расчетной температурой ниже минус 40°C для

отапливаемых зданий предполагает соблюдение всех требований, изложенных в пояснительной записке к маркам сталей, болтам и технологии образования отверстий.

7.8.2. Конструкции, поставляемые в северные районы, должны быть упаковамы в контейнеры для предотвращения межанических повреждений при транспортировании, перегрузке и складировании.

7.8.3.Применение блоков покрытий в северном исполнении (т.е. имеющих индекс "Х"- хладостойкие) должно быть согласована с ЦНИИ проектиегконструкцией, ЦНИИСК он и заводом-изготовителем до мачало проектирования объектов.

7.9. Применение конструкций в сейсмических районах.

1.3.1. Компановка каркасов зданий должна исключать конструктивные изменения длаков. В целях упеньшения горизонтальных сейсти—неских сил, передаваеных на связи по колоннам через верхние тояса торцевых фермблоков, дапускается устанавливать дополнительные распарки по оголовкам колонн.

7.9.2. Эля уменьшения усилий в элементах покрытий от сейстических воздействий необходито предусматривать следущие конструктивные мероприятия:_

— крепление трубопроводов к блакам покрытий производить на гибких подвесках,
— в замижите местовыми

 варианты поватливых решений надкрановых связей, вплоть до исключения их из работы каркаса (голи позволяет несущая способность принятых марок колонн).

1.9.3. Методика расчета отсека здания на сейстические воздействия приведена в раздете <u>IV</u>. Ман же приведены результаты расчета некоторых конкретных типов зданий.

1.94 При расчетной сейстичности здания 8 и 9 баллов шайбы - пластины должны быть приварены при мантаже к плитам апорных уз - лов блоков электродами типа э42А.

1.9.5. Профинастил крепить в каждай волне по всем продольным поясам блаков.

7.10. Применение конструкции в зданиях с взрывоопасной средой.

7.10.1. Участки производств с взрывоопасной средой необходино размещать у стен зданий, имеющих остекленные проемы.

1.10.2. В покрытиях зданий над участками таких производств целесообразно размещать зенитные фонари, в максимально допустимам количестве для блоков покрытий.

7.10.3. В случаях, когда мероприятий, указанных в пунктах 1.10.1 и 1.10.2 недостаточно, в покрытиях Зданий необходино предусматривать легкоебрасываемые участки профнастила.

7.10.4. Одним из вариантов конструктивного решения легкосбрасываемых участков покрытия является устройство проемов в профиастиле блоков (аналогично проемам

для зенитных фонарей), перекрытых листами профинастила (длиной 4,0 m), прикрепленными к верхним поясам блоков через одну валну самонарезающими винтами или лучше магелями.

Проены в профистиле можно перекрывать щитани, состоящими из двух уголков 50×4 и прикрепленных к ним листов профисстила. Щиты мажно кренить к верхним поясам блоков мининальным количеством (например 4-мя) самонарезающих винтов, нагелей, болтов малых диаметров (м.6, м.8) или другими способами.

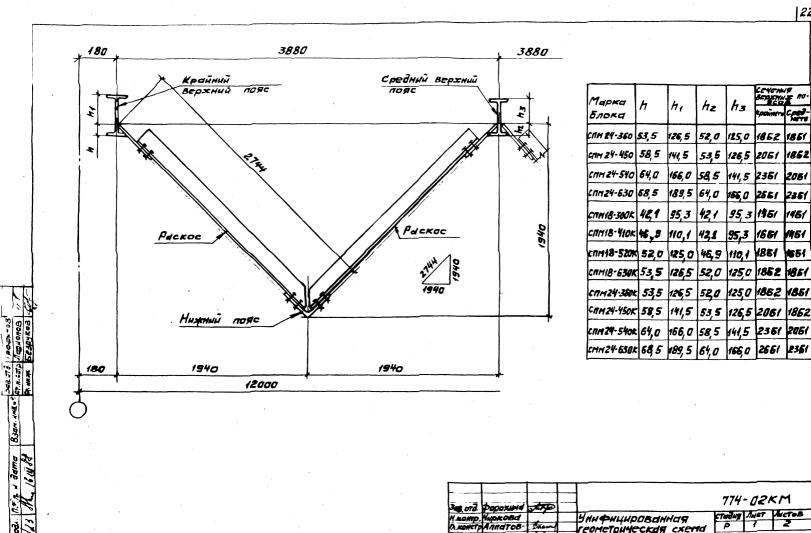
7.10.5. При устрайстве проенов в настиле блаков следует иметь ввиду, что настил обеспечивает устойчиваеть верхних поясов блаков в горизантальной плоскасти (и следовательно обеспечивает расчетную несущую способность блаков)

Вазножен вариант ослабленного крепления настила на значительной площайи блака и, даже, на всей его плащади, при условии устройства связей по верхним поясам блаков, обеспечивающих упеньшение расчетных длин верхних паясов в два раза (до 1,5м). Например, между одним из крайних и средним двутавровыми паясами блака устанавливаются связевые раскосы из угалков, сходящиеся в серединах панелей среднего пояса блака, а от этих точек идут распорки, раскором блоков.

Связи в конплект элегантов блоко не входят, разрабатываются при проектировании канкретных объектав и крепятся к поясан блаков на сварке при их сборке.

РАЗДЕЛ І

BAPHAHT BADKOB 1/

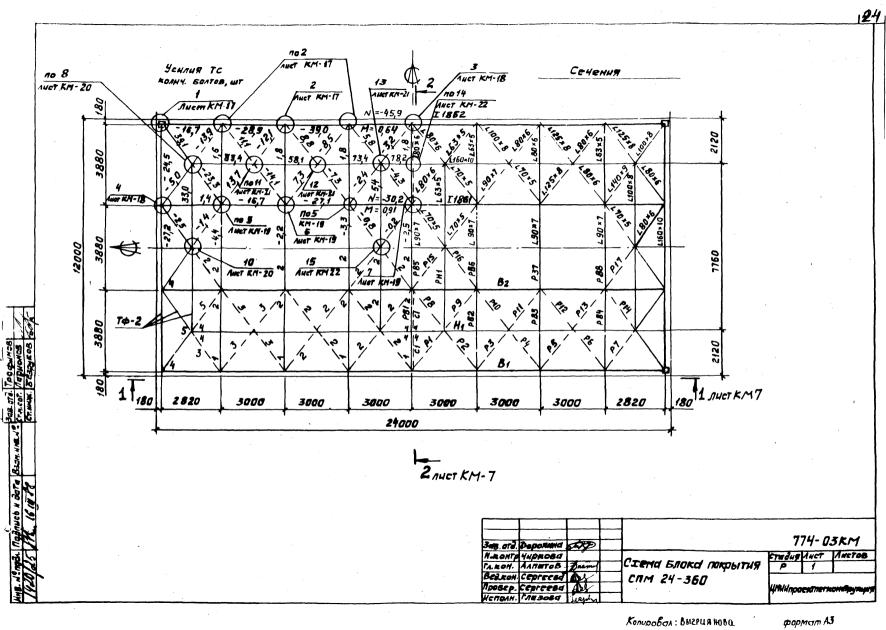

IN	l.,	Pac4EMH. 3×BHBd4.	Неминальный размер				Palexod	~2
/**	Mapka Broka	Bept. Haip. Kr/ M²	Пролет, М	WHOUNG M	Bucome	SAORA, Kr	Kr/n ¹	42p783KQ
1	CAM 24-360	360				1050.0	24,5	03KH
2.	CAM 24-450	450	24			8137,0	28,2	04KM
3	cnm 24 - 540	540]~`			9370,6	32,5	05KM
4	cnm 24 - 630	630			1,94	10353,4	35,9	O6KM
5	COM 18 - 300K	500				4531,9	21,0	OBKM
6	CHM 18 - 410K	410	19			5025,8	23,3	OSKH
7	CAM 18 - 520 K	520		\ ~	,,,,,	5865,2	26,2	IOKM
8	CMM 18 - 630K	630				6459,0	29,9	IIKM
9	CMM24-360K	360				7685,8	26,7	12KH
<u>-</u> 10	CAM 24-450K	450	24		}	8840,8	30,7	13KM
11	cnm 24 - 510K	510	147			9656,0	33,5	14KM
12	CNM 24-610K	610	1		<u> </u>	10542,1	36,6	15KH
13	CAM24-360-X	360			Ì	10500	24,5	03KM
14	CMM24-450-X	450	24			8137,0	28,2	04KM
15	cn# 24-540-X	540	24			9370,6	32,5	05KM
16	CHM 24- 630-X	630	1	12	1,94	10353,4	35,9	06KM
17	cmm18-300K-X	300]′•	,,,,	4531,9	21,0	08KM
18	CMM18-410K-X	410	18			5025,8	23,3	09KM
19	cnm18-520K-X	520	7	1		5665,2	26,2	IOKM
20	cnm 18-630k-x		1		1	6459,0	29,9	HEM

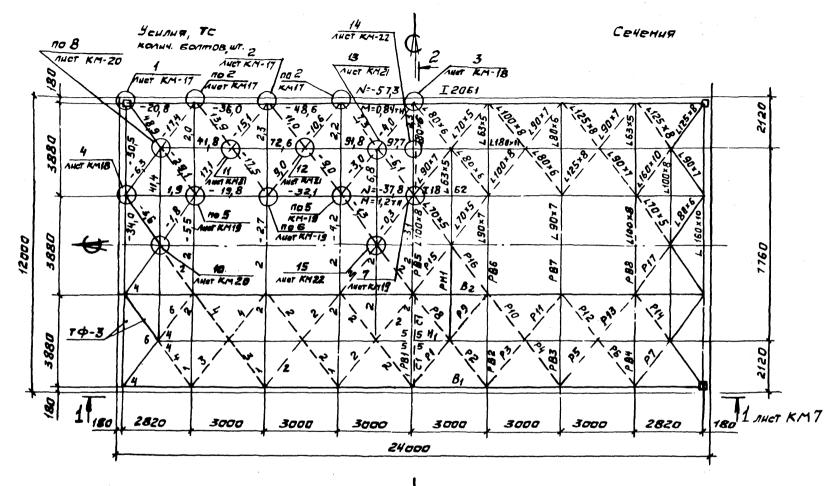
21	COTH 24-360K-X	360				1685,8	26,7	12KM
22	CHH 24-450K-X	450	24	12	1 94	8840,8	30,7	13km
23	CAM 24-5/0K- I	510	7-7		"-	9656,0	33,5	14 KM
24	COM 24-610K-I		7	ļ	1	10542,1	36,6	15KM

- 1. Буквы и цифры в марках блоков означают:
- , сп"- структурное покрытие /пространственное покрытие/
- м тип покрытия (пакрытие типа "Масква") 24(18) - прелет блока покрытия в м.
- 360,450,540...- расчетная вертикальная нагрузка (эквивавалентная) для блоков в кгс/н²
- 2. Масса блоков дана с учетом массы торуевых ферм.
- э. Индекс "К" в марках блоков означает, что блоки
 - предназначены для промзданий сподвесными кранати.
- ч. Индекс "Х" означает, что блоки предназначены для применення в райанах с расчетной темпе ратурай ат минус 40° до минус 65°/хладостайние/.

 5. Для блоков с индексом "К"расчетная жвивалентная выпитальна
- 5. Для блоков с индексом "К"расчетная эквивалентная вертикальная наэрузка приведена за вычетом эквивалентной наврузки вт двух падвесных кранав грузоподъемностью 3,21

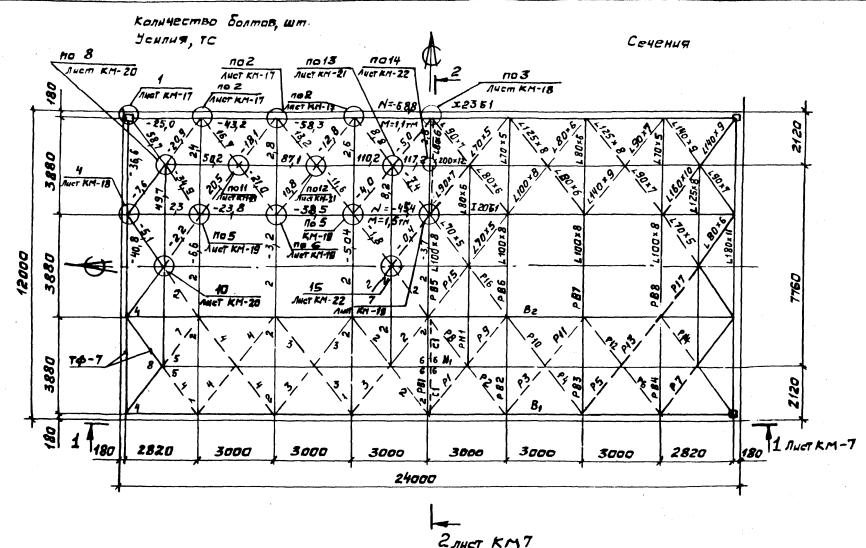
San di d.	Дорокина	150		77	4-01	KM		
H. KOMP.		-0		crasus	JUST	HOMOS		
A. KOHER	Annames.	Brand	1	P	1			
Bell MOH.	Annamos. Cepreesa	OV	Номенклатура блаков					
Tposep.	Cepree84	all	 покрытия	ЦНИИ проектической рукция				
HETTON HAM	TA43084	Travel	1 '	7	ge N/Nev	بالمصافحيين		

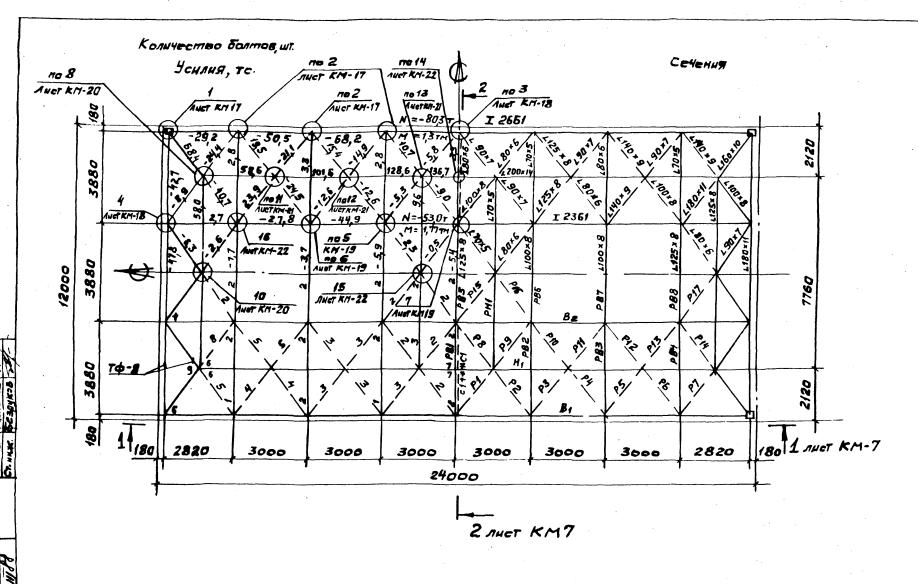

Bed MON. Cepreesd


74430BC

ЦНИМпроектлегканстуру

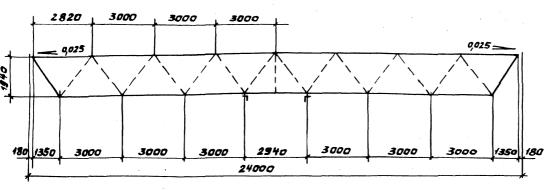
BJOKOB MOKPHMUS

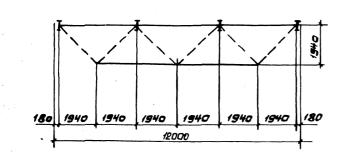

(паперечный разрез)


2 JUST KM7

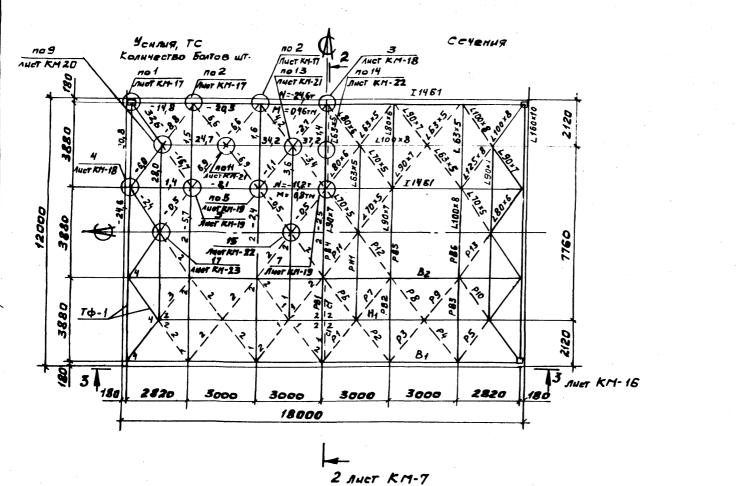
3 as.org	Форохина	THO		17	4-0	4KM			
H. MONTE				tradug	Auer	Juet			
TA. Montal.	Annamos	Brian	Exema Broke nakputus	P	1	1			
Bed. MON.	Ceptersa	8	com ou use						
	Ceprees4		CAM 24-450	HHUU I DO ENTITET KONCTON KONT					
HERBAH.	7143084	Jugal				19 7			

2 JHET KM7

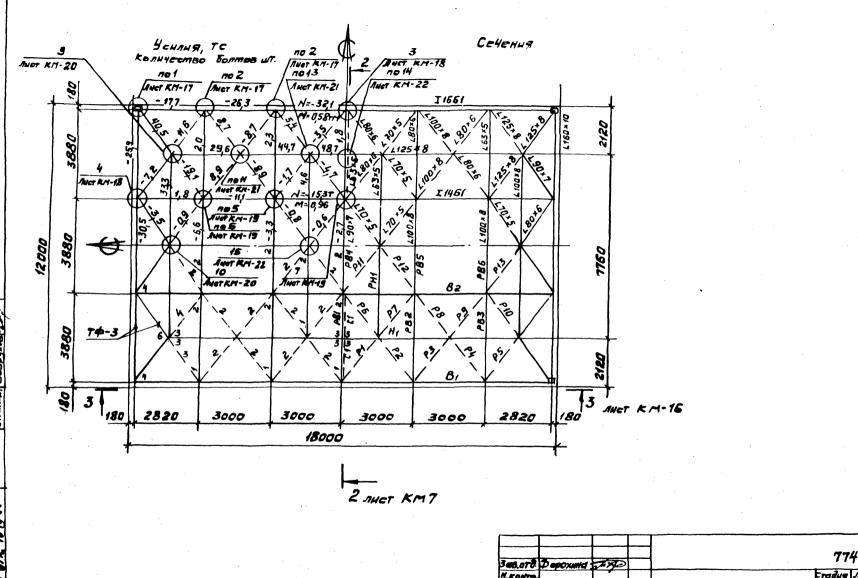

2	Форхина			774	- 05	KM		
H. KOHTP	POPRUMA:	Targe .	 <u> </u>	0.42.0	A.com	Meros		
				cradua	21461	17/20/02		
	AATIOTOB		CIEMO BAOKO NOKPUNIS	P	1			
BOOLKON.	Cepreesd	4	CAM 24-540					
MADELY.	Cepress	des	CITY ET 370	Чнимпросилителинация				
ACHDA.	F143084	Juayor		' '				


TOTAL DE TOT

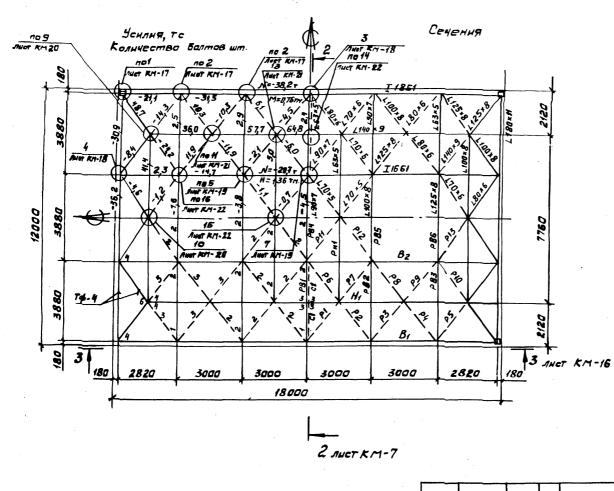
774-07KM



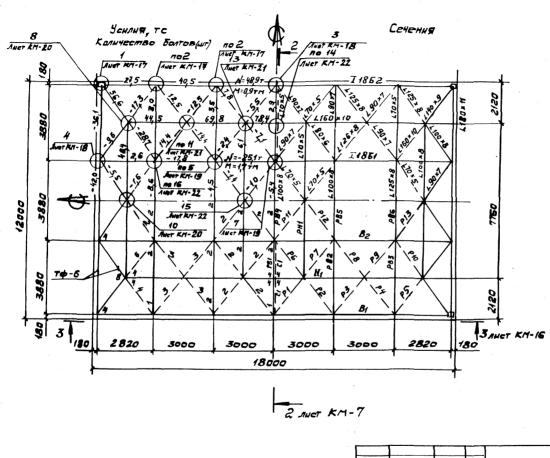
2-2



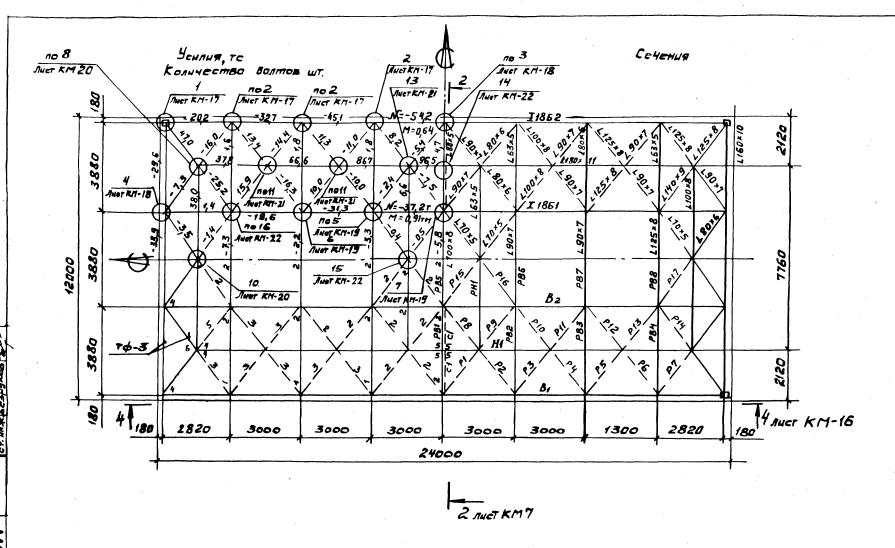
308.018. DODOXHIA JEXT Cradua Muer Metob P. Konep Amoros Bed. Rom Cepressed Разрезы 1-1, 2-2 **ЦНИИ**провитлетконфукция


data Branument

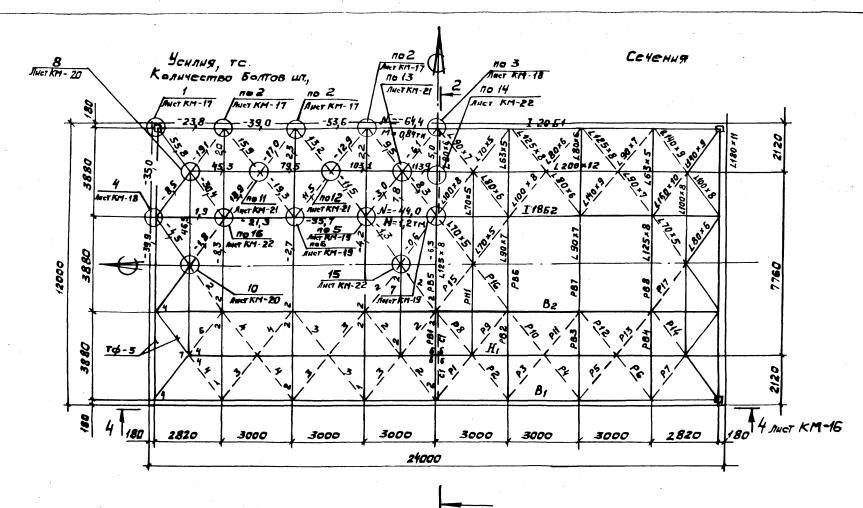
	Cepree84 Cepree84 Md3084		слм 18 - 300 K	HHHHIppoextres Rondpytops			
	Annutos		 Comend Broke nokputur	P	1	<u> </u>	
И. КОНТР				cradeg	Suct	Adetas	
342.417.	В орожим	AD					
2 m m 2	D consul	430		7	74-6	18K/	


8391.448.1 50A

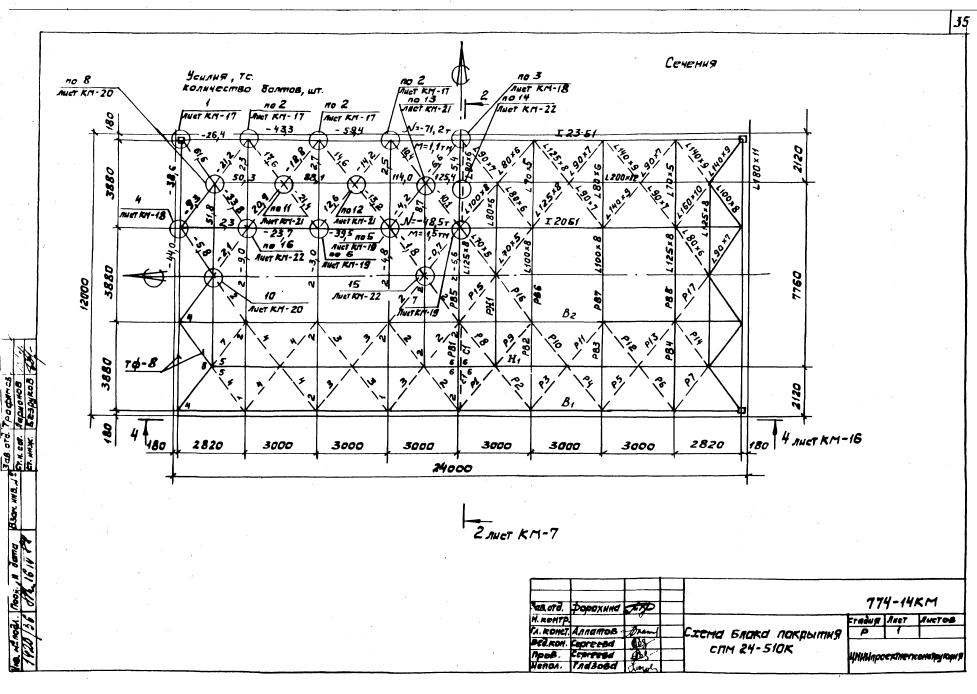
See, and Depoxing TIP THE CENTER OF THE PROPERTY OF THE PROPER

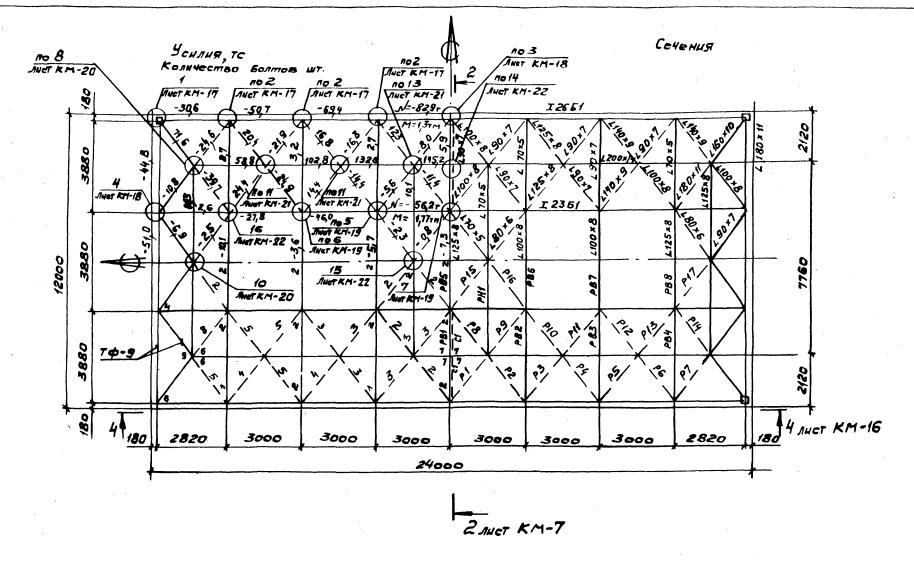


348.078 DODONNIA SED

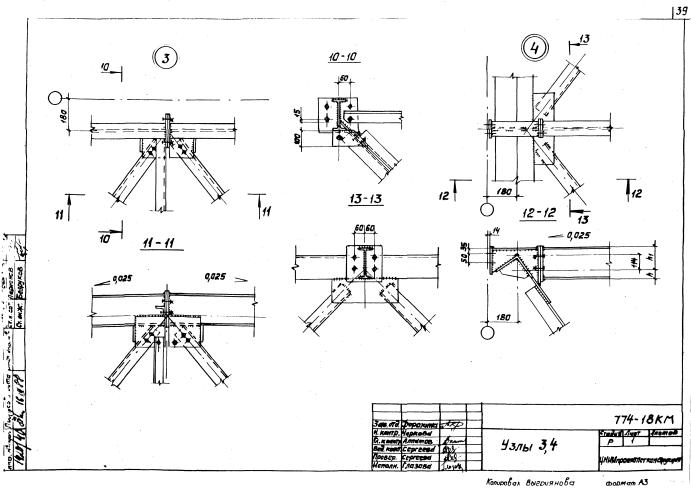

N. KONDO.

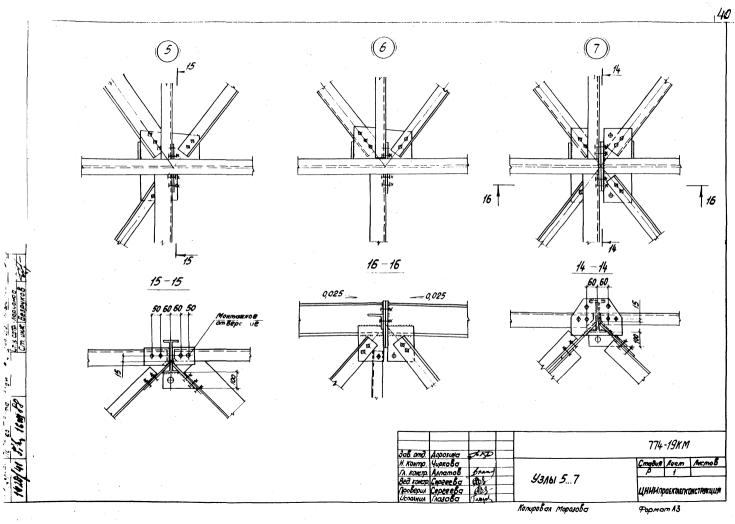
3aB.cmd	Дорожия	AND	·	7	74-4	1KM		
H.KONTP.				Credut	Aret	Autos		
	Annat as	Dram	Стема блока покрытия	P				
Beil KON.	Cepreed	Ces-	CAM 10-CSUM					
7pe8.	Cepreced	ADR-	CITIT 10-03UN WHIMPERITORING					
Исполи.	7A43084	June 12		i .		-		

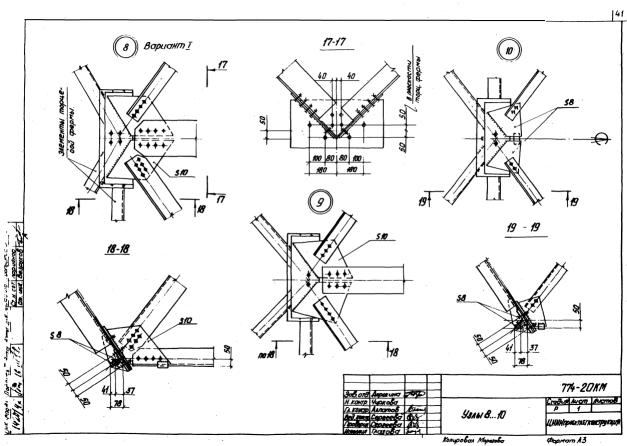


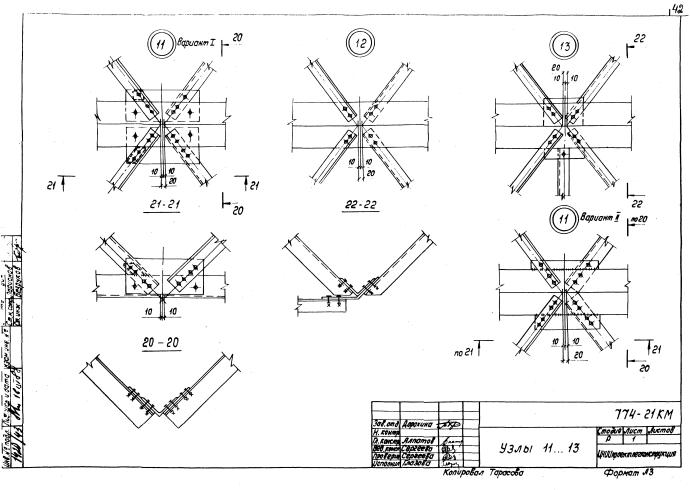

SOBOTOL PRODUCTION STATE OF THE SOLUTION OF TH

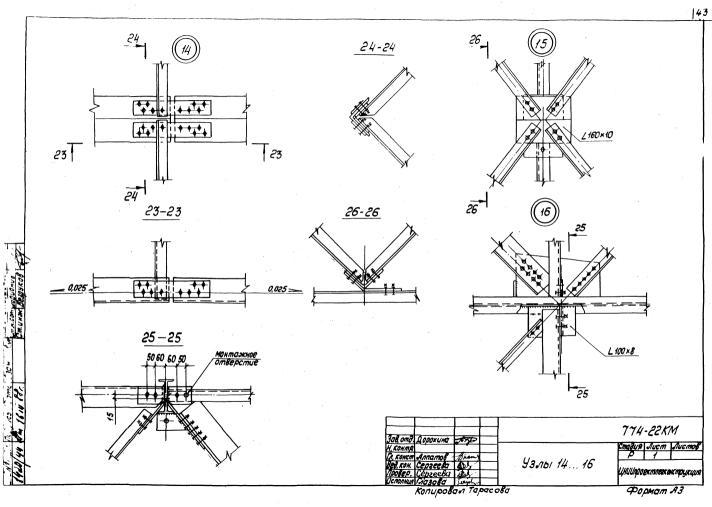

2 MET KM-7

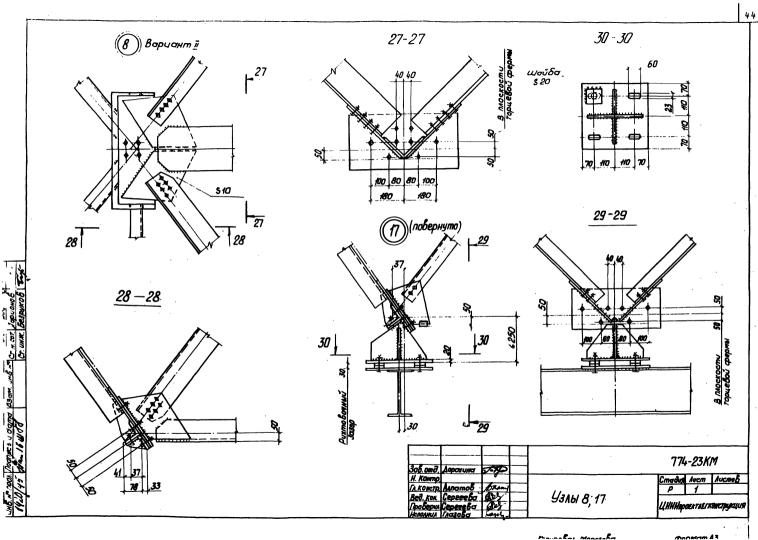

Ton crit	Popoxynd	at To		•	774-	13KM		
M. KOHTP		0		radus	Auct	Juemes		
	Annatop 2 Cepteend	Box	 CXEND BIOKU NOKPHTUA COM 24-450K					
11poB.	Cepreesd 143084		CINY 24-45UK	Чими проектлегком струкция				

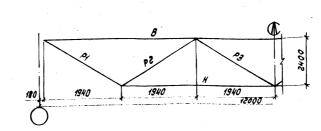


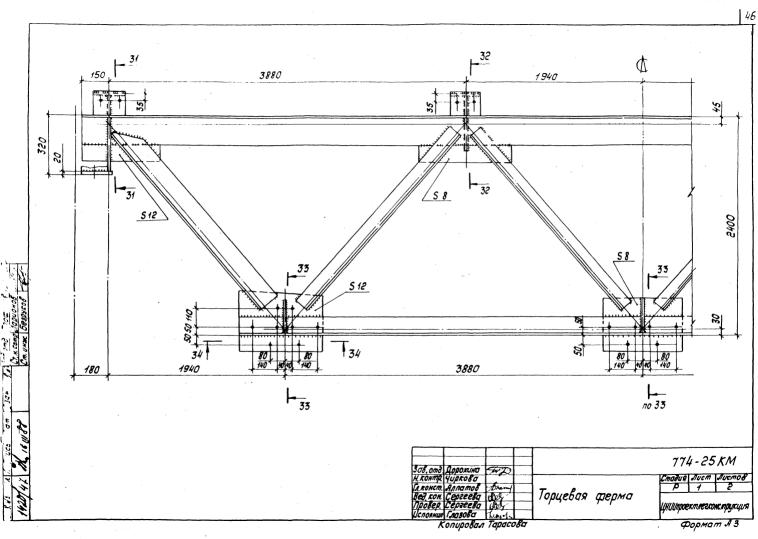


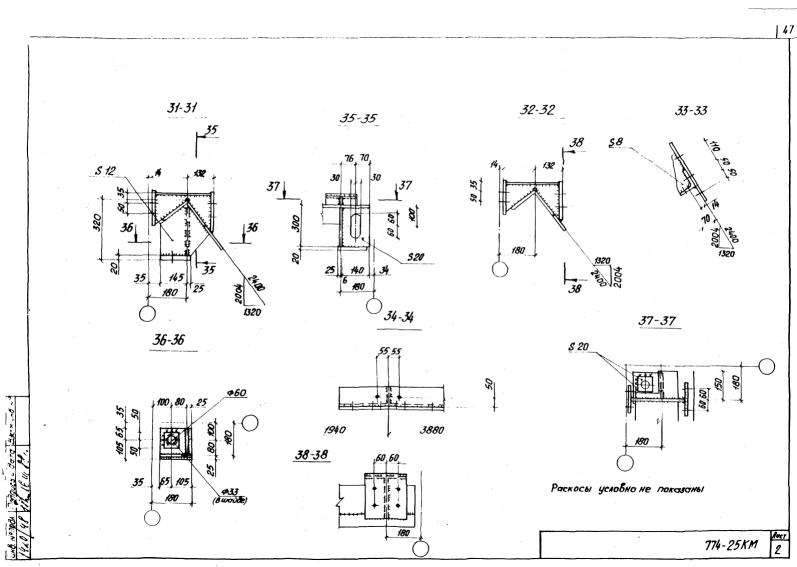

THE CONTRACTOR OF THE CONTRACTOR OF THE PROPERTY OF THE PROPER











31 EMBHM	Обозночение	740.	1	TØ.	ع.	ΤΦ.	. 3	ΤΦ.	4	ΤΦ-5		ΤΦ-(5	TØ.	7	ΤΦ.	8	ΤΦ	. <i>g</i>
		Cevenue	Hesiwaa Cnocod- Hocmb (rc)	Сечение	Hecyman cnocod - Hocmb (TC)		Hecywas Crocod- Hoemo (rc)	Cevenue	Несущая способ- ность (тс)	Сечение	Несущая способ- ность (10)	Сечение	Несущая способ- ность (тс)	Сечение	HECYWAR CNOCOG- HOCML (TC)	Cevenue	HECYLLAR CNOCOG- HOCMB (TC)	Сечение	HECYUL CAOCO MOCA (TC)
верхний пояс	В	L 160×10		L 160×10		L 160×10		L 180×11		L180×11	-60,3	L 180×11		L180×11		L180×11	- 60, 3	L180×H	
Ниэкний пояс	Н	L 90×7	28,0	L 100×8	48,2	L 100×8	48,2	L100×8	48,2	L 100×8	48.2	L100×8	48.2	L125×8	60,8	L125×8	60,8	L 125×8	60,8
Pacroc	P1	L 100×8	38,0	L 100×8	38,0	L 125×8	48.0	L 125×8		L140×9		L 140×9	60,2	L 140×9	60,2	L 140×9	60,2	L 160×10	74.
POCROC	PE	L 90×7	-8,0	L 80×6	-5,1	L 90×7		L100×8	7070	L100×8		L100×8	1.,-	L 90×7	<u> </u>	L 100×8		L 100 ×8	-11,9
Раскос	P3	L 80×6	-51	L 80×6	-5,1	L 80×6		L 80×6		L 80×6	1,-	L 90×7	- 8,0	L 80×6	-5,1	L 90×7	-8.0	L 90×7	-8.0
Масса фе,	DMW, KT	627,	1	635	5,6	660	<u> </u>	74		776			3,1	783,	<u> </u>		0,1	839	<u> </u>

				77	4-24	KM		
Hay.omð.	Дорожина -	170	 	Стадия	Sucm	Aucmot		
Н, КОНТР.			 Номенклатура торцевых ферм	P	1			
ADA FOU	Anna mot Cepzeeta	Diam	 CYPMA UCUAUÙ CEVENUS	1				
Cm ///	Яковлева	May 1		цниипро	EKMMERK	ncmpyk44		

Bu∂	Марка	Обозначение			Mace	0 M	emass	0 10	марка	Y, KT				
профиля, гост	металла, ГОСТ	профиля, мм	Cnm24- - 360	CNM 24 - 450	CNM 24 - 540	CNM 24 - 630	CNM 18 - 300 K	CNM 18 -410K	CNM 18 - 520K	CПМ 18 -630К	- 360K	CNM 24 -450K	CNM 24 -510K	CПМ 24 - 610 K
		I 26 51				1330,6		1						1330.6
Широкополоч-		I 23 51			A second were tree to a	1224.0	1					1	1224,0	1224,0
ные двутав.	4.50.0	I 2051		1061, 8	1060,9						1	1062.0	1060,9	
	14 5 - 6	I 18 51	729,6						544,6	544.6	729.6			
PM.			890,4	890,4	<u></u>					665,6	890,4	890,4		
FOCT 260 20-83		I 16 51					L	448,5	448.5					
*		I 1451					740,8	370,5						
		Umozo:	1620,0	1952, 2	2284.9	2554,6	740,8	819.0	993.1	1210,2	1620,0	1952.4	2284.9	2554.
		L 200 × 14				1792.0				1		1.0.0.1.1		1792.
		L200 × 12			1549,2							1549.2	1549.2	
Сталь про-	1452-6	L180×11		1276,8	722,2	1065,9			722,2	722,2	1276,8	7.22.2	722,2	1065,
катная уг-	FOCT 19281-73	L 160 × 10	1619,0	864.2	306,4	276,2	585,0	585,0		1014.0	585,0	279,2	280,4	276,
ловая равно-	1001 13281-13	L140×9	215,6		658,2	665,6			796,5	217.4	215.6	661.2	885.6	665,
•		L125 × 8	538,9	711,1	617,9	797,1	175.6	988,0	652,2	659.2	833,2	545.6	798,7	797,1
полочная		L100 × 8	481.2	631,3	475,4	610,2	742.4	680,9	573,5	475,6	535.6	622,6	467.1	752.6
TOCT 8509-72	8Cm3nc6	L 90 × 7	375,9	711.8	560,9	558.8	606,3	143.0	301,8	712,0	940,9	491.6	674,4	896,8
	FOCT 380-71	L 80 × 6	770,8	514,5	628,0	515,9	371,6	547,7	343,8	87.6	427.4	514.5	544,0	171,2
	7007585-77	L70×5	370,9	306,5	473,5	368,5	308.6	373.2	372,5	516.0	242,9	390,5	348,9	368.5
·	l	L63×5	281.7	224,4			360,4	187.0	187.0		224,4	149,6	1	
		Umozo:	4654,0	5240,6	5991.7	6650,2	3149.9	3504,8	3949,5	4404.0	5281.8	5986,2	6270,5	6785,
	•								ТТ					
		•					3al.omd. A	орохино 🗇	97.					/- 26K/
							п.хонтр.	angmob A		an man	KOLUR ME	mana	madus Juci	7 Jucmo

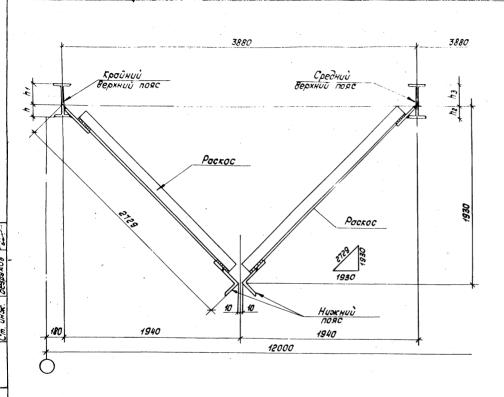
Спецификация металла Ставля Лист Дистов на блоки СПМ 24-360.... СПМ 24-610 К. ЦНЦЦпроектлеаконспрукцю. Konypobas: Tapacoba WOTHAT AS

Вид	Марка	Обозначение		-	Масса	Me m	องงส	no Mo	ркам,	ĸe				
профи л я, Гост	металла, гост	и размер профиля, мм	C n m 24 - 360	CNM 24 - 450	C T M 24 - 540	CNM 24 -630	CNM 18 - 300 K	CNM 18 - 410K	CNM18 -520K	CNM 18 -630K	C	CNM 24 - 450K	CNM 24 - 510 K	CNM 2 - 610
Сталь Листо-		\$ 20	42,8	42,8	42.8	42.8	42.8	42,8	42.8	42.8	42,8	42.8	42.0	ļ.,
	8C13MC5	\$ 12	149. 3	181, 3	189,3	189,3	125,3	149,3	149,3	157.3	149,3	181.3	42.8	42.8
Катаная		5 10	167.5	200,9	330,2	348,8	157,2	144.0	157.0	168.8	167,5	200,9	189,3	189,
FOCT 19903-74	FOCT 380-71	5 8	242,4	327,2	310,7	324,7	204,9	238,9	232,5	317.9	242,4	327,2	330,8 310,7	348, 372,
		U moro :	602,0	752,2	873.0	905,6	530,2	575,0	581, 6	686.8	602.0	752,2	873,6	953,
Всего	масса м	еталла:	6876,0	7945,0	9149,6	10110,4	4420,9	4898,8	5524,2	6301,0		8630,8		
Масса напло		еталла, кг	69	79	91	101	44	49	55	63	75	86	94	103
^	Гасса ме	ти зов , кг	105	113	130	142	67	78	86	95	107	124	133	145
0	бщая ма	cca , re	7050.0	8137,0	9370.6	10353,4	4531,9	5025,8	5665, 2	6459,0		8840,8		

774-26KM

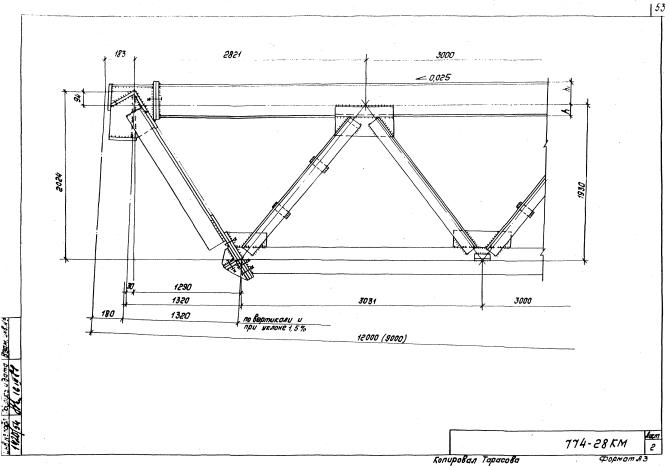
L-70

PA3AEA T


ЧЕРТЕЖИ КМ БЛОКОВ ПОКРЫТИЯ ТИПА МОСКВА ИЗ ПЛОСКОСТНЫХ СВАРНЫХ ФЕРМ

(ВАРИАНТ БЛОКОВ 2)

NN 11/11	Маркэ блока	Расчетн. Эквивал. Верт. натр. кг/на	Номин Пролет,	шири н м	DOSMED BUCOMO	Масса блока, кг	Pacxod cmasu,	N vepme. ox a	21	CNM\$ 24-360K-X	360 450	-			7515,6 8430,0	26.1				
1	CAMO 24 - 360	360	M	-	† <i>"</i>	7064.1	24,5	29KM	23	CNM#24-510K-X	510	- 24	12	1,94	9388, 3	32,6	1			
2	CAM@ 24- 450	450	1		}	7787,1	27,0	30 KM	24	CAM#24-610K-X	610				10057,8	34,9				
3	CAMP 24 - 540	540	24	l		8658,7	30,0	31 EM												
4	CNM @ 24 - 630	680	1			9798,1	34,0	32 KM												
5	CAM # 18-300 K	300			ļ	48 11,4	22, 3	33 EM												
6	CAMO 18 - 410 E	410	18	١		5051,4	23,4	34 KM		•	,			_						
7	CNM#18-520K	520	18	12	1,94	5781,4	26,7	35 KM		१८ १ ५ ५ ५ ५ ५ ५ ५ ५ ५ ५ ५ ५ ५ ५ ५ ५ ५ ५	,									
8	CNM# 18-630K	630	1			6573,6	30,4	36 KM	"Μ-	- с труктурное тип покрытия	nokp (nokp	NIMUE NIMUE 1	,, סחטר	MOCK 6	σ")					
9	CNM # 24-360 K	360		1		7515,6	26,1	37 EM	φ.	бариант испол	нения	SAOKO 6	10KDb1M	VAN2(из сварнь.	х ферм,	,			
10	CNM40 24-450 K	450	24			8430,0	29,3	38 KM		18)- nponem dnok				-		0				
11	CNM\$24-510K	510	24			9388,3	32, 6	39 KM		450,540pac4 GAOROB B RC			CONBAG:	H HOZO.	93KO (3K6U	oaneum)	10			
12	CNM \$24-610 K	610				10057,8	34,9	40 KM				δροκοδ	оков означает, что блоки							
13	СЛМФ24-360-х	360				7064,1	24,5	29 KM	npe	дназначены б Весными кро	וח בני	OMBIUL	18446/	х зда	HUÙ C					
14	СПМФ24-450-х	450	24			7787,1	27.0	30 KM	3 UH	декс х" – о.	HOVO	em. vi	no ba	OFU	предназ	HOYEHB	,			
15	СПМФ24-540-Х	540	64			8658.7	30,0	31 KM	01/8	применения	8 p	OUOHO	xc,	POCY	етной /	пемпер	0			
16	СПМФ24-630-х	630		,,		9798.1	34.0	32 KM	my	אעא וחס טססן	4C 41	o°c do	MUHS	ıc 65	°/xлaдoc	MOURUE	?/			
17	CAM#18-300x-X	300		12	1,94	4811,4	22,3	33 KM		я влоков с инд грузка привеч										
18	CNM#18-410x-X	410	18			5051.4	23,4	34 KM	חס	грузка прице. Павух подвес	HBIX	Кранов	epy:	, אנט. פחסם:	BEMHOCM	610 3.2 :	r,			
-	CNM@18-520K-X	520				5781,4	26,7	35 KM		-		•	-, 5			-,				
20	CNM 4018-630K-X	630				6573.6	30,4	36 RM		T	П					· · · ·	_			
		•			<u>'</u>			1	HOV.OM	д Яорохина вад						774-2:				


CM. UN.M. GOOKOG a VONAL Konupoban Tapacoba

ЦНИИпроектлеганструкую Формат АЗ

Морка	h	h,	he	h ₃	Сечения верх- них поясов				
διοκο		'	"	1 3	крайнега	средиево			
СпМф24- 360 СПМф24- 360 -х	64.7	115,3	63,2	113,8	1852	1851			
CNM	69,7	130,3	64,7	115,3	2051	1862			
СЛМФ24-540 СЛМФ24-540-х	75,2	154,8	69,7	130,3	2351	2051			
CNM#24-630 CNM#24-630-X	79,7	178,3	75,2	154,8	2651	2351			
СЛМФ18 · 300к СПМФ18 · 300к · X	50,5	86,9	50,5	86,9	1461	1451			
СПМФ 18-410к СПМФ18-410к-Х	55,3	101,7	50,5	86,9	1661	1451			
GNMq018-520.K CNMq018-520.K-X	60,4	116,6	55,3	101,7	1851	1661			
C/IM#18-630x C/IM#18-630x-x	CHA	115,3	63,2	113,8	1852	1861			
CAMP 24-360K-X	64,7	115,3	63,2	113.8	1852	1851			
СПМФ24-450к СПМФ24-450к-х	69,7	130,3	64,7	115,3	2051	1862			
CNM@24-510x CNM@24-510x-X	75,2	154,8	69,7	130,3	2351	2051			
CNM#24-610x CNM#24-610x-x	79,7	178,3	75,2	154,8	2651	2351			

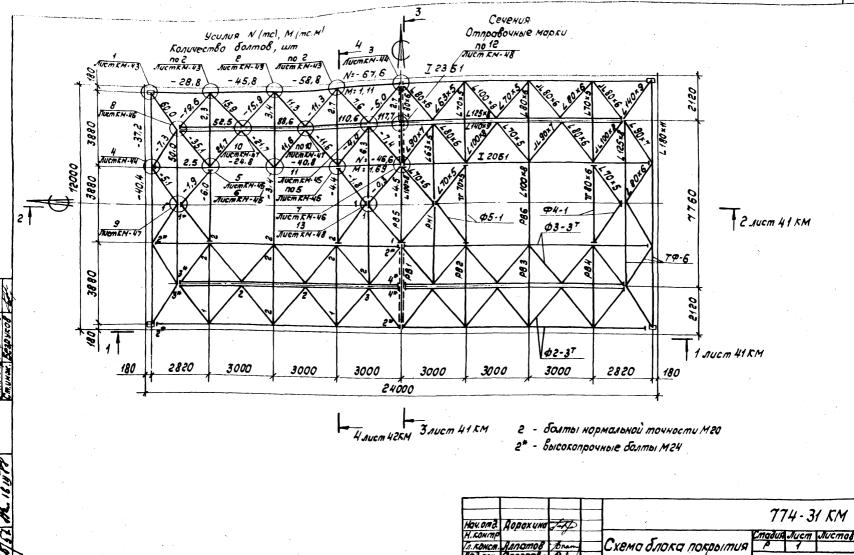
Hau ama	Дорохима	FAT)			774 - 28KM
H. KOMTIA.	μυμυνοπο	248		Чнишициробанная геомет-	Cmadua Jucm Jucmo8
TA. KON.	Angmol	Brams		Унифициробанная геомет- рическая схема блоков	7
BED, ROM.	Сергеева	1 es		'ΛοκρωπυЯ	
Провер,	Nathot			(поперечный разрез)	ЦНИИлдое ктлегкиствукция
Cm.mexH	२.गव३ ०४ व	Tugol,		. , , ,	1 /
	копирова.	n Tapac	080		Формат Я 3

Формот АЗ

Копировал Тарасова

Формат АЗ

2"- высокопрочные болты M24

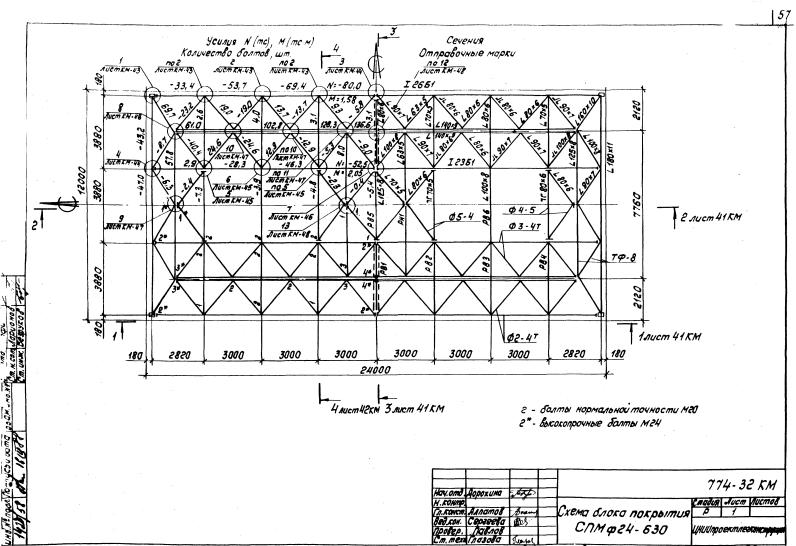

ТТ 4 - 30 КМ

Нач. отд. Дорожина деф.

Н. конпр.
Пр. конст. Дергеева (ФУ)
Провер. Паблов
Ст. тем. Глазова (Ст. тем.)

Копировал Тарасова

Формат ЛЗ

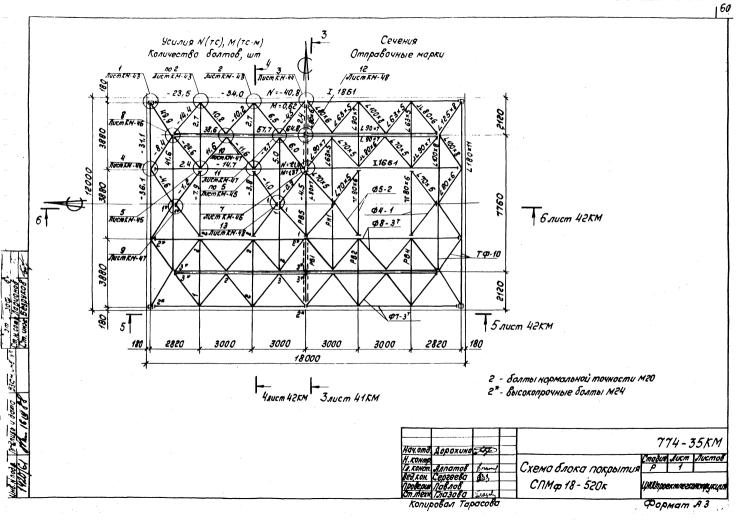


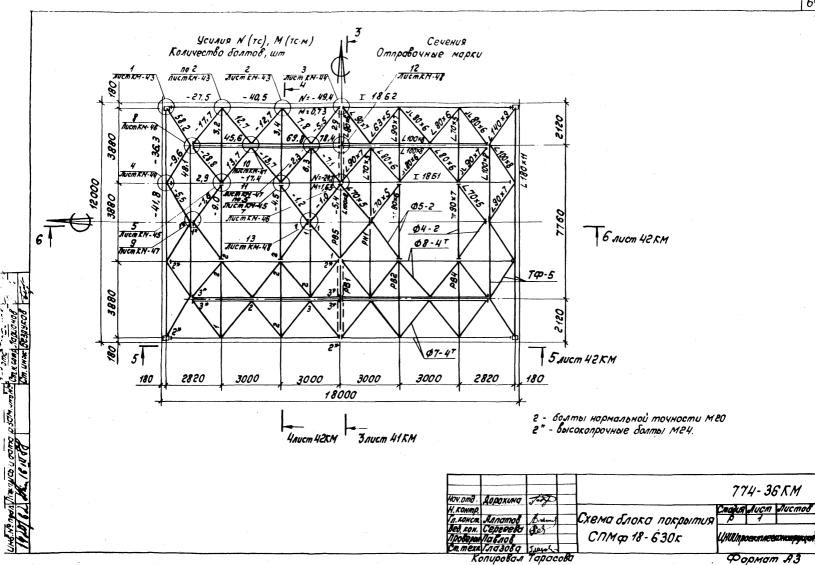
Bed KON. Cepzeela Ce

Apolepun Magnol

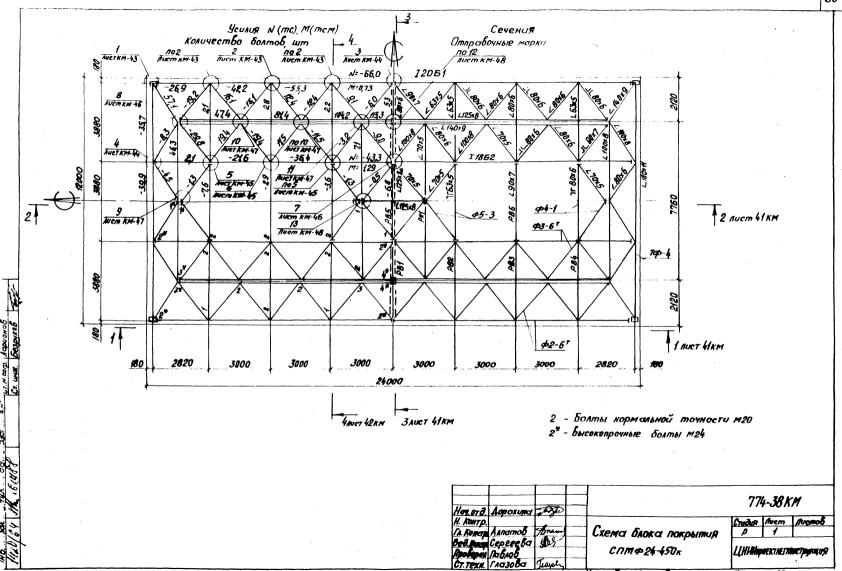
30md835×1: 231

CNM\$24.540 ЦНИИ проект леекинструкци CM. Mema/103080 Tuesd Формат АЗ KonupoBan TapacoBa

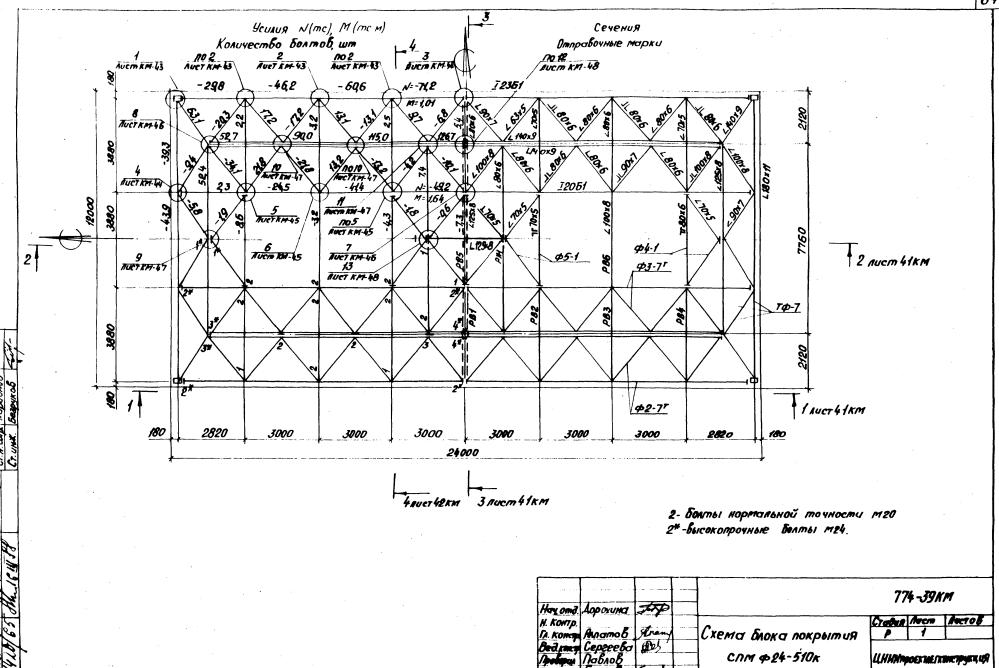



Konupolan Tapacola

Формат Я 3

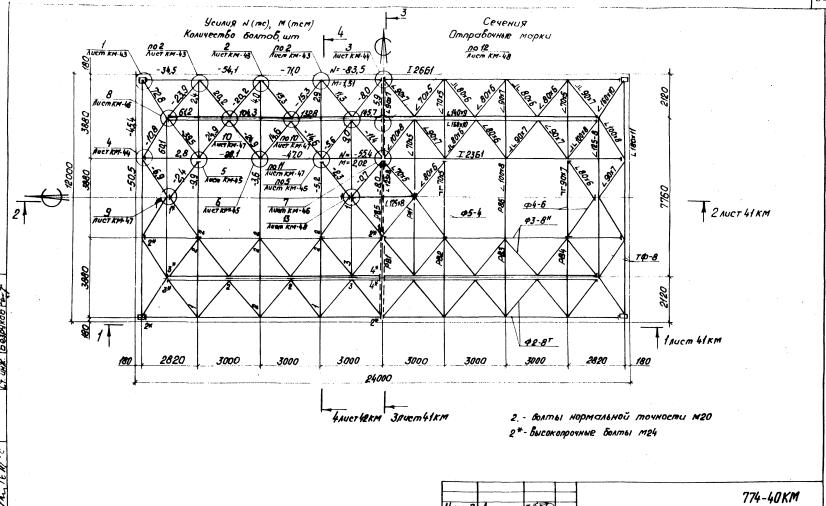

Cm mexil Jagooba June

Формат АЗ



Формат АЗ

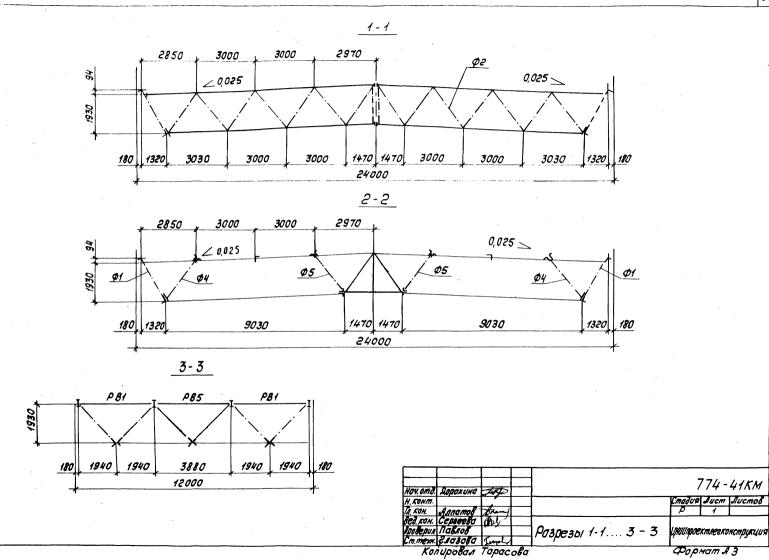
Формат АЗ


Копировал: Морозова

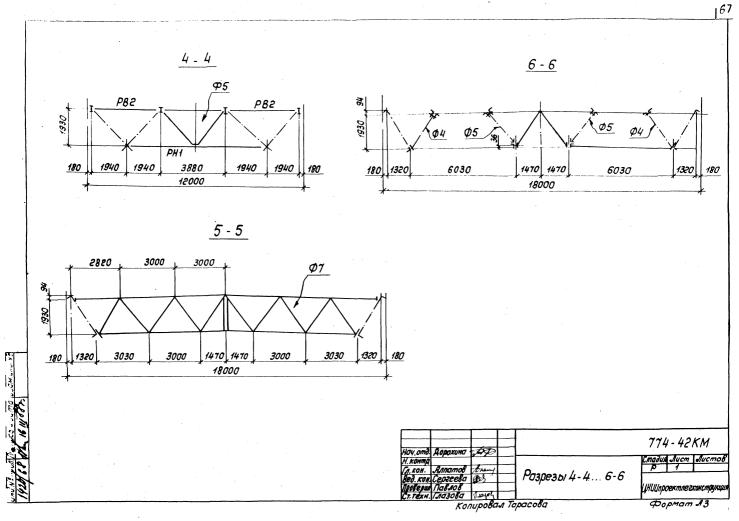
KonupoBan: Moposoba

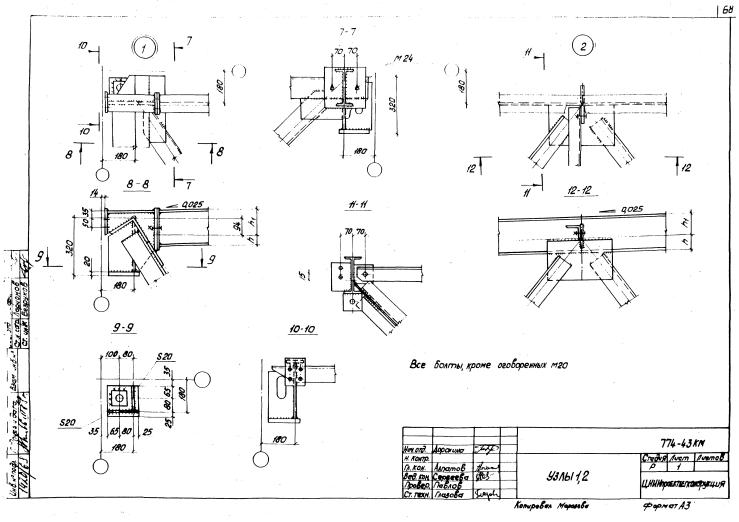
Papmar 13

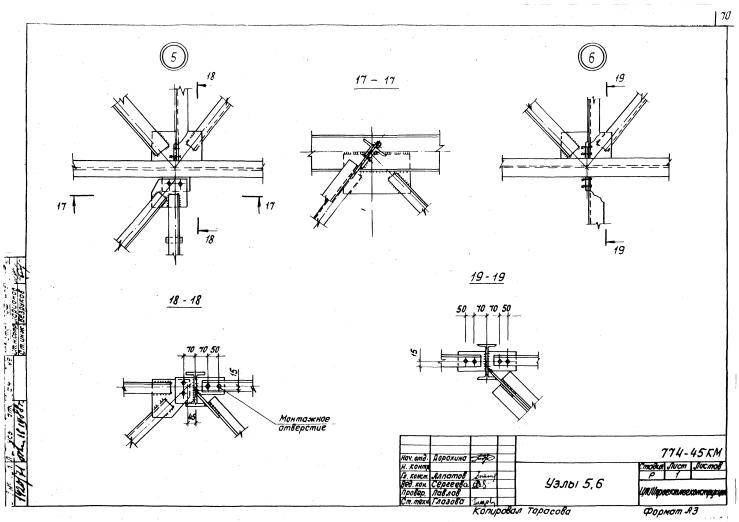
LLH MAMPOEKTHE TRANCTPYKT UP

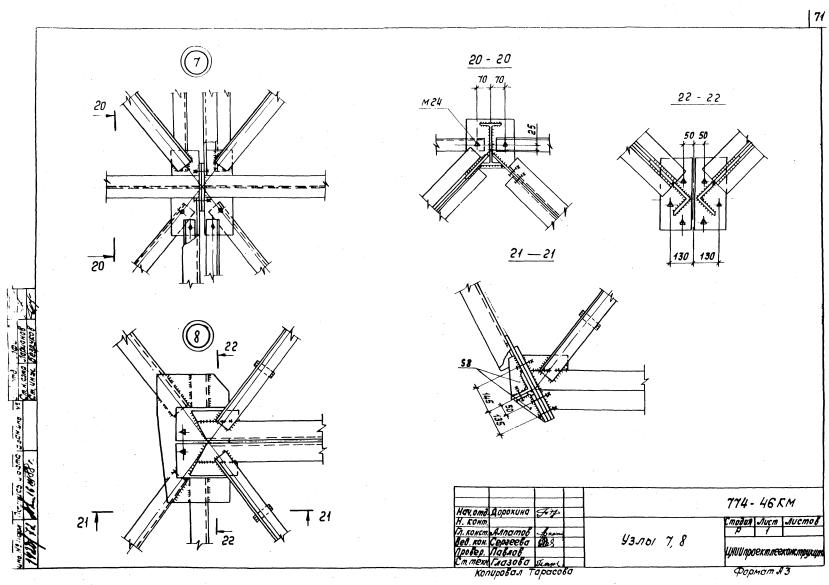

HOW. OTT A SOPONUMA 5-4-32

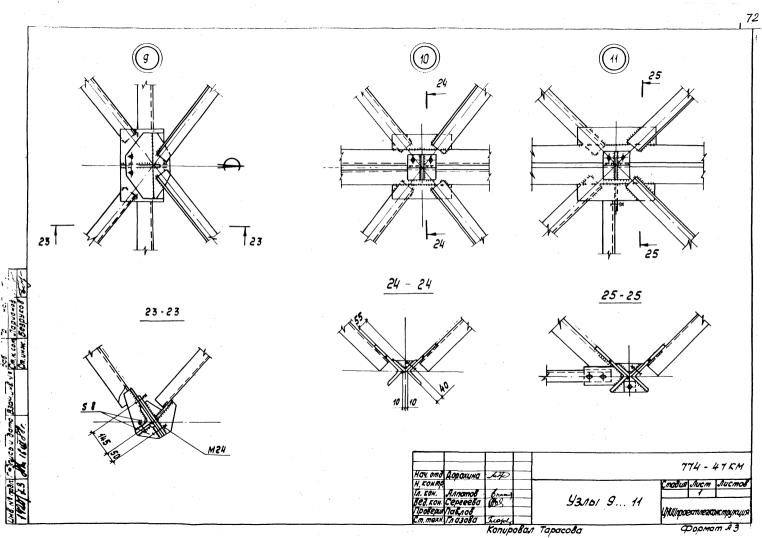
N. KONTO.

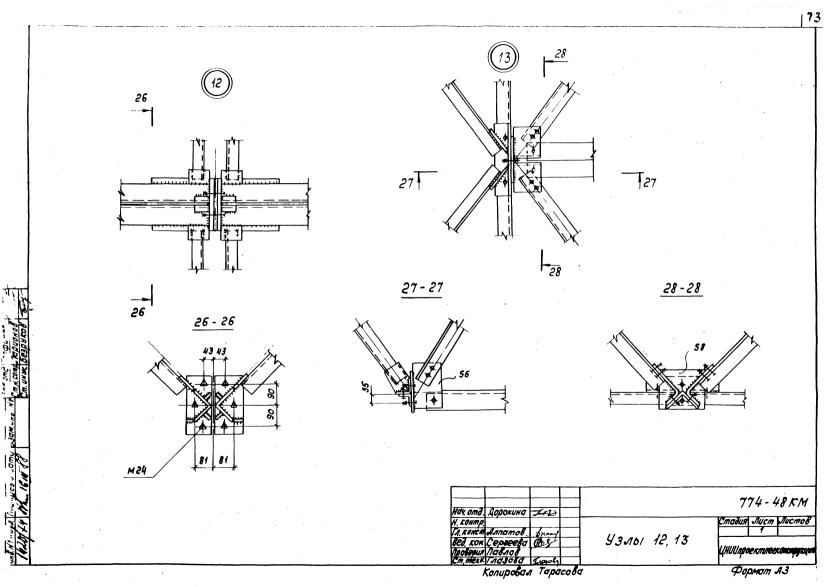

In. Coppered D.S.


Coppered D.S.


Contract Coppered




16/ 1/ 16 14 0 July

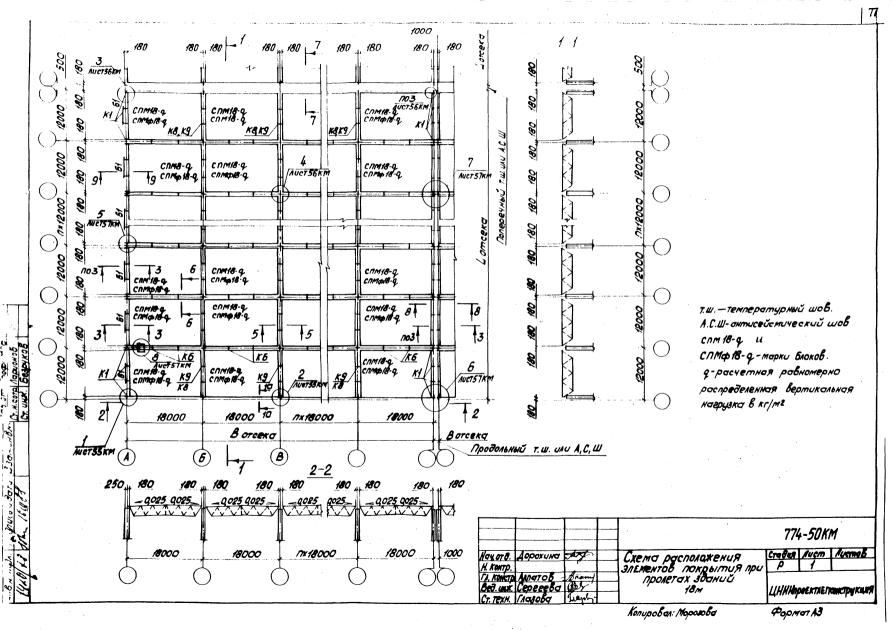


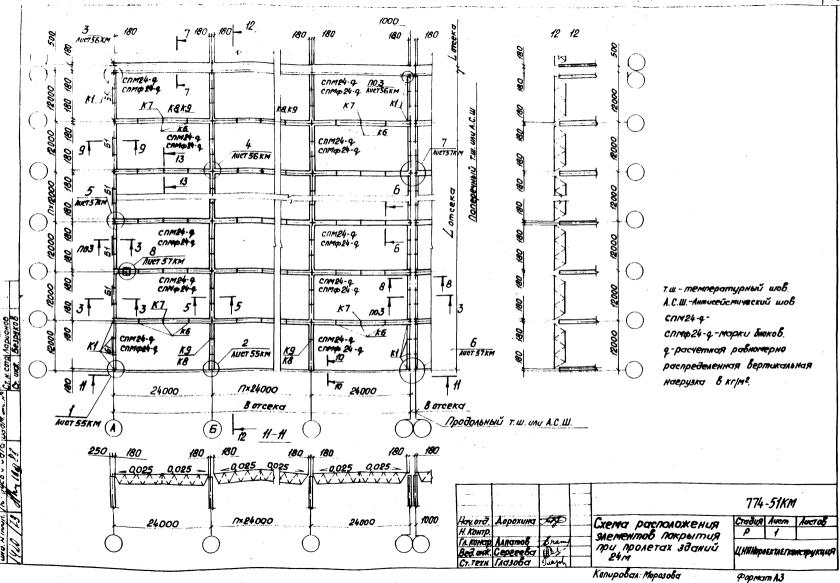
1	8 u∂	Mapra	Обозначение				Macca	со метолло по маркам, кг							
	профиля,	металла,	и размер	C/1Mp24-360	C/1Mp24-450	CAM@24.540	CAM \$24. 630	CAMPA8-300 K	ENMAIS 410 K	C/Mp/8-520x	CAMPO/8-630×	CAMp24-360x	CTN p24 450k	CNM#24-510×	CTOM (024 - 610
	roct	FOCT	профиля, мм	CNNp24.380-X	CAMP 24-450-X	CNV@24.540×	CAM@24-630x	СЛ Н Ф18-380к-х	CAND 18-410x-X	CAMPAIL-571cX	CNN#18-638x-X	C/M4 024 ·364;X	E/Map 24.458x-X	CAMP245181-X	CAND 24818
	Двитовры Стальные		I 2651	-	_		1307,0								1305,6
		00500.0	I 2361	_	_	1204.0	1204,0				_		_	1204,0	1204.
- 1	<i>Рорячекатаные</i>	09	I 2051		1045,6	1045,6			_	_			1045,6	1045,6	_
	C NOPOMNEMBABANI BODHSMU NOMOK		I 1851	718.8						534,0	534,0	718,8			-
	Foor 26020 - 83		I 1862	877.2	877,6		L				652,0	877.6	877.6		_
1			I 1661						440,4	440,4					
-			I 1461					728,8	364,4						
1	всего профиля		,	1596,0	1923,2	2249,6	25 11,0	728,8	804,8	974,4	1186,0	1596,4	1923,2	2249,6	2511,1
	Сталь прокатная угловая рабнополочная ГОСТ 8509-72	09/20-6	L180 ×11			728.8	728,9			729,0	729,0		729,0	729,0	729,0
Z.			L 160×10	590,0	590,0		275,6	590,0	590,0	_		590,0			1313,0
6			L140×9			1031,2	1629,6				216,4		1031.2	1845,2	814,8
à			L 125 × 8	651,0	1474,8	906,2	309.8		173,2	173.2		1530,0	705,6	309.8	309.8
8		FOCT 19281-73	L 100×8	932,4	529,4	701,2	644,0	279.2	426.4	473,8	1105,9	486,8	615,6	644.0	644,0
Ŀ				600,6	509,2	437.6	884.4	520,9	582.5	1083,5	889.9	565,8	461,4 1367,6	493,4	1267,2
. CN.3K.			L 80×6	918.8	1092,4	748.6	1190,0	1127.5	307.1	773,7	878,4	7776,8	/30/,0	14/34	9.0,0
C.W.		<i>Uтово</i>		3692.8	4195,8	4553,6	5662.3	2517,6	2679,2	3233,2	3819.6	4285,4	4910,4	5496,8	6017,8
-		BCT3 FACS UNU	L70×5	331.8	284.8	558.0	316,0	346,4	346.4	332,4	360,4	362,0	314,8	404.8	421,2
		8 CT 3 NC 6 1007 380 - 71 1007 20-6 UNU 147 2 1007 19281 - 73	L63×5	623,6	556,0	244.4	244,4	420,8	420,8	365,6	175,2	447,8	379,6	176,8	122,4
٤		Umoeo	1	955,2	840.8	802,4	560,4	767.2	967.2	698,0	5356	809,2	694.4	581,6	543,6
	ВСЕЗО профиля			4648.0	5036,6	5356,0	6282,7	3284.B	3446,4	3931,2	4355,2	5094.6	5604.8	6078,4	8561,
7			•	<u> </u>	.					Ξ				774-	49 FM
2	* 219 5005	ов с индекси	ом "х"/хладосі	ποὺκυχ (Глоков /		77	oy ema Dogo	DAWNO AT				Cm	odus Jucm	Jucmo
٦	,		, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,		- ,			KOHMP		TICHE	<i>?ԱՄΦԱ</i> ՐԸ	nyua mem nyo24-	351510	P 7	11.57

(A. Kurim Annomo B. Brown Ha dil BO), Kon Cepecega (BS) COM C Cm. UNIX. BOOKOBA (Bobush) Konupoban Tapacoba

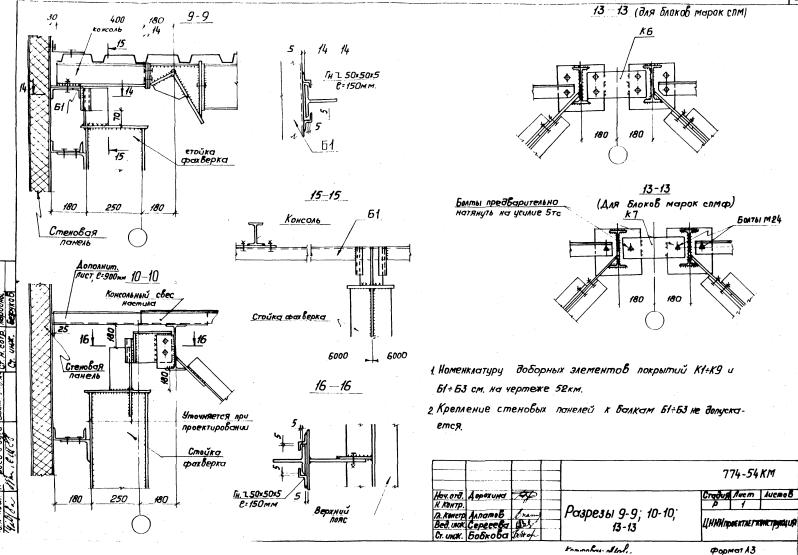
ЦНИ*Шпроектпенкик прукция* Формат А 3

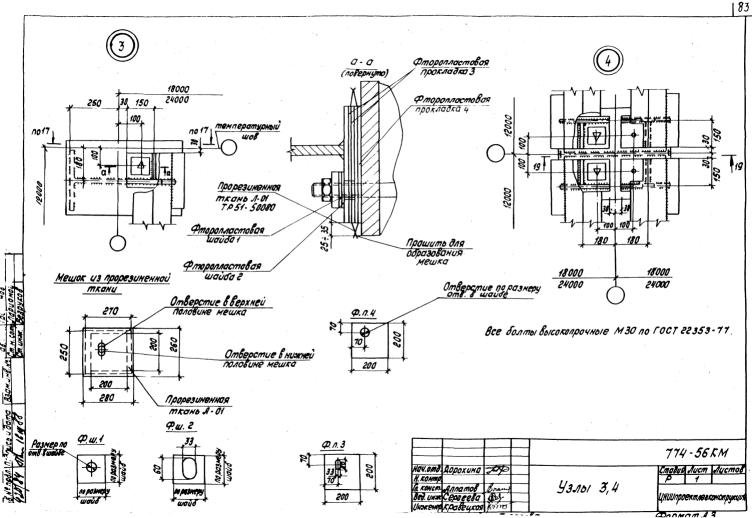
	847	Марка	Обозначение				Масса	металл	10 NO M	аркам, к	s				r
	ПРОФИЛЯ, ГОСТ	металла, ГОСТ	и размер Профиля, мм	CNMp 24-360 CNMp 24-360 A	СПМФ 24-450 СПМФ 24-450-X	CNMp24-540 CNMp24-548*X	CNMp24-630 CNMp24-630-X	CNMp18-300x CNMp18-300x-X	CNMp18-410 K CNMp18-410x-)	CПMp18-520 к СПMp18-520к-X	C/Mp18-630 x C/Mp18-638xX	CNMp24-380k CNMp24:360k-X	CNMp24-450x CNMp24-450xX	CΠMφ24-510x CΠMφ24-510x-X	CNMp24-610x CNMp24-610;4
	Сталь горячекать	141290-15	S = 25	55,2	55,2			55,2	55,2	55,2		55,2	55,2		
	ная дляфланцевых Соединёний	TY14 • 105 • 465 • 82	S = 32	1		81.6	81,6				81,6			81,6	81,6
	FOCT 19903-74	Uтого		55,2	55,2	81.6	81, 6	55,2	55,2	55,2	81.6	55,2	55,2	81,6	81.6
	CMAJA Jucmokas		S = 20	84,4	84,4	84,4	84.4	84,4	84.4	84.4	84,4	84,4	84,4	84.4	84,4
	copaverama.	BC+3 Fnc 5	S = 14	160,8	160,8	250,8	250,8	160,8	160,8	242.8	250.8	160.8	242.8	250,8	250,8
	ная	FOCT 380-71	5 = 12	140,8	140,6	178,4	178,4	140,6	140,6	128.0	178,4	140.6	128,0	178,4	178,4
		(09	S = 8	302.0	302,0	365,0	365.0	302,0	302.0	301.0	365,0	302.0	301,0	365,0	365,0
		FOCT 19282-73	S = 6	7,2	7,2	7,2	7,2	7,2	7,2	7,2	7, 2	7,2	7,2	7,2	7.2
Т		Umozo		695,0	695,0	885,8	885.8	695,0	695,0	763.4	885.8	695,0	763.4	885,8	885.8
	Всего профиля			750,2	750,2	967.4	967.4	750,2	750,2	818,5	967.4	750,2	818.6	967.4	967.4
0		металла, ке		6994,2	7710,0	8573,0	9701,1	4763.8	5001.4	5724.2	6508,6	7441,2	8346,6	9295,4	9958.3
DYK		вленного мета.	NAQ, RE	69,9	77,1	85,7	97,0	47.6	50.0	57.2	65,0	74,4	83,4	92.9	99,5
563	Всего масса	MEMOSSO, KE		7064,1	7787.1	8658,7	9798,1	4811,4	5051.4	5781,4	6573,6	7515,6	8430.0	9388,3	10057.8

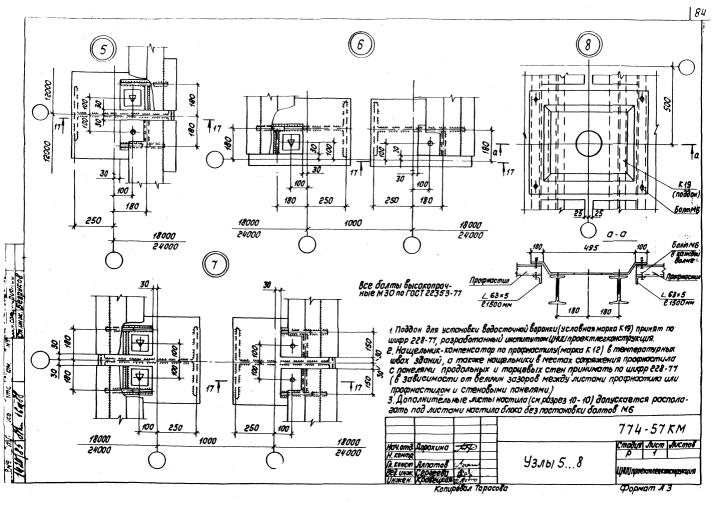

* - для блоков с индексом "Х" /хладостойких блоков./

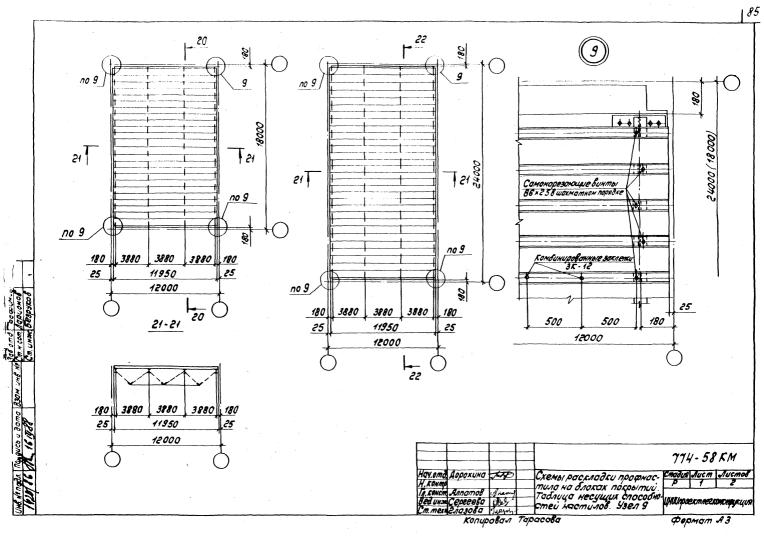

Рормат АЗ

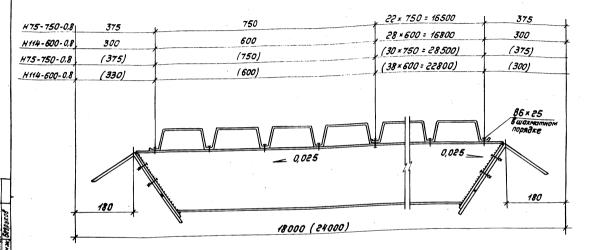
774-49 KM


РАЗДЕЛ Ш


КОНСТРУКТИВНЫЕ РЕШЕНИЯ ПОКРЫТИЙ ЗДАНИЙ И ПУТЕЙ ПОДВЕСНОГО ТРАНСПОРТА



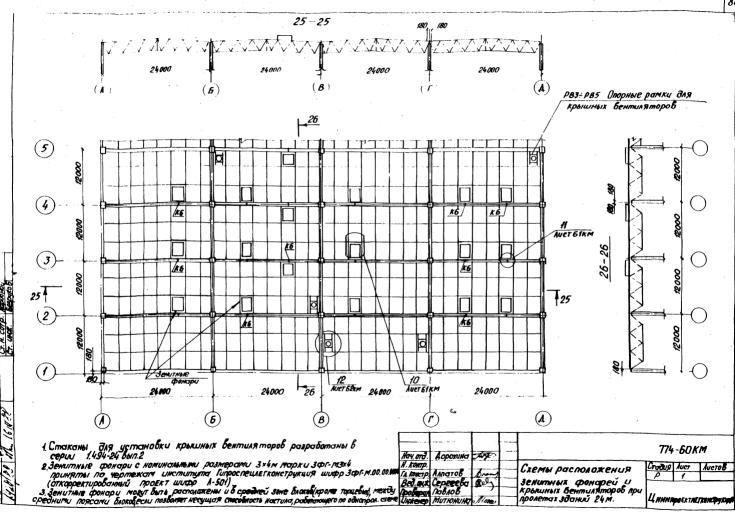


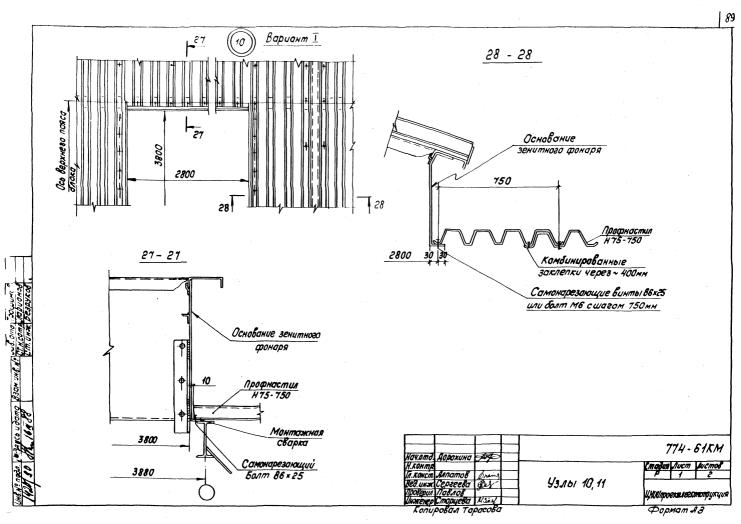


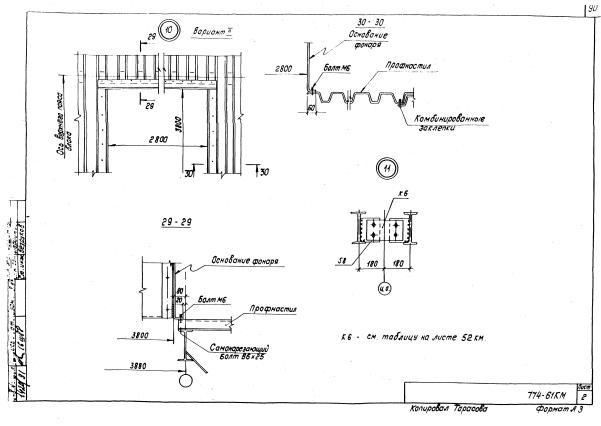
20-20; 22-22

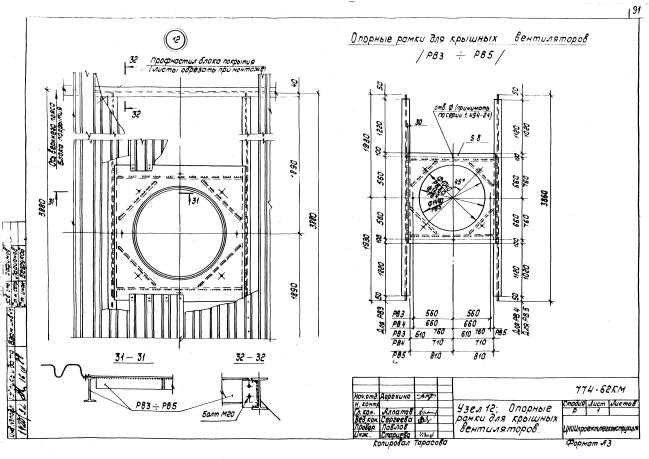
<u>Допискаемые расчетные нагрузки на профнастил, кг.с /м²</u>

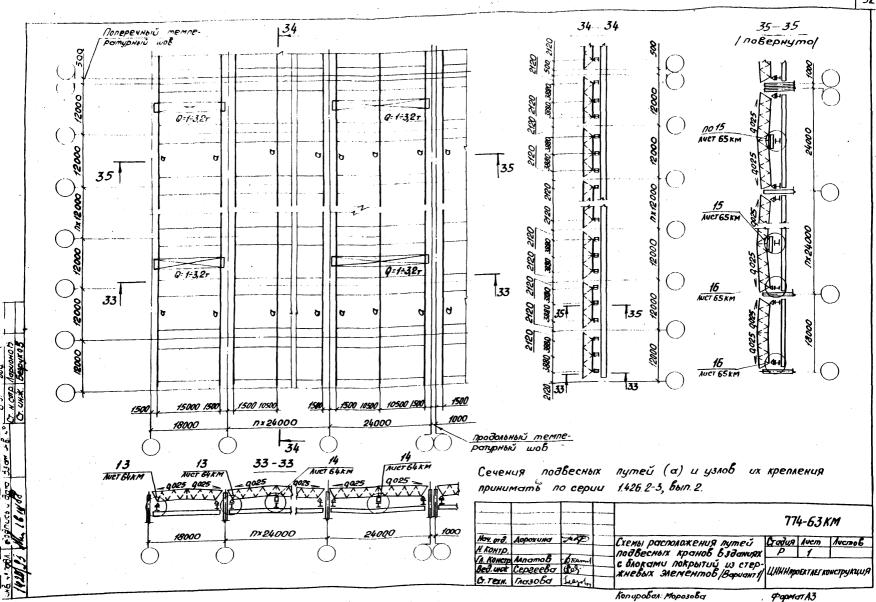
roct	Марка настило	Расчет	масса, кг			
1001	тарко настала	однопропет- ная	двухпро- летная	трехпро- Летная	1м.п.	1 M2
FOCT	H 75-750-0,8	249	296	372	8,4	11,2
24045-86	H 75-750-0,9	294	348	434	9,4	12,5
	H114-600-0,8	613	624	779	8,5	14,0

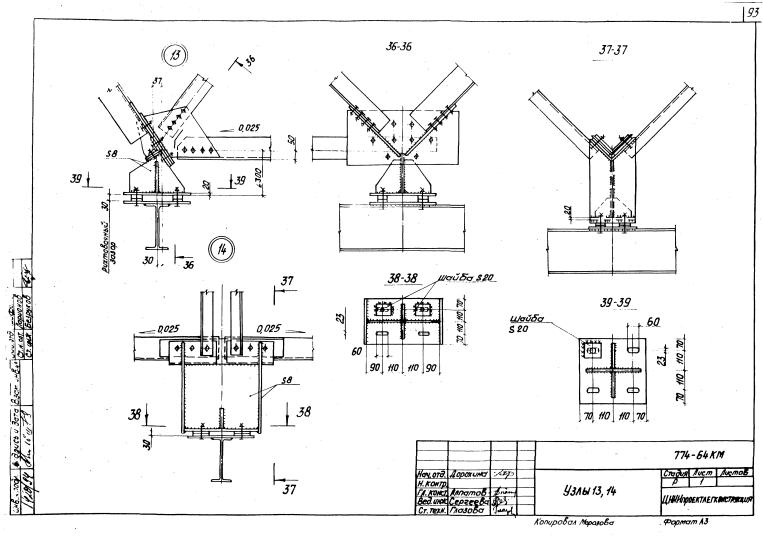

1. ЧИСЛА без скобок относятся к пролету 18 м, вскобкох-к пролету 24 м. 2 Дисты профилированного настила прикреплять к верхним поясан

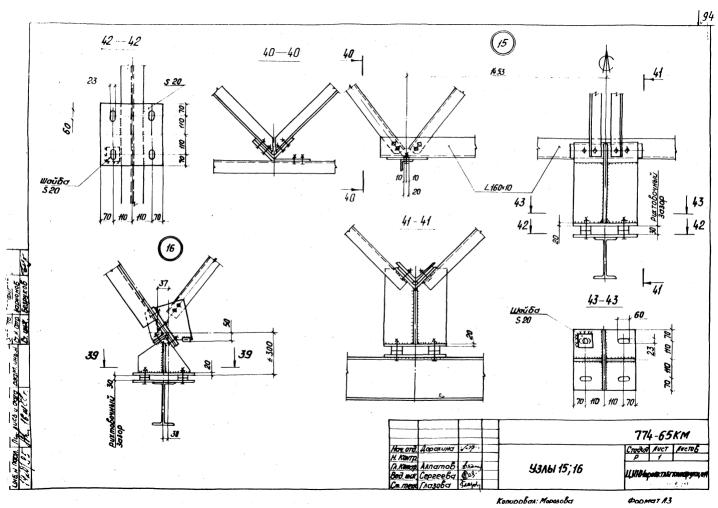

2 Листы профичированного настила прикраплять к вархним похоам структурного блока с помощью сомонаразающих винтов 3. Допускаемые расчатные нагрузки на профиастил опребелены с учетом Ru = 2200 Kr/m²

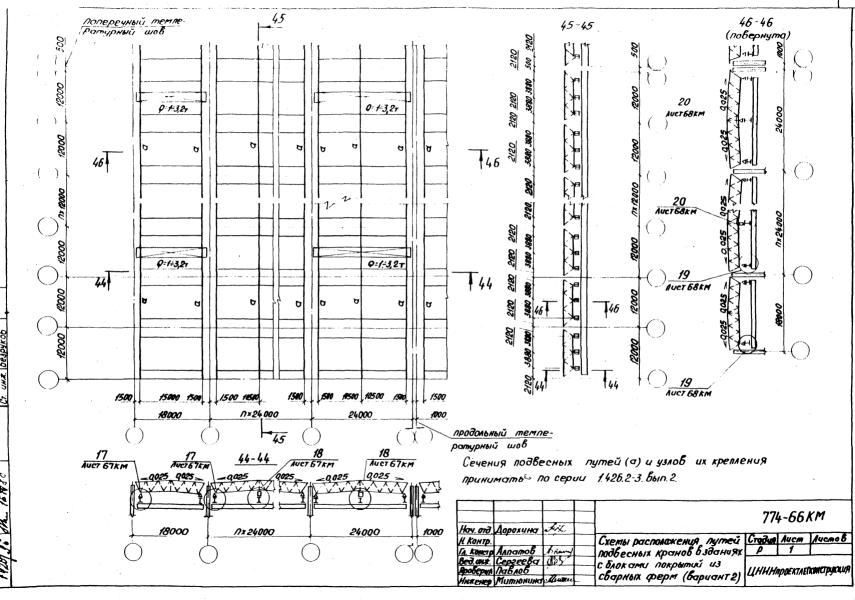

774 - 58 KM PUCM

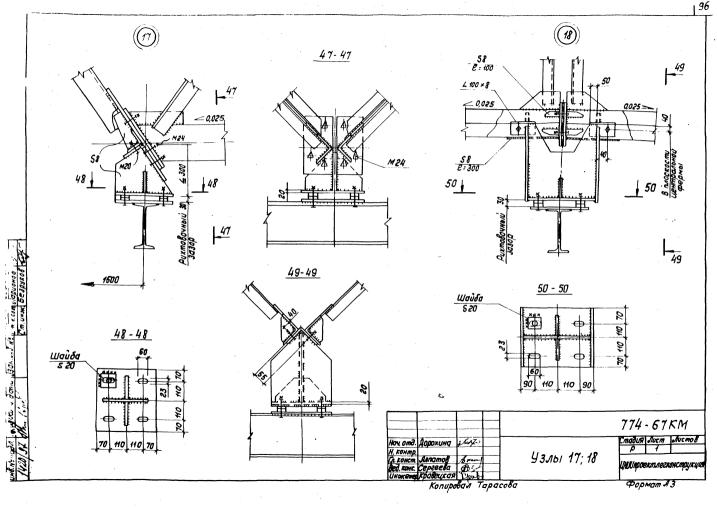

Konupolan Tapacola

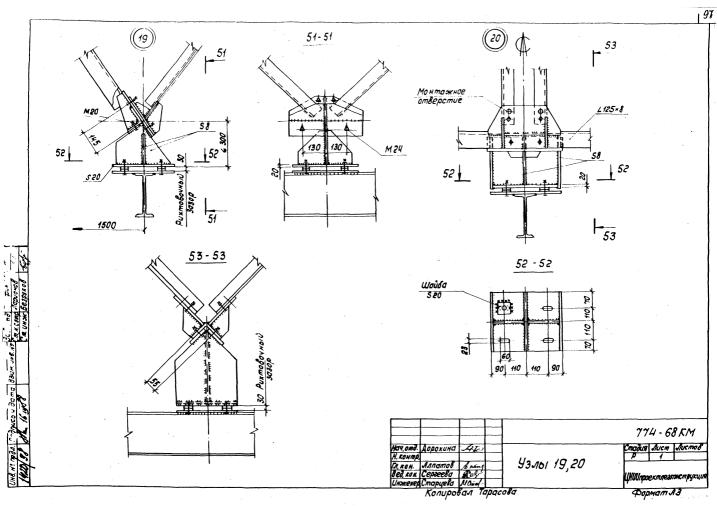

Формат АЗ

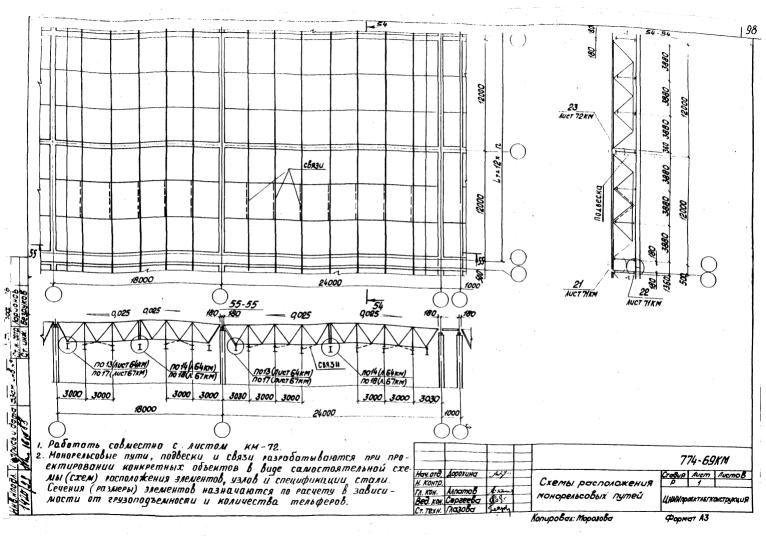


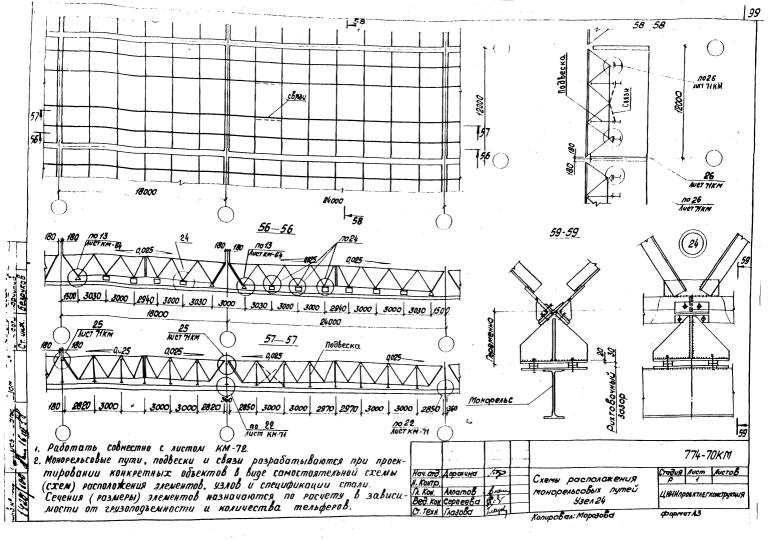


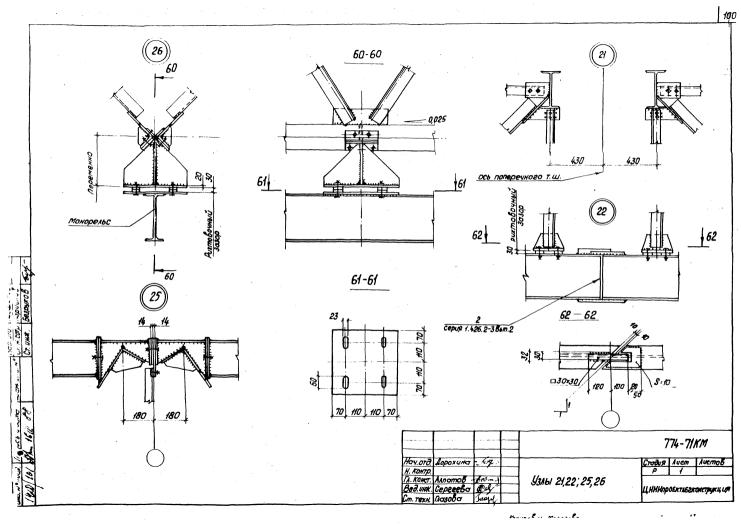


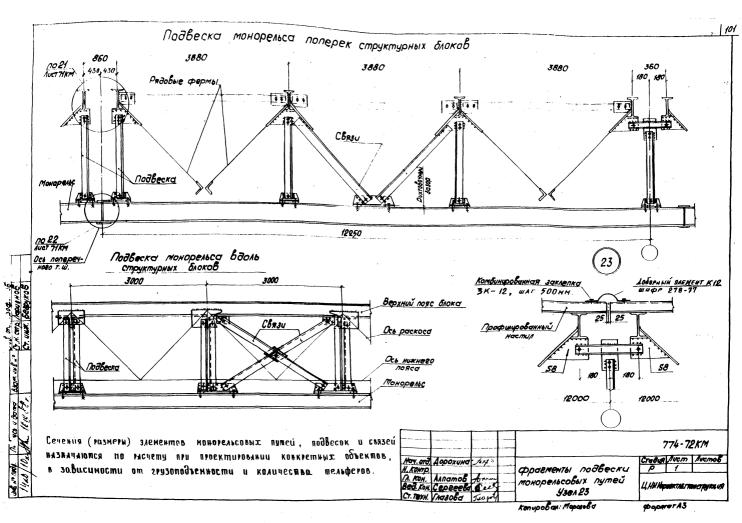












РАЗДЕЛ IV

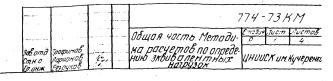
МЕТОДИКА ПРОЕКТИРОВАНИЯ ПОКРЫТИЙ ЗДАНИЙ И РАСЧЕТНЫЕ МАТЕРИАЛЫ

— Облика портук 11. Настоящий раздел, каколбатая пнетобутаны 4.5000 мм. болетька, бединая устанизация (у. 646.40)

пресыстальненстричиня! 12 Раздел седержит следующие материалы:

мстодику расчета блакав по определению эквиволентных нагрузак ат различных ваздействий.

- таблицы эквивалентных нагрузак; - нетадику подбора блаков для конкретных


условий проектирования,
- нетодику расчета по проверке несущей

способности блоков на особые сочетания воздействий и таблицу-ключ по подбору блоков для сейсмических районав строительства;

- расчетные несущие способности элементов.

2 Методика расчетов по определению эквивалентных нагрузак
г. в качестве методики для подбора блоков по данной серии принята известная методика эквивалентных нагрузок, поди фициоованная по сравнению с типовой серией 1460-6/81 с целью более полного использавания несущей способнасти канструкции.

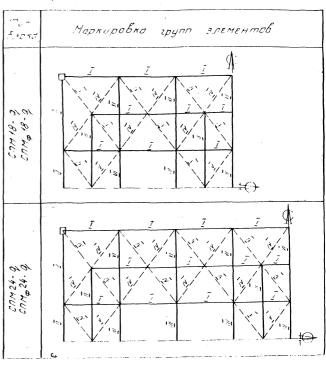
обеден до жеренциальный подход к учети выдейст вий етдельных нагрузок в завысиности от степени их вечения на напряженно-деформированное состояние блока и весовые показатели всего покрытия в частности ряд нагрузок, например нагрузки от подвесных кранов, оцениваются по каждому элененту влока, нагрузки от нанарглосов и кочеольных участков настипа-по группам эленентов, эквивалентная нагрузка от крышных вентиляторов устанавлена в целам для влока, в качестве основного уровня проверки несущей способности конструкции в данной серии принят цообень несущей способности группы эленентов.

22 Группы формировались в зависимести от распеложения элементов в влеке, характера их рабаты пои воздействии вертикальной равномерно-распределенной нагрузки и степени использавания несциисй способнасти

Выделены следующие группы элементов

1- верхние и нижние пояса, ориентированные вдоль пролета блока;

<u> II</u> - верхние и нижние пояса торцевых ферм;


 і - распорки вержнего паяса и растяжки нижнего паяса, ариенти рованные поперек пролета блока;

<u> іў</u> - раскосы решетки с относительно высокой степенью использования несущей способности;

 $\overline{\underline{V}}$ - налоногруженные раскосы;

п. - растянутые элененты верхнего пояса,
 приентированные поперек пролета блака

2.3 Маркировка эленентов по группам приведена на схемах таблицы 1 для влоков пролетом 18м и 24м Μαδλυμα1

24 Под эквива сентной часризкой вля элемента следист понимать интенсивность вертика свной рав номерно-распределенной нагрузки, вызывающей в ванном элементе такое же по величине и знаки усилие как и рассматриваемае воздействие Эквивалентная нагрузка для группы устанавливается по наиболее нагруженному элементу. 2.5 Эквивалентные нагрузки для стержней уголкового профиля (группы 11- чи и нижние пояса группы!) вышислялись по формуле $q_a = \frac{N}{Na} \cdot P$, где Р - расчетная вертикальная равномернораспределенная нагрузка на блок (табл.2) N - усилие в элементе от расснатриваемого воздействия; Np - усилие в том же элементе от расчетной вертикальной нагрузки. 2.6. Эквивалентная нагрузка для верхних сжато--изогнутых поясов структурного блока (группа]) вычислялась с учетом критических напряжений потери устойнивасти в вертикальной плоскости по формуле

9, = G - Gp .p

Расчетные вертимальные нагрузки на влоки $|\kappa/\epsilon|^{M^2}$.

17:08.14402

		Пи				
Nponem Gnord	Марка блока	собствен ный вес блако	Bec Hatmu na, ymennu mens U xpabnu		Снеговая нагрузка	Суммарна нэгрузки Р
	CAM 18-300K CAMp18-300K	22	115	23	140	300
18M	CAM 18-410K	25	118	42	225	410
	CAM 18-520K CAM, 18-520K	27	120	53	320	520
	CAM 18-630K CAMP18-630K	31	125	74	400	630
	CAM 24-360 CAM, 24-360	26	115	79	140	360
	CAM 24- 450 CAMP 24- 450	30	118	77	225	450
	CAM 24.540 CAM 24.540	34	120	66	320	540
24M	CNM24-630 CNMp24-630	37	125	68	400	<i>630</i>
	CNM 24-360K CNM , 24-360K	28	115	77	140	360
	CAM 24. 450K CAM, 24. 450K	3 2	118	75	225	450
	CAM24-510K CAMp24-510K	35	120	35	320	510
	CAM24.610K	38	125	47	400	610

Примечание I При определении эквивалентных нагрузак для крановых блаков в формулах (1) и (2) величины Np, Op и P принимались без ччета подвесных кранов польный польный выболее напряжения в среднем польные назоболее нагоуженной польгы польгы польгы выстружи и расчетной вертикальной равномерно-распределенной нагрузки:

Со-максимальные сжинающие напряжения от

бр- максимальные сжинающие напряжения от опесчетной вертикальной нагрузки.

Напряжения бибр определялись по формуле 51 СНи Г. [1-23-81", Нормы проектирования

"Стальные конструкции"

2.7. В качестве расцетной нодели блока принята шарнирно-стержневая система, включающая неразрезные изгибно-жесткие элементы верхних продольных прясов и верхних поясов торцевых ферм. Для балочных

элементов верхнего поясо учтены эксцентриситеты в вертикальной плоскости В отличии от основных расчетов (см. п 42 пояснительной записки) поинято упрощающее допущение в запос прочности для верхних поясов, где флануы моде-

лировались следующим образом жестким сопряжением стержней - для крайних поясов, шарниром-для средних поясов Работа профилированного настила в составе

блока учитывалось при ветровых ногрузках на блоки, непосредственно приныканащие к наружным стенам, и при оценке воздействия рамных сил

28. Расчеты по определению эквивалентных нагрузах

с поседе внам сила в поселе не кречной рамы от ветровалсь модноваль нагрузам с тем же от пералада темпера туры

44 C 2 3 3 3

в пода снач сила в селе провольной раны каркаса ат перепода тенпературы, ветровых нагрузок на факверн и зенитные фанари;

в ветравые нагрузки на блоки, приныкающие к наруж-

г) нагризки от подвесных кранав;
д) нагризки от консольных участков настила, расположенных вдоль длинной и короткой стороный
блака;

е) снеговые мешки у перепадов высот здания при припыкании блоков кориткой и длинной стороной; ж) единичные вертикальные силы, приложенные поочередно во всех узлах конструкции, где возможна подвеска панорельса или другого мехнологического

оборудования;

3) нагрузки от крышных вентиляторов;

и) вертикальные и горизонтальные (поодольные и поперечные) сейснические воздействия.

г д Расчеты выполнены на ЗВМ с использованием программ вычислительного комплекса, Лира",

774-73KM

4

поставатанчага ч. п. п. п. ч. ч. С бастран Усеп

ในงานการ การปัจจังผม

по по за советь не Украимом воградов и форм советь нериодов и форм советь нериодов колебаний блоков). Цицирк. (спределение эквивалентных нагрузок).

3 Эквивалентные нагрузки для правктирования покрытия

31 Эквивалентные ногрузки от продольной силы в ригеле поперечной рамы каркаса.

Ригеляни рядовой поперечной раны являются крайние балочные элементы верхних поясов двух снежных блоков; для раны в торце здания или у температурного шва на парных колоннах один верхний пояс.

Эквивалентная нагрузка от прадольной силы в ригеле поперечной раны оценивается с панащью тобл. 3 по результатам статического расчета раны на ветровые и крановые нагрузки, а также на перепад температур.

В табл. 3 приведены эквивалентные нагрузки $rollow{rollow}$ эленентам от силы N=1 тс — вригеле рядовой рамы, или N=0.5 тс — вригеле крайней рамы.

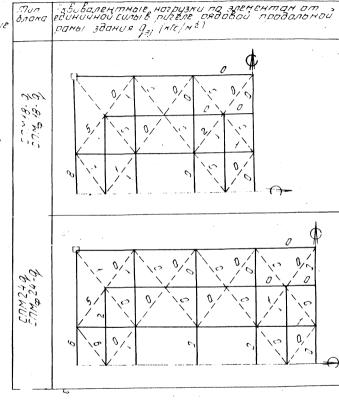
Эквивалентная нагрузка от силы Х, дедствующей в ригеле для ј-го эленента определяется по фаркуле:

Mosnuga3 Then Indubaneumhole Haspane to Eveneuman on councided forond could be outside position of course position of the council sounds. 1010 80 COM COM24.9 COM224-9

 $q_{3j} : n\bar{q}_{3j} : N_{j}, rde$ $n - \kappa o_{3} \varphi : c_{0} + c_{0} +$

В пителе поевельной раны хархаса

Риголяни рядавай прадальной раны являнотоя верхние почет таршевых терм двух смежных блачев для саны крайнего ряда верхний поче аднай тогшевай фермы

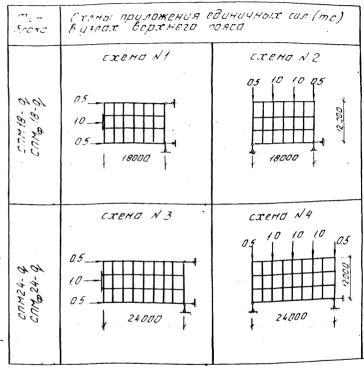

Эквива сентные нагрузки от продольной силы в ригеле продольной памы оценивается по регультатам статического расчета рамы с понощью данных табля.

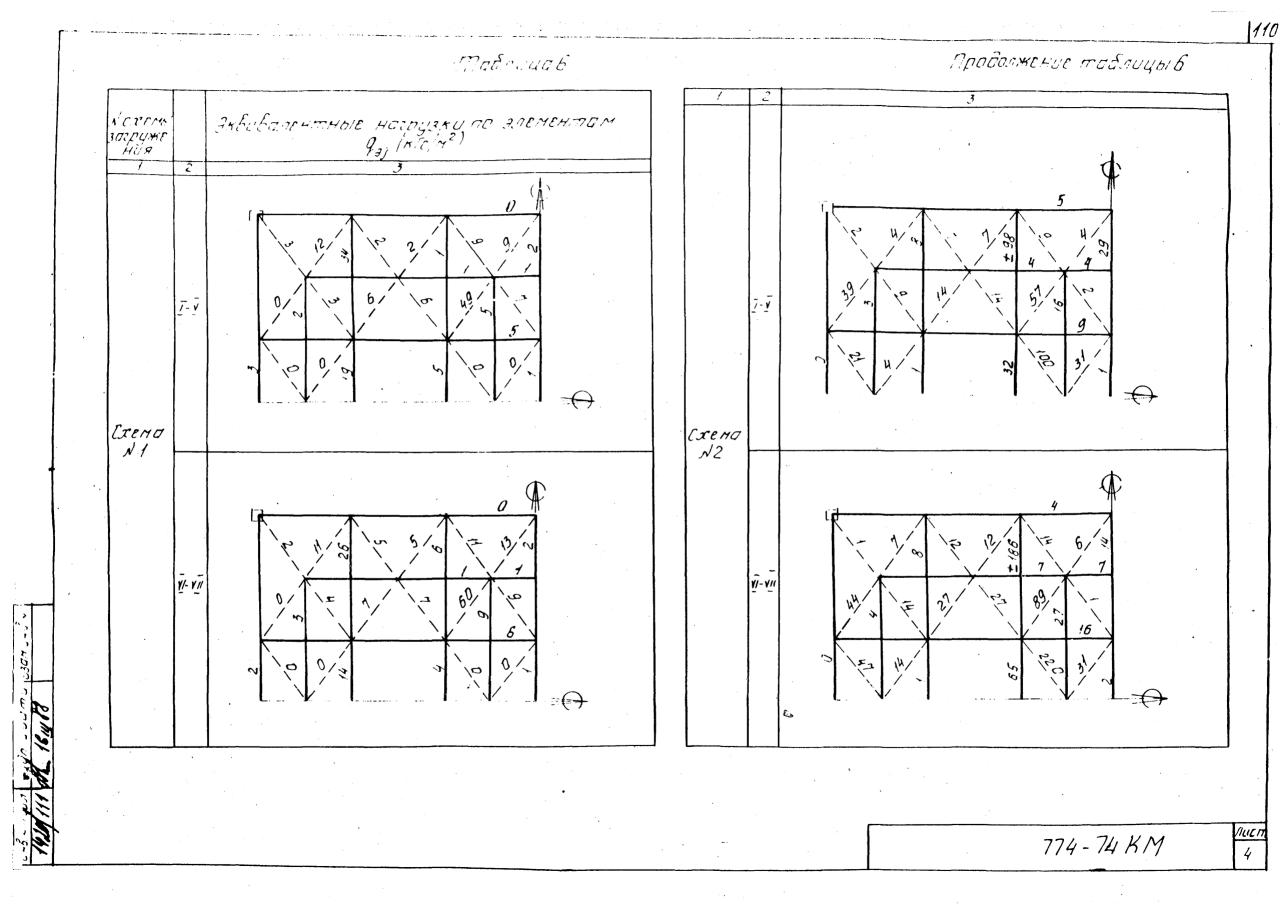
В табличе 4 приведены эквивалентные нигрузки по элементам от силы $\bar{N}=1$ тс-вригеле рядовой рамы, или или силы $\bar{N}=0.5$ тс-в ригеле крайней рамы

Эквивалентные нагрузки от силы N огределянотся по формуле (3). Величина Ф_{эў} прининается по таблице 4.

3.3. Эквивалентные нагрузки от ветрового воздействия на структурные влоки, прины-кающие к наружным стенам.

в соответствии с "Реконендацияни по учету жесткости диафрогн из стального профилированного настила в покрытиях одноэтажных производственных зданий при горизонтальных нагрузках" (ЧНИИПСК, 1980г) в расчетах блоков, непосредственно приныкающих к наружным стенам (торцевые блоки),


до в условой до во вертровных сасснов дитена гдволовая
честичесть заполенте знего диска, обназованного настипом
дом иг повий во вертповых пойонов предполагалась, что
горизонта зыная изгричка воспоинимается по эько
зосмента ми решетками.

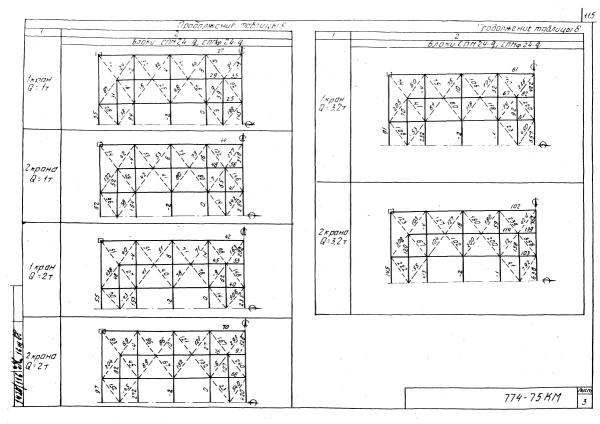

Расчетная надель торцевых блоков заглиналась группой сил, поедставляющих собой единичные реакции стоек фахверка и колонн Схены приложения единичных сил даны в табл 5.

Эжвивалентные нагрузки по отдельным элементам влоков приведены в табл в в зависимости от пролета, схемы нагружения и ветрового района.

Эквивалентные нагрузки от ветрового воздействия для элементов верхних по ясов блока, непосредственно опирающихся на колонны (пояса торцевых ферм и балочные элементы крайнего ряда) определяются из расчета продольной и паперечной рам каркаса с использованием данных пл.31. и 32 настоящего раздела

Ниже дана вспомогательная таблица 7 для определения горизонтальных реакций стоек и колонн, расположенных с шогом в м в таблице принят аэрадинамический коэффициент К-1. Для наветренной стороны в расчете необладимо принять К-08, для заветренной К-06. Παδηυμα 5

Нагрузка от ветра (те) в изел спирания фахвирковой стойки или основной колонны


Μαδλυ40	7
---------	---

	mun	BUCOMO BURT	Pau	וסא חם כי	карасты	юму на	napy E	empa	77700	1040/
Сденетная схена	MECMHOUN	структур. Нас жаса	La	j	II	111	ĪŅ	<u>V</u>	Ι <u>ν</u> Ι	VII
		.: ,4	£ 56	0.76	299	1.25	1.58	1.98	2.41	2.80
		80	0.35	058	175	1.45	1.84	2.31	2.80	3.27
W _m	Pun	72	075	1.02	133	1.68	2,13	2.66	324	3.70
	\mathcal{A}	8.4	0.93	126	164	2.08	2,63	3.28	3.22	4,55
		9.5	1.03	1.39	182	2.30	2.91	354	4'4'3	515
Borcoma do 4430 cmpyn- muxusu kon- cmouk 4446		10.8	1.14	1.54	2.0	2.54	3.21	4,21	487	5.58
cmour duc		48	0.37	0.50	0.66	083	1.05	1.31	159	1,86
		60	0.43	0,58	0.76	0.96	1.22	1.52	1.85	2,16
	Tun	7,2	0,50	0.67	0.87	1.11	1.40	175	2.13	2,48
	\mathcal{B}	84	0,61	0.82	1.07	136	1.71	2.14	2.60	3.03
•		9.6	0.67	0,91	1.18	1.50	1.89	236	233	3 35
		10.8	0.74	1.01	1.31	1,66	2.10	2.52	3.19	<i>3</i> , 72
II n R		4,8	0.28	0.38	0.49	0.53	0.79	0.99	1.20	140
		$\mathcal{E}_{\cdot}\mathcal{O}$	031	0,42	0.55	070	0.89	111	135	1.57
Borcoma do	Mun	7.2	0.35	0,47	0.61	0.78	0.98	1,23	149	1.74
00 HU30 CMPUN- MYDHOÙ KOHOL OUKYUU	\mathcal{C}	8.4	0,38	0.52	068	0.86	1.08	1.36	1.65	192
οψκήσο		9.6	042	0.57	0.75	0.95	1,20	1.50	1.82	2.12
		10.8	0,47	063	0.82	1.04	1.32	1.65	2,00	2,33

34 Эквивалентные наприяни ст прдвесных кранов B DayHom Bornucks " "coduckompeho odeno, no we HUE питей подвесных неанов только в направлении הסתפהפא ההסתפיים В расчетах рассматривались две схемы подвески крана. для пролета 18м - двухопарный кран пролетом 1.=15 м; для пролета 24м-трехопорный кран 1.+1.=10,5+10.5м Схемы подвески кранов приведены на рис. 1. Варианты подвески кранов, отличающиеся от приведенных на рис 1, могут быть оценены по данным n. 3.5 a) ENORU CAM18- 9. CMM18-9 1500 La=15000 1500 5) BNOKU CAM24- Q CMM024-9 Ln = 10500 Ln = 10500 1500 1500 24000 Рис. 1 Схемы подвески кранов Нагрузки от кранов прикладывались к узлам нижнего пояса торчевых ферм, а для блоков пролетом 24м дополнительно к узлам верхнего пояса,

חחת יב מישטע שבם משמש של מישוני לים זאנים Эквивалентные нагризки поиведены в таб. 18 по всем элементам в зависимости от типа влока, количества мпонов на нолее и их гризоподъемности. Козффициент 1710511408 KOJUYECINKI KPOHOB NO NOJEE U UX PPYSONODI-EMHOCINO ЭКВИ В ЭЛЕНТНЫЕ НОГРИЗКИ ПО ЗЛЕМЕНТОМ 921 (MIC/M2) 5. NOKU CAM 18- 9, CAM, 18- 9. 1 KDAN Q = 12 2 KDQHO 0:17 774-75KM Smadus Sucm Sucmab Эквивалентные наг-306 omo Tpoquios DUBKU OM NOBBECHOIZ UHUUCK UM KUNEPEHKO

DOLES MYSTONE BYONG AND TOUGETHUE TODOжения коонов спледелялись по личиям вличния для четырех.

77.08.2040 g

UHUUCK UM KYYEPEHNO

по группам элементов за (кгс/мг) эк Энвивалентиные негозине от одиничных белтональных YEEMA NOUNOX MOPING edunuy cuns! по тригоменных в измен стоинтирных влочев. BAE MEHM NN Панные позде и предначночены для учета воздействий на SAONO 4310B Ľ! 165,0 65 45.1 1894 23,9 13.7 - покрытие моночельсов и задвесного мехналогического оборудован 212.0 182,2 25,7 12,6 8.5 56.0 В касчетах единичная вертикальная сила последовательно 5.0 954 247 8,9 2149 1.2 18.9 7.5 305 12,5 748 11.0 поикладываеть я во всех излах расчетной модели 5 22 15 52.7 529 176.3 12 Нимерация узлов принята по схемам на рис. 2 6 8,3 23,2 643 1519 223.0 31 17.2 516 64.6 a_{r} to 13 Эжвивалентные нагрузки от силы Р: Ттс по группам эленентов CDM 18-14,2 135 5.5 33.4 приведены в табл. 9. 23,2 1.2 43 45,7 CAM 18-9, CAMp 18-9 35 8.7 239 2.0 2.3 43 8.3 15,3 53.1 30.7 67 65,5 15.5 5,5 316 08 22,7 Примечание: 108 41.5 1245 1950 18,4 Сосредоточенная сила 09 213 11,1 997 1050 46.7 от подвесного кранавого 3.0 15,9 91 1860 43.5 123.6 70 40 оборудовония вузпах 15,7 19 61.4 1645 5 147 66.9 30,2 2,2 9.0 нижнего паяса не должна 12,4 48.0 13.4 1347 215 1.0 npebolulamo 9,0 TR 198 8.8 77.1 613 1010 53.0 8 97 97 54 133 59.0 132,2 2,5 1010 CAM24- 9; EAMGE 24-9 COM 24- 9 COM_{\$24-1} 47 102 604 38.2 2.0 03 10 106 11.5 07 313 4.0 15,6 30 27.0 2.4 2,7 19 2,9 143 2.0 35.5 2.0 141 6,5 299 1.5 2,4 14 12,3 48,6 25.4 90 15.8 774-76 KM EXEMBI HYME PAYUU YSNOB Cmadua Jucm Sucmos Эквивалентные нагрузки

306.0md Tpaqueno6

C. H.C. NAPUONOB

CMUNIN GESOURAS

от единичных верти-

KONDHOIZ CUN

за зывивалентные нагрузки от кре иных вентиляторов

На структурные блаки, не принынающие к наружным стенам здания и перепаду высот, данным выпуском допускается установка виброизолированных крышных вентиляторов КЦЧ-848 N8; N10; N12 заны возможного расположения вентиляторов заштрихованы на схемах рис 3

3000 3000 3000 24000

б) акало апарнаго узла

место установки

бентилятора

18000

Рис 3 Схема расположения крышных вентиляторов

в ресистах влакав на донамические воздействия использован известный метод оценки резонансных явлений - разложение по формам совственных колебаний

Рабаты проводились в два последовательных зітана на первом определены частоты и фаркы собственных колебаний плиты в целом и ге элементов. Сезультаты расчетов по семи низшим формам вертикальных колебаний приведены на даннам листе (см. ниже).

На втором этопе расчетов при варьировании вертикальной нагрузки построен спектр частот и из расснотрения резонансных эбщих колебаний структурной плиты апределены статические эквивалентн**ты** динаническим воздействиям крышных вентиляторов.

Спектр собственных частот вертикальных колебаний блоков инеет высокую плотность, поэтому с учетом погрешности апределения частот можно считать, что частоты спектра соккнутся в одну общую резонансную область.

Military of the same of the sa				
		77	4- 7	7KM
	 Эквивалентные	Стадия	Nucm	Aucmob
306 amd TpapunoB	 TROUDGIEHMHBIE	P_		4
C.H.C. NAPUONOB CALL	 HORDY3KU OM KD61W- H6IX BEHMUNAMODDB	יוועוו	W W	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Ст.инт безруков	HUISC DEHINOSIATIONO	чноос	ח .רוש וי	учерени

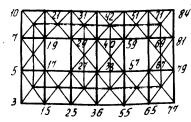
В светь в этом пасчет стоинтипных блоков пои динатических воздействиче оператической ть в предположений пезонансного режима колебаний си установке на блок адного вентилятона типа КЦ4-848 на ячейке, непосредственно

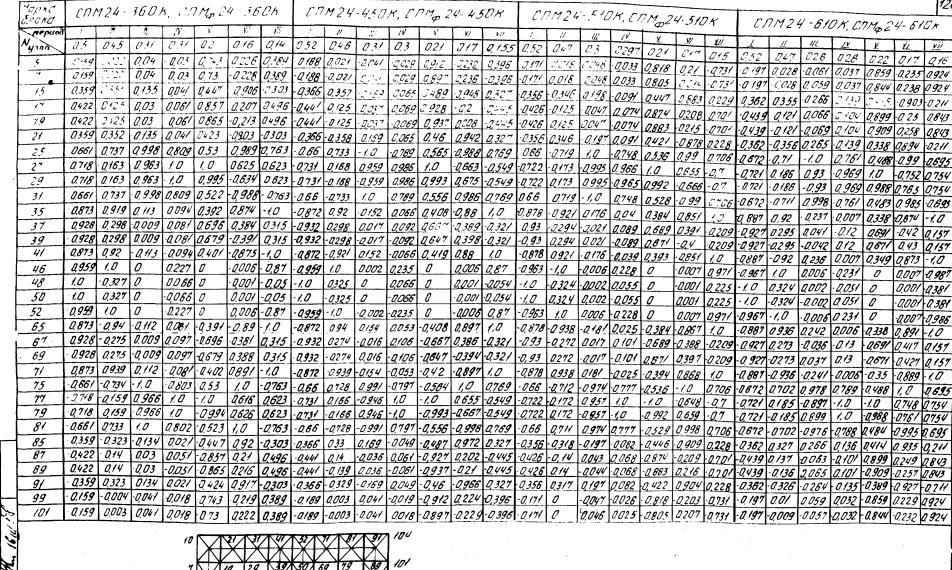
прины канощей к опорному уэлу блака, ввиду того, что резонансные режины могут иметь место по третьей и волее высоким формам налебаний;

третьей и солее сысоким формам нолебаний; норнативное значение эквивалентной стотической нагрузки снижается путем умножения на коэффициент 0,7

Эквивалентные нагрузки от одного вентилятора даны в табл. 10 для всех типов блоков и одинаховы для всех групп элементов Допускается установка на блок не более

двух вентиляторов N8 или N10 по одному на каждую половину блока или одного вентилятора N12.
При истановке на блак двих вентиля-


При установке на влон двух вентиляторов эквивалентная нагрузка от ихсовнестной работы определяется путем
учножения нагрузки от одного вентилятора
на коэффициент 1,6


Μαδλυμα 10.

	7110		7.
Варианты расположе- ния вентиляторов	Нармати ная нагр ке одного кц4-848	вная экви 193ка при 19 вентиля 19 14	валент- установ- чтора что/м²)
	N 8	NIO	N12
В пролете	40	50	60
Около опорного узла	28	35	42

При определении расчетных нагрузок коэффициент перегрузки необхадино прининать равным 1,2.

6.40												· · · · · · · · · · · · · · · · · · ·																113
8.00x 0		. (77M	(F 3)		11 (gr. /	8 3 0 1		079	-16 4	635,	7.7.Mg	18-4	104	C	AM 18	9 520	0.8,0	PMP	18-52	OK	(CAMI	8-63	OK, L	77Mp	18-6	3011
MAPPION				1ķ	V	V/	VII	į,	II.	111	ΙÝ	V	VI	ÿil	ĺ	11	Пį	ΙΫ	νV	VΙ	ÿñ	1	- []	jii	١٧	V.	ΫIΪ	VUI
yanar cen	(1775	0323	0173	0136	2124	2.15	2113	ς.	235	24	614	213	012	012	041	235	02	015	014	013	013	041	235	02	015	0146	0135	
5	0286	0.031	· 2		· (."	20/3	0,544	0.877	. 222	- 4 , 3	234	. "	5100	2001	2,37,7	20.1"	1.2	2118	0.761	18	0227	2.308	203	10	2253	├ ──	10	0296
_7	0286	0.032	איזני ר	0377	18	2224	0,544	0.61	0.23	0051	3365	7,7	J 20~	gaa:	2327	2.738	0,982		1		0.239	0.308	003	038	0,276	-	-1.0	0312
	0471	0.45	04:4	0079	0046	0047	0671	0 452	-0438	0445	0,967	-7216	0.03	0745	0,463	0449	0414	0.953	0,301	0,553	0047	0448	0.44	0.382	-2951	0371	0567	02
	0,568	0154	0,80.4	0075	0598	2344	2045	0.534	0156	0.871	0.063	0725	0326	0.306	0581	015~	0.815	0.02	0.554	0.332	2316	0.584	0.159	0799	00.2	0576	-0352	+
19	0,568	0.154	0821	0062	0598	-0321	0.045	0,554	0,156	0,885	0047	1.4	2.02	0.305	0.581	0.158	0,827	0.004	0554	0332	0.295	0,584	0159	0814	0,044	0.516	0352	0265
	0,471	0,451	0404	0.969	-0.046	-0.071	0.67/	-0,452	0.439	0.411	-0.956	-0.216	2058	0725	0,463		1					0,448	044	1		T		
	0.817	0,938	0.347	0.288	0428	0.986	0.974	0,797	-0,837	-0,351	0.328	-0149	0 983	10	0,792	0.831	0.333	0.473	0768	0638	297	0777	0.834	T	0716			
27	0,883	0271	0601	0.468	0.046	0.252	- 0.6	0,879	0,265	0.693	0,455	0,229	-0.28	0 672	0.881	0,259	0.619	0.401	0 273	2,485	0,384	0,887	0.254	0,582	0315	0.245	0,496	0524
29	0,393	0,271	0.579	0.481	0.046	0.266	- 0.6	-0.879	0,265	0,667	-0.471	0,239	0 299	0671	0.881	0.259	0.594	0,415	0273	0.485	0,409	0.882	0.254	0.555	0,328	0.245	0,498	-2576
31	0,817	0,839	0.359	0286	-0428	1.0	0.974	-0.797	0.837	0,366	-0.324	-0.149	1.0	0.997	0.792	0,832	0.347	0,468	0.765	0638	1,0	-0.777	0.835	0,339			0.704	
36	0,96	-1,0	0	0,024	-0.64	0.024	1.0	-0.943	-1,0	0	-0.024	0.987	0.024	0,891	1939	1.0	0	0017	-10	0,545	0.015	-0,928	-10	0	0.002	1.0	0.583	0.03
38	1.0	0317	0	0,005	0 353	0.003	-0,729	- 1.0	0.315	0	-0 <u>.004</u>	- <i>0,292</i>	0.003	-0954	-1,0	0.311	0_	3,333	0,128	084	0	1.0	-0,300	0	0	0114	0,9	0,001
40	1.0	0317	0	0.005	-0,353	-0,003	- 0,729	10	0,315	0	0.004	-0.292	-0.002	-0,954	-1.0	0,311	0	0.003	0,128	0.84	0	1.0	0309	0	0	-0.114	09	0,001
42	0,96	1,0	0	0.024	064	-0,024	1.0	-0,943	1,0	0	0.024	- <i>0,987</i>	- <i>0,025</i>	0,891	0.939	1.0	0	0017	1.0	0.545	0,015	0.928	1.0	0	- <i>0,002</i>	-1.0	-0.5 8 3	-0,03
55	0,817	086	0.346	0,315	- 0,428	-0. 963	0.974		-0,862	0,35			-0.96	0.997	-0.792	0,854	0,333	0,492	2,768	0.638	0.953	<i>0,777</i>	0,847	-0325	0,719	-0.792	אסדיָם.	0.918
		-0,244	0.601	0,465	0046	0,241	-0.6		- Q235	0,693			0.268	-0.67/	0.881			l .		0.485		.0. 08 2	-0,236	-0,582	0.315	0,245	0.496	-0.54/
			0,579	0,478	0.046					0657		0.229		- <i>0,671</i>						0,485	0,4	- <i>0,882</i>	0.236	-0555	0328	-0.245	0.496	0.588
61	0.817	0.86	0.359	-0,313	-0.428		0.974			0,366		0749	0.975				0,347		0768	0.638	0,984	0.777	0.846	0,34	-0712	0,792	-0.704	-1.0
65 67	0,47/	-0,42	0.434	1.0	-0.046	}· <u> </u>	0671			0,445			0.007				0,414			0 553	0.149	0.448	0.421	-0,381	1.0	-0331	-0.567	-0.435
69	0.568	0172	0,809	- 0,07 0.054	0.598		0.045	l	1		0,057	f		0,305			0.8/4			0.332	*		-0,171	-0199	0.023	0.516	0352	0,352
7/	0,568		0.821	0.034	-0.046	0313			0.173	0.885							0.827		0,554				·	0.814	l			
79		0,419	1.0	0.337	10	0.055	0.671				0.329			0745			1		2301			0448			- <i>0.986</i>			
81		-0,011	0983	0.354		174					0344			0,092				0306				0,308			0.258	0.817	-1.0	-0,295
0'	4.286	0,011	0,983	0.334	1.0	0,774	0.540	0,261	0,007	U. 901	0.344	1,0	0.18	0.991	0.307	0,013	0.982	0,322	2761	1,0	0,222	0,308	0.017	- <i>0,98</i>	-0.27	0.817	-1.0	0.31/

774 - 77KM

10c7

з Энтивалентное нагодани ет начествного участно настига, оспаслеженного вбель норотной сторонь влана

Эквивалентные чагрузки приведены в такл 11 по группам элементов Коэффициент сочетания принят равным!

Мобличным значениям соответствиют следую. щие расчетные условия волет консоли в = 0,25м, вертикальная ногрузка \bar{q} : 356м/с/м² Для конкретных условий эквивалентные нагрузки по группам за ментов могут быть вышислены с использованием донных тобя 11 по следующей формуле:

$$\mathbf{q}_{\mathbf{s}i} = \bar{q}_{\mathbf{s}i} \cdot \frac{(\mathbf{g} \cdot \mathbf{n}_{\mathbf{g}})(\mathbf{\delta} - \mathbf{o}_{\mathbf{s}} + \mathbf{a})}{\bar{\mathbf{q}} \bar{\mathbf{g}}}, \qquad (4)$$

где \hat{q}_{3i} табличнае значение для i-той группы, g-нагрузка от собственного веса настила и кровли;

'Р. - снеговая ногрузка;

в- фактический вылет консали (м), отсчитывается от оси поясного элемента;

П-коэффициент сочетаний нагрузак.

1 0 0												
Эквива	3. (NICINE)											
I	<u> </u>	M	ĬΫ	<u>v</u>	<u>W</u>							
2	13	2	52	0	0							
2	10	2	47	0	2							
	3×8∪8a I 2 2	2 13	I	Эквивалентные нагрузки потр	2 /3 2 52 0							

38 Эквивалентные ногоцаки ст консольного участко настиле, обсположенного вдоль длинной стороны влока

Эквивалентные нагрузки даны в тавл 12 для спедующих исловий вертикальная равномерно - роспределенная нагрузка на консоли ў = 356 кгс/м², вылет консоли в = 95 м, коэффициент сочетаний нагрузок п = 1. Пересчет эквивалентных нагрузон для конкретных условий проектирования осу-ществляется по формуле:

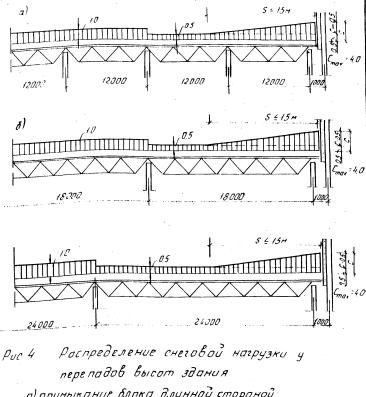
$$q_{gl} = \bar{q}_{gl} \frac{(g + nR)(B - 0.18)}{\bar{q}\bar{g}} \tag{5}$$

Обозначения приняты теже, что и в формуле (4)

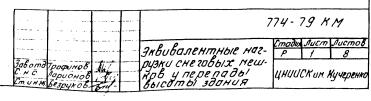
Μαδλυμα 12

Tun Snoko	3 หยืบยืด อภะพ	лентн. чентов	DIE HOZA	אלארט חני אין אין	וחצים ל	OM
	7	77	M	ΪΫ	<u>V</u>	Vİ
СПМ 18 - Q СПМ _Ф 18 - Q	47	26	- 29	79	135	114
CMM 24- 9 CMM 24- 9	47	28	- 23	99	125	146

-					774-	78 K I	Y
			 Эквивалентные	HT12 (7) /3K //	Стадия	lucm	Juemab
30h amã.	Tommunak	1	 om sarpykehuA	ונופה החול שוני	2	,	/
Cm unth	Трофинов Ларионов Безруков	My	SIONOB		UHUUCK .	UM KYY	н е ренко


39 дженвалентные нагрузки при изменении Схемы работы профигированного настила Изнечение сжемы работы ичастка настила по сравнению с сисчетными предпасы, ками јем п 44 пояснительной записки) приводит к песераспределению вертикальной нагрузки между крайними и средними балочными элементани верхнего пояса Ширина зоны, где настил работает по одно-либо двух пролетной схене, не должна превышать вм, m.e. 0 - 6 M

Эквивалентная нагрузка для всех шести групп элементов блока одинакова и определяется na graphyse


$$q_3 = \frac{Ka}{6}(g + R)$$
 (6)

где $g \cdot co\delta cmb$ енный вес настила и кровли;
 $P_m \cdot c$ снеговая нагрузма; $a \cdot w$ ирина зоны (м);
 $K = 0.06 \cdot \partial_x n$ блоков пролетом 18м;
 $K = 0.08 \cdot \partial_x n$ блоков пролетом 24 м.

310 Эжвивалентные ногрузки от снеговых нешнов у перепадов высоты здания и парапстов. Схены распределения снеговых нагрузок уперепадов высоты здания приняты по тобя. 5 (18) СН и П ії. В - 14 с учетом заключения отдела расчета сооружений ЦНИИСК ин Кучеренко Схепы приведены Ha puc. 4.

а) приныкание влока длинной стороной; б) тоже короткой стороной.

привальнымые нагрузни от снеговых мештов опредслены для перепадов высот здания от О,6 до 18м с шагом О,6м При этом учитывалась нагрузка от консольной части настила свылетом в = 0,73м

Максинальная ордината эпюры интенсивности снеговой ногрузки вычислялись по формуле $\rho_{\rm cm} = (C-0.5) \, \pi \, \rho_{\rm o} \, , \qquad (7)$

где Р_о - нормативная снеговая ногрузка; П - коэффициент перегрузки (по п. 5.7 СНи П. 11 - 6-74); С - коэффициент пережода от веса снегового покрово земли к снеговой нагрузке на

пакрытие, $Paccнатривались два варианта снеговых нешков: 1) <math>S = 2h \leq 15$ м при $C_0 \leq \frac{200h}{P_0}$;

2) S= 5h 4 15m npu Co> 200h (cm CHUNII- 6-74,

rde h- nepenad buscomus (M);

8-длина снегового нешка

Снеговая нагрузка прикладывается непосредственно к верхним поясам блока. Распределение нагрузки между поясами устанавливалось на основании предварительных расчетов профилированного настила как трехпролетной неразрезной балки с

Сесистные эквивалентные нагоцзки по годинам элементов от трецгольной части эпносы распределения козафициента С. т.е. от энфиения
(С-0.5) приведены в табл 13-для блоков, приныкаю-

щих к перепаду высоты колоткой сторочой; в табл. 14 - для блоков примы канощих длинной стороной. Козффициент сочетаний n=1.

Для определения эквивалентной нагрузки от снежных мешков у парапетов использовать СНиП II-6-74 и табл. 13 и 14.
В случае, если паксинальная ордината интенсив-

ности снеговой нагрузки в зоне мешка, С" атличается ат приведенной втабл. 13 или 14, для определения экви-валентных нагрузок реконендуется пальзоваться линейной интерполяцией. Роркула для определения эквива лентнай нагрузки для і-той группы элементов инеет спедующий вид:

ки, соответствующее интенсивности С и длине заны S.

774 -79KM

2

Μαδρυμα 13

	T		7	7	1 0	0	i emop	3770, 03		
nord	CHES DOUDH	Tepe- na d borcon	WU PU 10 CHE 10 6	C	no spy	INNOM		rpysko Pomob	7 8 Arc	1/1/2
			Mewno			11	<u>"</u>	<u>I</u> Ÿ	<u>v</u>	7,
		0.6	1.2	24	60	14	7	60	5	5
		<i>U, 0</i>	3.0	7	115	28	28	114	12	27
		12	2.4		185	43	40	183	19	36
		1.2	6.0		262	91	138	261	38	136
		1.8	3.6		230	59	70	227	26	80
		1.0	9.0		278	121	177	275	52	175
		2,4	4.8		252	75	195	250	33	105
		2, 7	12.0		286	153	138	285	57	191
		30	6.0		264	91	208	281	38	136
			15.0		292	174	159	289	58	202
	7.	3.6	7,2	40	271	105		268	44	157
401	-	2,0	15.0	, -	292	174	208	289	58	202
18-6		42	8.4		275	118	208	273	49	170
, 75		7, 4	15.0		292	174	182	289	58	202
CNYO		4.8	9.6		280	131	208	278	52	180
26		7,0	15.0		292	174	190	289	58	202
		5.4	10.8		283	142	208	281	56	187
		J. 7,	15.0		292	174	198	289	58	202
		6.0	12.0	-	286	153	208	285	57	191
		0. U	15.0		292 288		202	289	58	202
		6.6	132		292	161	208	286	58	197
			15.0		290	169	205	288	58	202
	,	7.2	14.4		292	174	208	289	58	201
		Donee	15.0		474	1774	1 200	209	58	202

Продолжение таблицы 13

ממקם האטו.	ะ หยา เกษายน	Nependa borcom	// ८००	С	348080	מחפאות ב מחחמות ב	ДЯ НОГР ЭЛ ЕМ ЕН.	043xa 9 008	B BKT	C/M2												
			KO		I	<u>″</u>	111	<u>iv</u>	Ϋ́	Ŋ.												
		0,6	12	171	55	10	7	53	5	5												
		<i>U, 0</i>	30		104	26	26	102	10	24												
		1.2	24	343	217	51	47	215	20	42												
		,,,	60		309	106	160	306	46	159												
		1,8	36		322	83	98	318	35	93												
			9.0		387	175	248	385	7/	245												
		2.4	48		352	104	149	348	45	147												
			12.0		400	212	275	397	80	268												
		30	6.0		369	127	192	365	55	190												
			15.0		406	243	290	404	80	283												
	-	3.6	7.2 15.0 8.4	378	146	223	376	62	219													
0,01	<u>"</u>	42			406	243	290	404	80	283												
66														385	166	241	383	69	238			
£ 28			15.0		406	243	290	404	80	283												
COM		48	9.6		391	182	255	397	73	251												
7			15.0		406	243	290	404	80	283												
		5.4	15.0		395	198	266	408	78	281												
			12.0		406	243	290	404	80	283												
		6.0	15.0		400	2/2	275	397	80	268												
		E.s	13.2		406	243	290	404	80	283												
		6.6	15.0		406	243	282	401	82	275												
		72	144														406	237	290	404	80	283
		น์ ออกยย	15.0					406	243	287	402	82	281									
		557.22	,0,0			1473	290	404	80	283												

	, ,	/ 7
-//	โดยชื่อเกมะหบะ กานอ์ภ	1.5
		_

	7		,	,	· · ·			Прода.	NHEHUE	παδρ									
Mapra 6.1040	1482	Penenad Corcom		C	2 x 6060 10 204	TABHME DOMA 3	HOR HOR NEMBHN	pyzra i	936 BM	[[, M2									
			Mewso	}	Ī	<u> </u>	I	iΨ	Į į	T I									
			1.2	12	46	11	7	46	4	4									
		0,6	30		88	21	21	84	11	21									
		/2	24	2.4	202	47	43	198	19	39									
		1.2	60	2,4	286	99	. 149	284	42	148									
		18	36	36	406	105	124	402	44	119									
		1.0	90	2.0	490	221	3/4	486	91	310									
	Ì	2.4	48		503	149	213	498	64	210									
		2.4	120		570	303	392	567	114	384									
	İ	3.0	60		526	181	274	521	77										
		3.0	150		581	346	415	577	115	405									
		3,6	72	40	540	209	317	535	89	314									
1010		3,0	150	40	581	346	415	577	115	405									
6.6	111	4.2	84		551	237	345	547	98	339									
8.		4,2	15.0		581	346	415	577	115	405									
COM		4,8	96					559	261	365	555	105	358						
00			150		581	346	415	577	115	405									
		5 /2	10.8											566	283	380	583	111	372
		5,4	150														581	346	415
		ca	12.0		570	303	392	567	114	384									
		6,0	150		581	346	415	577	115	405									
		6.6	132		576	323	402	573	115	393									
		0.0	15.0		581	346	415	577	115	405									
		72	144		580	338	413	575	115	401									
		50nee	15.0		581	346	415	577	115	405									
		12	2.4	16	176	40	38	167	16	33									
		1.2	60	^{יטי} ן	249	86	132	236	35	125									
	-	1.8	36	2/	376	96	117	357	39	106									
	<u>IV</u>	1.0	90	24	453	204	293	440	80	277									
		2.4	4.8	32	584	173	250	556	72	234									
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	120	12	663	351	463	675	130	432									

Prodonwence mabaugusts

Manka Si aka	CHS2 paion	Перепад высот	HO CHE	C	3 x 6 v 6 c	ក.១៩៩៣.ម មួយ២៨២	OA HATA PACMO!	143KO 9. 11110B	3. & KIE	/M2
			20B Mewro	i	Ţ	<u>į</u>	ŢĪ.	<u>√r</u>	ţ-	Ľ,
		.1.0	12	24.	68	9	4	37	3	4
		13	30	24.	132	20	18	71	4	26
İ		12	2.4		212	30	24	113	7	35
		/ 2	60		303	63	79	162	16	138
		18	3.6		285	42	41	141	9	66
		/ ('	90		321	90	104	171	23	175
•		24	48		289	51	62	155	13	105
			120	40	329	111	13/	234	29	190
		30	60		303	63	79	162	16	138
<i>Q</i> -1			150		335	129	158	278	33	198
	1	<i>36</i>	72		31/	73	91	167	19	157
aras	_				335	129	156	278	33	198
24-			84		317	84	100	170	22	170
			15.0		335	129	156	278	33	198
COM		48	96		322	93	106	173	27	180
00			150		335	129	156	278	33	198
		54	10.8		325	103	115	195	27	185
			15.0		335	129	156	278	33	198
	·	60	12.0		329	111	/3/	234	29	190
			150		335	129	156	278	33	198
		88	132		331	119	142	280	30	195
		72	150		335	129	156	278	33	198
		υ	144		333	126	152	274	33	197
		ર્વણ.∩૧૧૬	150		335	129	158	278	33	198

774-79KM

Продолжение таблицы 13

Марка блока	Сняг райын	Perendi horom	HO (HP?		אלנים הם נפנ	аленть Иппам .	IOA HOT PREMEH	pyska mob	931 6 KI	c/M2												
			MEWKO		Ī	<u> </u>	<u>iii</u>	<u>1</u> ÿ́	ν	<u>v</u> /												
		0.6	/2	171	61	Q	_3	34	2	_3												
			30	(11	119	19	15	63	3	24												
		1.2	24	3/3	248	35	28	133	7	41												
	ŀ	1, 2	<i>60</i>	21,7	355	75	93	190	18	160												
		18	3.6		369	58	58	197	13	93												
		1,0	90		448	125	145	239	33	245												
		2,4	4.8		406	72	86	217	17	14.												
			120	40		459	155	183	329	40	266											
		3.0	60		424	89	111	227	22	191												
<u></u>		İ	150		467	182	218	387	45	278												
	<u> </u>	<i>3.6</i>	72		436	103	128	233	26	220												
0101			150		40	40	40	40	40	40	40	467	182	218	387	45	278					
11			84														İ					444
N N		4, 2	150					467	182	218	387	45	278									
COMB		48	96		450	131	149	24/	34	251												
33		7.0	150		467	182	218	387	45	278												
		54	108		456	143	161	272	37	260												
		J. 7	150		467	182	218	387	45	278												
		60	12.0		460	155	183	329	40	266												
			150		467	182	218	387	45	278												
		56	13.2		464	167	199	364	43	272												
			15.0		467	182	218	387	45	278												
*		7.2	144		467	176	2/2	383	44	276												
	1	Sanee	150		467	182	218	387	45	278												

Прадолжение таблицы 13

Μαρκα δποκα		शिश्वा विकारकार्म	на снег		3ĸвиви 10 гру	D.N.E.HITIHU VIIN D.M	AR HAZI HIBNEHI	743×0 9,	¿ b Krc/	/ _M 2
			MEWNO	1	į	Ĩ	jii	įV	Ÿ	11
		0.6	1.2	1,2	53	7	4	28	4	4
	,	0.0	3.0	1, 4	98	14	14	53	4	21
		1.2	2.4	24	23/	33	26	124	7	38
		1, 4	6.0	2.4	330	68	87	177	18	148
	_	1.8	3.6	, ,	466	74	73	249	15	118
0101			90	36	563	157	150	30/	40	309
24	COM 24-	2,4	4.8		579	103	124	310	24	210
85 3	1	2,7	120	40	657	222	260	470	57	380
32		7.0	60	4.0	607	126	159	324	31	273
,		3,0	15.0		667	259	3/1	554	65	397
			24	,,	183	29	26	110	9	33
		1,2	6.0	16	262	62	81	158	20	126
	-	(0)	36		395	68	72	236	20	106
	ĪV	1,8	90	2.4	476	148	182	288	50	280
			48		615	129	153	368	39	237
		2,4	12.0	32	695	263	301	549	90	433

Moon	1140	1.

элвивалентные равномерно-распределенные нагрузки от снеговых мешков взоль длинной стороны блока

			//[[.	· L. (7700			
Μαρκά δησκα	Сн <u>е</u> г Район			C	no zpg.	лентн ппам :	ICA HOT INEMEN	pyska mab	936	
			Mewro			Ī	<u> </u>	ĮV .	<u>v</u>	ν̄̄̄̄
		06	1.2	24	22	11	-23	35	79	58
		00	30	7	47	26	-39	81	121	119
		12	24		73	38	. 65	124	2/5	188
*		1.2	60		138	90	5	268	204	302
		18	36	j	100	57	- 75	178	217	245
		1.0	90		184	125	78	322	289	320
		24	48		120	75	- 71	227	167	281
	1	2.7	120		216	150	129	304	206	329
		30	60		137	90	5	268	204	302
		L	15.0		234	187	155	260	222	336
	7	3.6	7.2	40	157	105	33	299	274	313
0,01			15.0]".	234	167	155	260	222	336
80		4.2	8.4		175	119	62	317	296	317
COM 18-		4.2	150		234	167	155	260	222	336
32		48	9.6		191	131	89	324	276	321
20			15.0		234	167	155	260	222	336
		54	108		205	141	113	318	236	325
			150		234	167	155	260	222	336
		60	120		216	150	129	304	206	329
		0.0	150		234	167	155	260	222	336
	1	6.6	13.2		225	157	141	283	188	332
-			15.0		234	167	155	260	222	336
		7.2	14.4		231	163	150	265	171	335
		donee	15.0		234	167	155	26 0	222	336

Προδολικέμυε παδλυμο 14

Mapra Bnora	Снег район	Перепад Высат	CHEZ	1	אנלטלאל חס זףע	ineumu Innam	AR HOLP INEMEH	143×10 9 3	L B NFC	/M 2
			MEWNO		Ī	<u>"</u>	<u> </u>	ıν̄	v	ν̈́
		06	1.2	17	21	10	-21	33	72	53
		0.0	30	17	43	24	-36	75	111	108
		12	2.4	34	86	46	-76	145	251	220
		1.2	60	5,1	161	106	. 6	315	240	354
		18	36		140	79	-105	250	302	343
			9.0		257	175	105	451	404	448
		2.4	4.8		158	104	- 99	318	233	394
		2.7	12.0	40	303	210	181	427	287	461
		3.0	6.0		192	126	7	376	286	422
	<u> </u>	5.0	15.0		328	233	218	364	230	469
		3.6	7.2		220	147	44	418	385	437
dol		4.2	15.0		328	233	218	364	230	469
-810			8.4		245	166	85	444	414	444
8,1			15.0		328	233	218	384	230	469
COM 10		48	9.6		268	183	125	453	387	450
00	,		15.0		328	233	218	364	230	489
		5.4	10.8		287	197	157	447	331	456
			15.0		328	233	218	364	230	469
		6.0	120		303	210	180	427	287	461
•			15.0		328	233	218	364	230	469
	٤	66	13.2		315	220	198	397	261	464
			15.0		328	233	218	364	230	469
		7.2	14.4		323	229	211	37/	240	468
		Bonee	15.0		328	233	218	384	230	469

						1/1	подолж	CHUC	ฑลอี้.าบบ	10114			
Mapua Facula				C	3หลิบชิส. กอ รถบู	08HMH0 100 M 3	A HOSPY	134 T. Jac 1706	Bricky	2			
	ŀ		MEWAO	1	Ī.	Ĩ/	ĨII	ŢV.	ν	<u>v</u> /			
		1	12		15	11 .	- 16	28	32	46			
		0,6	30	12	3,5	21	-32	63	91	83			
			2.4	24	80	42	-7/	134	233	204			
	1	1.2	60	4	149	98	5	292	221	,32 7			
		18	3.6	36	178	101	-132	316	382	434			
		10	9.0	26	325	221	134	570	489	566			
		24	48		240	148	-142	455	334	562			
		2.7	12.0		432	300	259	609	412	658			
		3.0	8.0		274	180	9	537	408	802			
	٠	3.0	15.0		468	332	311	520	329	670			
	l	3.6	7.2	40	314	210	64	597	550	624			
60M 18-9 50M 18-9	ĪĮ,	2.0	150	4.0	468	332	311	520	329	676			
		" 0	84		351	237	122	635	595	630			
		4.2	15.0		468	332	311	520	329	670			
5 28		4.8	9.6		384	261	178	649	555	644			
20			150	0					468	332	311	520	329
7.0			108		411	282	224	638	471	65			
•		5.4	15.0		468	332	311	520	329	670			
•		60	120		432	300	259	609	412	658			
		6.0	15.0		468	3.32	311	520	329	676			
	1	6.6	132		449	315	281	567	369	66			
		0.0	15.0		468	332	311	520	329	670			
		7.2	144		462	327	301	528	339	660			
		более	150		468	332	311	520	329	670			
		10	24	10	68	38	-80	112	198	185			
		1.2	60	16	141	88	5	242	1/2	299			
	-	10	36	2.4	160	95	-121	278	342	418			
	14	1.8	90	4.4	323	209	121	501	289.	544			
		2	48	32	290	117	- 163	50 3	373	879			
•		1	12.0	2.2	529	357	298	673	277	794			

1040	[462 [20004	Pepenad Sove em	40 CM		3หยิงยิง กล รุกษ	ANCHMA ANNAM	10.9 HOE 3.18 MCH,	,043×0 mob	931 EN	rcini2
			206 Mewro		Ž	1.11	jii	īv	Į.	yī,
	 	0.0	12		20	12	-24	46	160	78
		05	3.0	24	40	29	- 42	106	241	148
		12	2.4		64	43	- 72	161	431	239
		/ -	6.0	1	129	98	11	332	287	348
		18	36		88	63	- 84	229	427	302
		10	90		170	135	73	393	358	351
		0.//	4.8		111	81	-82	285	311	335
		2.4	120	1	199	151	122	374	331	361
		30	50		129	98	11	332	287	346
		30	150	1	211	178	146	317	275	365
	7	36	7,2		146	113	33	366	328	349
0101			150	40	211	178	146	317	275	365
33		42	84		184	128	58	387	448	349
24			150				211	178	146	317
$\tilde{z} \tilde{z}_{\theta}$		48	9.6		175	140	84	395	359	353
200		4.0	150		211	178	146	316	275	365
,		54	108		187	152	106	391	349	358
		3.4	150		211	178	146	317	275	365
		50	120		200	161	122	374	331	361
		0,0	150		211	178	146	3/7	275	365
		66	132		205	168	132	349	305	363
		00.	150		211	178	146	317	27.5	3,65
		72 U	144		211	176	142	326	284	364
		Sonee	150		211	178	146	317	275	365

774-79KM

^17,040	CHEZ	Pence	. · I.	· 	2.6.6	<u>.</u>			ο σε				
1.0000	ריסנים"	\$ 60000		1	Завивалентной ногоцака дай в кго не по группам элементов								
			19:LAC		17	11	Ĩ.	<u>A</u> Y	<u>v</u>	Ψ.			
		0.6	12	171	17	12	-24	43	145	68			
		0.0	30	l'''	36	27	-39	95	218	134			
		12	2.4	343	72	50	-85	188	500	277			
			60	1	149	114	12	386	334	403			
		18	3.6		118	88	-118	321	596	422			
		., 0	9.0		240	188	101	550	501	490			
		2.4	48		152	113	-115	400	435	468			
			120		275	226	170	524	463	500			
	3.0	60	1	1.9	137	14	464	401	484				
			150	40	293	249	205	443	386	510			
901	_	36	72		205	159	46	512	459	488			
24-	<u>"</u>		15.0		293	249	205	443	386	510			
× 20		42	84		228	179	82	542	495	488			
200			15.0		293	249	205	443	386	510			
SO		48	9.6		246	197	118	552	502	493			
			15.0		293	249	205	443	386	510			
		54	10.8		263	212	149	546	490	500			
		J 7	150		293	249	205	443	386	510			
		5.0	12.0		275	226	173	524	463	507			
			150		293	249	205	443	386	510			
		6.6	13.2		284	236	136	488	428	500			
			15.0		293	249	205	443	386	510			
		7.2	14.4		293	246	199	457	398	509			
		более	15.0		293	249	205	443	386	510			

Сродалжение таблицы 14	l
------------------------	---

Υορκο δ.οκο	Снег район	высот	LLIUPU HOCHE MELLIND	\mathcal{L}	Зквивалентная нагрузка дзевыст по группам элементов								
		1	<i>г.ш.то</i>		Ĩ	Ũ	ıı,	ĺν	<u>v</u>	יאַ			
		08	12	1.2	18	11	-21	3.5	123	60			
		4.0	30	/, <	32	21	- 35	81	179	109			
		1.2	2.4	24	65	47	-78	175	470	258			
401	<i>i</i> ii	1.2	60	24	138	106	11	360	311	375			
		1,8	3.6	36 40	149	111	-149	403	748	532			
7 X 8			90		298	238	126	694	632	618			
COM			4.8		215	161	-162	559	622	666			
CC		2.4	12.0		390	321	243	745	659	721			
	ī	12	2.4	16	70	42	-71	154	445	225			
	1 2		6.0		144	95	11	315	301	324			
		18	3.6	24	170	103	-141	373	745	490			
		7.0	9.0	2.4	320	223	115	642	676	569			

зн Проверна несущей способности блонов для условий строительства в сейсничесних районах.

341 Для некоторых, ноиболее распространенных вариантов одноэтажных производственных зданий с покрытиями из структурных блоков типа "Москва," с помощью специально разработанной программы были проведены проверочные расчеты на особые сочетания нагрузок

Учитывались вертикальные и горизонтальные (поперечные и продольные) сейснические воздействия Расчеты выполнены в соответствии со СНиП -7-81. "Нарны проектирования

Строительство в сейсмических районах" (м. 1982 $_r$) и "Рекомендации по проектированию структурных конструкций" (м.Стройиздат, 1984 $_r$)

знг Расчетные данные ограничены следующими уславиями:

- здания без мостовых кранов;
- -сейсничность строительной площоджи 7,8 и 9 баллов;
 - категории грунта [и][;
 - высота до низа конструкции п = 8,4 м
 - Влина сейсмического отсека L = 84 м / одна связевая панель)

- ноличество просетов пез
- масса квадратного четра стонового ограждения текрит:
- расчетная вертикальная нагрузка 10.20 Эхвивалентная равномерне-распревеленная
- на почавляче) д 4.630 кгс/м; количества подвесных жранов в промете 42;
- гризоподъемность подвесных кранов Q = 3.2 гг. З ИЗ Характеристики колонн и связей

приняты по серии 1423 3-8, Стальные колонны одноэтажных производственных зданий без

мастовых опарных кранов; выпуск 3 Стеновые ограждения из металлических товходных

панелей типа "Сендвич" по серии 1.432.2-17.

3114. В качестве расчетной мадели блока пакрытия принята шарнирно-стержневая систена с неразрезными элементами верхних поясов. Масса блока сосредотачивалась в узлах верхнего пояса, масса от подвесных кранов-в узлах нижнего пояса торцевых ферм, для блоков пролетом 24м-дополнительно в средних узлах верхнего гояса.

				74 - 80 K	
CHC	Трофимов Ларионов Бегруков	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Παθδορ δπακοδ πακρωπού для условий строительст- ва сейснических районах	Cmadus Sucm P 7 UHUUCK UM. F	листов В Кучеренко

в паснеток на огразонта поник содстинеськию нагошна колочне принять месть зашеновными в финдаментак и шарнинным присоединенными в сограмму вооку воски неговы поря годыватиль в вески негонн Рассматривалась полная расчетная модель воски панели прадольной раны прадольной раны прадольной раны

В расчетах учитывались пять низших форм и периодов собственных колебаний стоукт, често блока (приведены в п.3.6. лист 77 км)

3 11.5. Условные вертикальные и горизонтальные сейснические нагрузки для i-го тона собственных колебаний плиты определялись по формуле $S_{i\kappa} = K_1 K_2 K_{\psi} Q_{\kappa} A_i \beta_i \gamma_{i\kappa}$, (9)

где К. - коэффициент, учитывающий допустимые повреждения конструкций зданий; (К. = 0,25; 0,12);

 K_2 - коэффициент, зависящий от конструк - тивного решения здония (K_2 = 0,8 при h = 8 п; $\ell = 18$ м, где h - высота колонны, ℓ - пролет $\ell = 18$ м, $\ell = 18$ при $\ell = 18$ м, $\ell = 18$ м $\ell = 18$ м, $\ell = 18$ м $\ell = 18$ м, $\ell = 18$ м $\ell = 18$ м $\ell = 18$ м, $\ell = 18$ м $\ell = 18$ м, $\ell = 18$ м $\ell = 18$

 K_{ψ} - коэффициент, зависящий от диссипативных свойств конструкций (K_{ψ} = 1,5);

Ок = mg, где т носсо структурной плиты,

отнесенная кизги. В'. д испорение силь тежести, Я англитуда ускарения основания (-гинимается равной 0,1, 02 и 0,4 для расчетной сейстичности 7,8 и 9 баллов соответственно); В, коэффициент динатичности, соответствить

 β_i коэффициент динамичности, соответствую - щий i-той форме собственных колебаний (принимается для грунтов \bar{I} категории β_i = $1/T_i$ ≤ 3 ; для грунтов \bar{I} категории β_i = $1/T_i$ ≤ 2.7 , $r\partial e$

Т. период собственных колебаний блока по i-топу тону, см. лист 77 км)

 Q_{ix} - коэффициент, зависящий от расположения узла "К" и формы деформаций структурного блока при собственных колебаниях по i-той форме (для горизонтальной сейсмической нагрузки Q_{ix} =1);

3 11.6 Масса структурной плиты определялась со следующими коэффициентами сочетаний: для постоянных нагрузок п= 0,9; для временных длительных п= 0,8; для кратковременных п= 0,5. Грузоподъемность кратковременных П= 0,5. Грузоподъемность кранов и масса тележки учитывались ъ коэффициентом 0,3. Расчетные схемы и горизонтальные расчетные

нагрузки на каркас приведены на даннам

JUEME HUXE

774-80KM

Μαδλυμα 15

3 11.7. Результаты эточетов на осавые сочетоний воздейcmbud представлены в виде таблицы - ключа (табл 15) где пралоти здания, расчетной и вертикальной нагрузке расчетной сейсмичности, натегории грунта и другим условиям соответствует марка блока данной серии

В табл. 15 произведение понструктивных коэффициентов

d - K, K, Ku orpanuyeno peanonomu benuyunamu ana принятых расчетных условий: для пролета 184-24

€0,3 U d €0,375; AAA ADONEMO 24M-d=0,375; 3. И. 8. Если условия строительства и поражетры здания стличаются ст приведенных в п. 3.11.2. расчеты на сейсмические воздействия проводятся проектной организацией, осуществляющей

привязку. В качестве примера по сбору нагрузон ногут быть испельзованы исходные донные н табл 15, привей снише ниже на данном листе. 3.4.9. В случае недостаточной несущей

способности верхнего поясо торцевой фермы структурного влока ногут быть применены

распорки по оголовкам колонн. Распорки причинать [Boin 3) U 1424.3-7 (Boin 3) 10 CEPUAM 1.423.3-8

Подбор структурных блоков (вертикальное и горизонтальное сейсническое воздействия) Kamez Hanuyue Koa-CEUCHUY KOHEMP. 700-MODRO BROKOS коэфФ.

pacno 68011 1877 D-H CAMUCAMO 141 883 1008 KD 113 12 < 9 Des noob ME 18-300x 0375 12 <8 300 1 KPOH 03 0.375 1 KDOH :8 Res noah Ko 173 1.2 Te3 1006 NO 0.375 - 9 1 KPQH 18-410x 03 <9 410 1 KDOH 0375 < 8 03 2 KDAHA ≤ 9 2 KPOHO <8 0375 DES node NO. 113 1.2 -9 Res nod B. M.D. 0375 ≤ 9 1 KDOH 18-520K 03 ≤9 520 0375 1 KDOH < 8 2 KPOHO - 9 0.3 2 KDOHO 0375 - 8 Se3 nod6 ND 03 < g SE3 nodb. NO 0375 < 9 1 KPOH 18-830K 03 <8 630 0375 12 1 KDOH < 8 03 2 KDQHQ <8 2 крана 0.375 < 8 Des node KD. 0375 1.2 24.360 ≤ 9 360 1 RDQH 0.375 24-360m ≤8 без подв. кр 24. 450 0.375 < 9 450 1,2 1 KPAH 0.375 24-450K < 8

0.375 ≤ 8 24.510x 510 0,375 1.2 2 крана ≤ 8 0375 1.2 SE3 NOOB NO. 24-830 < 9 630 < 9 0.375 12 IKDAH 24-610M 0,375 2 крана FIL Занные тобл 15 распространяются на два PRUMEY AHUE:

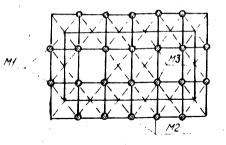
1.2

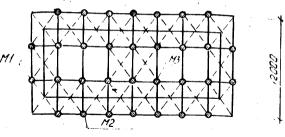
0.375

< 9

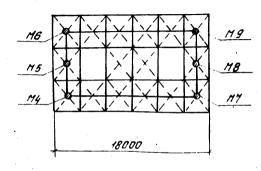
540

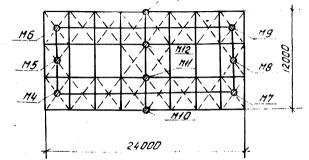
варианта конструктивного решения блоков


774-80KM

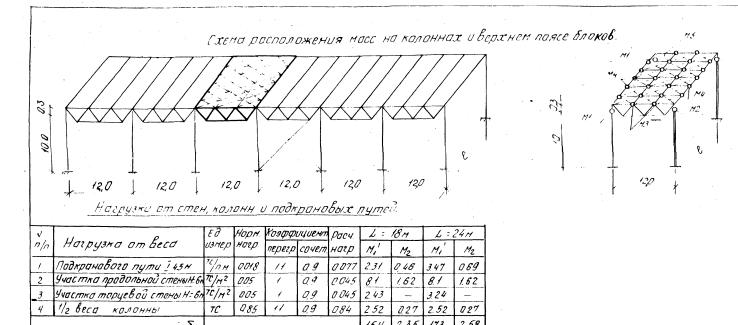

003 1008 KP

1 KOAH


24.540


верхнем пинсе впоков от ровномерно-роспределенной нагрузки

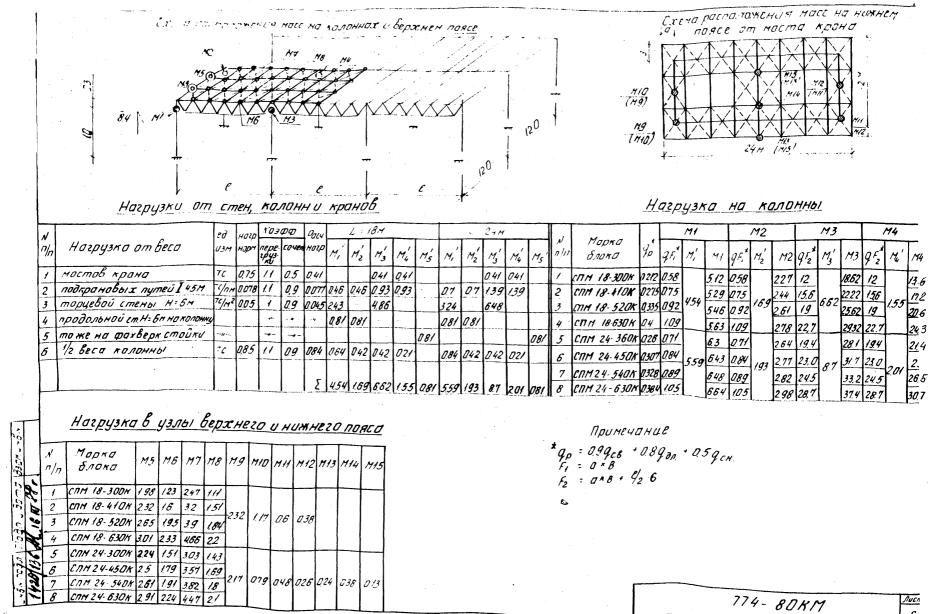
расположения масс на нижнем поясе блоков от крановой ногрузки


Расчетная нагрузка на нижние паяса блоков от подвесных кранов

						_													
	7	Npon		,	_	6 = 1	8 M						L	= 24	M				
	Wed.	х. 80 пранов	лэ Варианта	M4	M5	116	MT	M8	ng	M4	M5	NB	MT	MB	Mg	MO	MII	M12	H13
	7			232	_		06	038			079		048					0.13	
۰,	M	1	2	117	2,32	-	038			0.79	2/7		0.26	0.48		0.13	038	024	
	34		3			-		0.0		0.27			0.27	0.48		0.39	148	1.09	
1	//		+	5.53	161		127	0.52		507	118		0.96	0.38				019	
	(L)	2	2	139	4.6	107	044	107	038	1.02	439	0.65	032	0.84	0.26	0.16	0.58	056	014
	1		. 3			-				0.96			0.38			059	3.12	253	

Расчетная нагружа на верхние пояса блоков

N n/n	Марка блока	MI	M2	.43
1	CAM 18-300K	1.17	1.23	247
2	CAM 18-410K	151	16	32
3	CAM 18-520K	1.84	195	3,9
4	CAM 18. 630K	22	233	4.66
5	CAM 24-36 DK, CAM 24-360	1.43	151	3.03
6	CAM 24-450K, CAM24. 450	169	179	357
7	CAM 24-540K, CAM 24-540		191	3 82
8	CNM24-630X, CNM24-630	21	2.24	4.47


774- 80KM

-	TO UZPYSKU I	HU	NUJIUH	HOIUL	93/10/	Dep.	THELL	חטאני	<u> </u>
	Manra San	r A	90.	9 %:24	MI				

	Μαρκα δλοκα	90:	9 %:24			~~	A/2		
"		TC/M2		Mi	MI	M2	M3	M4	M.
	CNM 18-300K	0,212	46,4		61.8		1.17	1.23	2,4
	CAM 18-410K	0.275	60,1	,,,	75,5		1.51	1.6	3,2
_	CAM 18-520K	0.335	73,3	15,4	88.7	2,35	1.84	1.95	3,9
	CAM 18-630K	0.4	87,5		102.9		2.2	233	4.6
	CAM 24-360K	0.26	75,6		92.9		1.43	1.51	30
	CAM 24-450K	0.307	89,2	177.7	106,5	250	1.69	1.79	3.5
_	CAM 24-540K	0,328	95,4	17,3	1127	2,58	1.8	1.91	3.8
	CAN 24-630K	0.384	111.6		129		2,1	2.24	4.4

774 - 80KM

4 Методока посектипования покрытия

и Пессе девательность расистов при праектировании покрытия с применением структурных вленов. Мосьва" следующая

- в звисимости от вертикальных и горизонтальных нагрузок подбираются колонны, конпануются продольчая и поперечная рама каркаса с необходиными связями;

праводится расчет продольной и поперечной ран на тенпературный перепад, крановые и ветравые нагрузки; апределяются расчетные усилия в элементах каркас

- осуществляется проверка прочности и устойчивости колонн, при необходимости подбираются новые сечения и проводится уточняющий повторный расчет рам;

- для каждого случая расчетных условий в первом приближении падбирается марка блока, а затем осуществляется проверка несущей способности его элементов от различных сочетаний нагрузок и воздействий; если несущая способность элементов ниже требуеной, проверку необходима повторить, приняв болге тяжелый

- для сейснических районав по методике приведенной в п 3.11, приводится расчет на особое сочетание нагрузок и проверка несущей способнасти элементов.

42 в расчетных схенах ран наркаса стайни прининаются жестко защенленными в опорном узле и шарнирно связанными с ригелями.

Ригелями рядовой поперечной раны являются два крайних балочных эленента смежных блоков, ригелями

сядавой прадольной раны. Зва верхних пояса торцевых ферм спежных блоков Опирание ригелей на колонны в продольной и поперечной ранах прининается шарнирным 43 Расчетный перепад температуры для каркаса

определяется нежду тенпературой заныкания конструкции в халадное вреня года to и расчетной тенпературой внутреннего воздуха to ва (ст. сни П 11-6-44 и промы проектирования. Нагрузки и воздействия).

в расчете ран на температурный перепад необходино учитывать реапьную жесткость ригеля при растяжении- сжатии

44 Предварительный выбар марки блока осуществляется по тобл 16 в зависиности от снеговой нагрузки и подвесного кранового оборудования. Вслучае
сейснического района строительства марка блока,
подобранная по тобл 16. должна быть скорректирована
с учетом данных тобл 15.

Для блоков у перепада высоты здания марка нозначается по сункарной эжвивалентной ногрузке для \overline{N} группы элепентов. При этом должно выполняться следующее условие: $\rho \geq q + \rho_0 + \sum nq_{s,n}(n(c/n^2))$ (10)

	7 61 = 173,1 9/11/
	774 - 81KM
зав. ота Трафинов	Методика праекти- р 1 1
Сн.с. Ларионов	рования покрытия инииск ин кучерень

*) Данные тобл 16 распространяются на два варианта конструктивного решения блоков (типа СПМ и СПМ»)

где р - несуща я способность блока (табл 2);

д - собственный вес блока, вес технологического оберудования, приведенные к единочной площади, и вес кровли с настилом;

Ра- равномерно-распределенная снеговая нагрузка при С = 0,5;

 Σ nq, - супна эквивалентных нагрузок для $\overline{\mathbb{Y}}$ группы эпенентов с соответствующими коэффициентами сочетаний ... π ".

43 Проверка несущей способности блока осуществ-

а) с использованием данных пл 31 и 32 по кождому ј-тому элементу блака апределяются эквивалентные нагрузки от сжимающих усилий в ригеле กลอสิอภาษาอน แลอการสะบางอน อสกา

б! в случае, если влак прины кает к наружным стенам по ванным п 33 поэлементно определяють ся аквивалентные нагрузки от ветра,

б) при наличии подвесных кранов соответствующие эквивалентные нагрузки определяются по данным п. 3.4:

г) из тоблицы 17 (сп. лист 81 км) выбирается схема соответствующего блока с расчетными несущими

способностями элементов и по каждону — томи элементи определяется предельно допистимоя вертикальная равномерно-распределенная

HOLDUSKE TO ERRHUNE $[g_i] = \frac{[Q_i]}{V_i} - \sum_{n} q_{2i},$

где [Qi]-расчетная несущая способность

 Σnq_{3j} - суммарные эквивалентные ногрузки по п п " σ " -, z" с соответствующими коэффициентами сочетаний

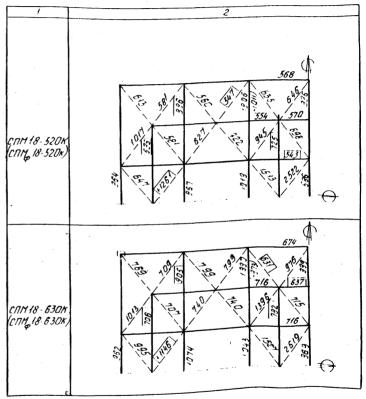
коэффициент ани сочетании Уп поэффициент надежности по назначению.

Принечания

Принечания

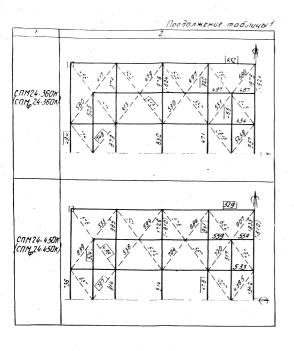
Принечания

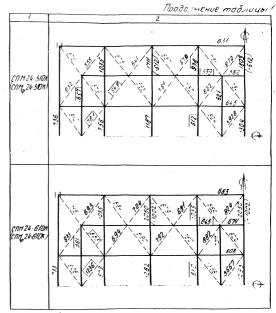
Принечания


Транные табл 17 получены с когффициентом надежности
по назначению у : 1

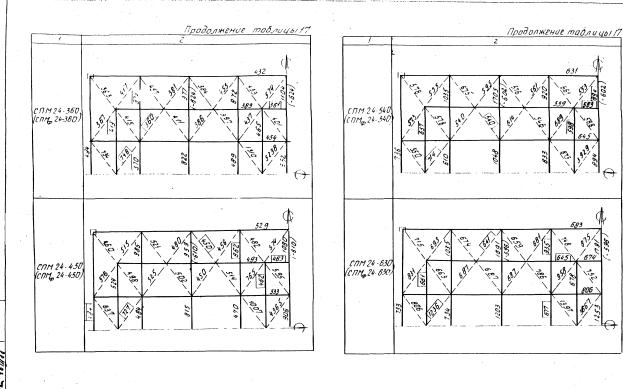
гранкой выделены эквивалентные нагрузки [Q] определяющие несущую способность группы эленентов [В] .

З. Несущая способность неразрезных поясов (группы] ий)
приведена и проверяется только в наиболее нагруженных панелях


350 4 340


Продолжение таблицы 19

774-81KM


3

774-81KM

Aucm 4

774-81KM

д) Для консоли из шести групп элементов устанавливается слосов ляющея ченимальная вертикальная эквивалентная нагрузка

[9,] = [9,]min /12

е) По группам проводится суммирование эквивалентных нагрузок Затем суммарные эквивалентные нагрузки сравниваются с допустимыми При этом должно выполняться условие

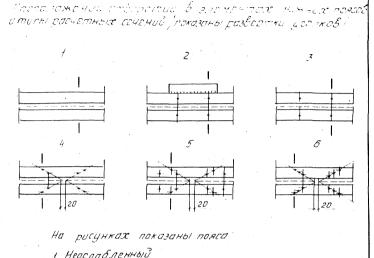
 $\Sigma n q_{3i} \in [q_i]$ (кіс/н²) (13)

Для крайних балочных элементов верхнего пояса (группа элементов I), в блоках, не приныкающих к переподу высаты здания, необхадино учиты вать дополнительное ограничение по величине погонной поперечной нагрузке q_n

qn = [qn] /mc/n), (14)
1де [qn] допустиная погонная нагрузка на пояс;
определяется в зависиности от типа блока

πο παδλ./8.

Величина q_n определяется расчетон как балочная вертикальная реакция в крайней опоре настила. При этак необходино учитывать фактический вылет консоли величину q_3 от равнотерно-распределенной снеговой нагрузки в сочетании с эквивалентной нагрузкой от снегового нешка для эленентов $\bar{\mathbf{Y}}$ группы следует принимать равной нулю.


ж) При несовлюдении условий (13) или (14) прининается более тяжелой влок и повторяются расчеты па пп "2"-"е"

Παδρυμα 18

Допустин. балочные э	ые поперечн лементы вер	ose Harpysku Oxhero Nogca	HO KPOUHUE
Бла	оки, пролети	OM 18 M.	
CNM, 18-300K	CMM, 18-410K	CMM/00/18-520K	ENM ₍₀₎ 18-630K
0,48	0,58	0.76	0,92
	ו מוח שתסקח		
TM 24-360	CMM, 24-450	CAM, 24: 540	CAM, 24-630
MM/10124-360K	CMM/P) 24-450K	CMM,00,24-510K	CMM(4) 24 - 610A
0.51	0,67	0,85	0,94

з) Осуществляется проверка несущей спасобнасти эленентов на асобые сочетания нагрузок с учетом вертикальных и горизонтальных сейстических сил по нетадике, приведенной въз 11
настоящего раздела

The same representation of the same of the The while a constitute of the second of the action of the second 420,000 no root 8509 72* [14846F CHUE COOK 20,900 RU, ME/OM2 UEBNIT MEDM L80 + E 2129 19017 2400 28.04 L80 ×6 28,96 190×7 37 98 1.100 ×8 48 17 3250 414 L125×8 60 82 55.49 L140 x 9 76.26 7108 61.56 L160x10 93.96 8930 7938 L180x11 116 09 112 69 101 41 3150 140, 95 1200×12 138 72 126 41 114 11 L200x14 163.39 160 68 146.32 131 67

2 Ослабленный и усиленный накладкой 3 Ослабленный двуня отверстиями

4 Ослабленный четырьня отверстияни 5 Ослабленный четырьня отверстияни

л ислаиленный четырьня отверстияни в Ославленный шестью отверстияни

774-82 KM

δλοκοβ ποκρωπυΑ

Завотд Трофинов С.н.с. Ларионов Ст.инж. Безрухов Расчетные несущие р 1 5

ЦНИИСК им Кучеренко

1.50 TO U	18400000044 180 HOD 181400 1014	HIZ YEE HONDAHA IC 43	. (оскосрв из оди- ж одной пол- в по ГОСТ
Сечение	Cacye TIH DE Canpa MuS- NeHUE CMan	בער אם,	501100 08840 0	pacnon	EDUHEH. DWEHUU	UE 1700 601706	CB.40 - UX KD1-60	Сварног
2): - MC	Ry Ry, KIC CH2	MM	1	2	3	4	5	००९८० मध्सपट
1.67 × 5		30	4.6	7,82	9,64	-		
L63 × 5		35	4,6	6,98	8,61	-	,	11.04
L70×5	•	30	4,6	7,82	11, 73		***	
L/U * 3	2400	35	4.6	7,82	10,77			12,35
180×6	3550	35	5, 52	9,38	14,08	-	_	
100,0		45	5, 52	9,38	14,08		-	15,88
190×7		45	5,97	10,74	16,11	21,48	1 -	
L 30-7		50	5,97	10,74	16.11	20,87		22, 14
163×5		30	5,97	10,43	12,21	_	_	
20973		35	5,97	8,85	10,92			14,94
170 x 5		30	5,97	10,74	14,96			
170 49		35	5,97	10.74	13,66	_	_	16,72
180×6	3250	35	5,97	10.74	16,11			
200-0	1 7 500	45 5,97 10,74 16,		16,11		_	22,86	
190×7		45	5,97	10,74	15,11	21,48		
		50	5,97	10,74	16,11	21,48		29,98
1100×8		50	5,97	10,74	16.11	21,48	26,85	
2,000		55	5,97	10,74	18.11	21.48	26,85	38, ~ 3

--- SUREMA (MC) NACMAHUMAIX DOGE -

c асчетная несущая способность/те) растянутых роже и раскособ из одинечных равнополочных уголков по гост 8509-72 * присогойненных адной и двумя полками на сварке

	Росчетное	โ ชื่อ ฮุก	oe coedu	HEHUE
Сечение элененто	сопротивле- ние ст али Ви	א מפח חפת שם א	KPENNE 4UE 2 M. P. NOSI- KANU	крепление на од- нон конце 1 го пол ной на второн 2 гг
	Mrc/cm2	Yo = 275	Yc = 0,9	8c=0.8
L gox Y	2488	22,14	26,57	23.62
1 90x7		29,98	35,98	31. 98
1 100×8	12.50	38,03	45,63	40.56
125×8	3250	48.02	57.62	51.22
1/40×9		60,21	72,25	64 22
1180110	3150	74.18	89,02	19.13

1 Дианетр отверстий под болты/21 + 0.6 / мм

2 **Мабличные значения, стоящие с**права от жирной линии получены из расчета на прочность растянутых одиночных уголков, а стоящие слева из расчета болтового соединения Расчетная несущая способность те 1 см стьм раскосов из одинечных уселков по 1967 66.09 72.8 насти 66 по 1967 66.09 66.09 насти 66 по 1967 66.09 год насти 66.09 поможной точности класса прочности 66.09 год 66.09

Сечение	Сасчетное Сапсативле -	50Ami	Балтовае соединение при количество							ве болтов иих разнещение, шт					
3 NEMCHMO	HUE CTQAC	Однорядном							Дву.	XDAD.	H0 ~			COE BU HEHUE	
	Ry, MECLEME	PUCKO, NA	/	2	.7	4	.5	PUCKO, MM	6	7	E	9	10		
L70×5		30,35	2.64	2.91										2.91	
L 80×6	2400	35,45	4.66	5,10					-					5,10	
L90.7	- Annual Control of the Control of t	45,50	5,97	8,06		e en est de la								8,06	
170 +5		30,35	2,7/	2,24					3 * * * * * * *					2,94	
180×6		35,45	4.69	5.12										5,12	
190 17	1250	45,50	5,97	8,10										8,10	
L 100 x 8	3250	50,55	5,97	10.74	11.74									11.74	
1125×8		60,65	5,97	10.74	16.11	19,93								19,93	
1140×9		65,70	5,97	1074	16,11	21.48	26,85	50,100	27,81					27.81	
1160×10	3150	75,85	5,97	10.74	16.11	21.48	26,85	50,100	32,22	37,59	39,54			39.54	
1180×11		85,95	5.97	10.74	16.11	21.48	26.85	50,100	32,22	37.59	42,96	48,32	53,17	53.17	

Тобличные значения, стаящие справа от жирной линии папучены из расчета на устойчивость для сжатых одиночных уголков, а стоящие спева - из расчета болтового соединения.
| Для болтового соединения результирующим является расчет болтов на срез |

Ресчетная чесци, а « слесовнесть те сматых верхних поясов (распорок) из равнелогочных уголков по 1001 верх денетом прочности мед норнальной точности класса прочности за по 1007 1759-70* Гасчетное сопротивле-Caduye плащадь хагарици Сасчетная CEYEHUE SKOCMO PULTO HUE CHIANU Ry= 3250 MT/CH HUE EMANU Ry = 2400 Arlow CEYEHUA ลิกแผส . UHEDUUU פאח עבחם-Amin Чесущая спо-собность М, тс 3.0- ma MM F, CM2 Buy padomo lef, cm B COEBUN La. : 7 L 80 × 6 35, 45 9.38 299 1.58 075 3 18 188 0185 3.12 0.139

168

151

126

0.229

5,07

0 175

0 209

0, 293

5, 25

7 45

14.07

2

3

1.78

1.98

2 49

Расиетная несущая способность/mc/ сжатых верхних поясов торцевых ферм из одинэчных равнополочных уголков по ГОСТ 8509-72*

299

299

314

1 90×7

L 100 x 8

L 125 x 8

45.50

50,55

60.65

12 3

15.6

19.7

075

0 75

0.75

Ce48 110 H	HUE	בסחקסחטאח	Площадь сечения Я, см²	Κο϶φφυυμυ- Εμπ ΥΕΛΟ- Βυύ ραδοπь Χε	DAUNO Ces:	Радиус инер ции ^С _{тіп} , см	Γυδκος πο	Коэффициент продольного изгибо Ф	Несущая способно элемент Д, ТС
1 140			24,7	0.95	349	2,79	125	0,298	22, 73
1 160			31.4	0.95	349	3,19	110	0.397	37.31
1180	xH	3150	38,8	0,95	349	3,59	97	0,479	55.62

774-82 KM

$2004 \, \mathrm{cm} \, \mathrm{dop}$ негущая спясобность 700 ежатых берхних распорон из парных равнополочных уголков $1007.8509-72^{\frac{1}{2}}$ прикрепленных болтони M20 нормальной точности класса 5.6 по $10007.1759-70^{\frac{1}{2}}$

CEYEHUE	900	Carunde	17.200 17.200 18.000	unc aan-	Paduyc	TUBKOCME	Ry = 24	O E KIC/CM²	NEHUE EMBAU	CMUSIU R		IBACHUE IC/M2	MUH. KOD. B BODON
элемен ПО	^/ 4/		nabomb L		is, cm	À	โบอีหอดูสาธ กลุบ 5ed ภิ	4 8	COOCOOHOCOO N, TC	โบชิหตุะกาย กอน 8 ย ส - ว้	Se.	Несущая спасроность N, TC	Wm '
ji	30		225	310.4	194	160	5,4	0160	447	6.3	0136	518	_
2163+5	35	12,26	C 95	310, 7	1.34	100	5.4	0138	380	53	0117	4.43	2
	50		- 46	2/0/	0.46	1	49	0195	610	5, 7	· 0.166	7.03	·
2t.70×5	35	13,72	0.95	310,4	2.16	144	49	0165	5.16	5.7	0.144	6.10	2
<u></u>	35		000	3/0/	214	40.0	42	0,212	9.07	49	0.192	1112	2
21.80 .6	45	18.76	0.95	310,4	2.47	126	4.2	0.165	7.06	4.9	0.147	8.51	~
JL	45		200		2.77	112	3.8	0.202	11 33	4.4	0.182	13,82	2
2 L90×7	50	24.6	0.95	310,4	2.77	""	3.8	0.177	993	4.4	0.162	12,3	_

нижних поясовиз парных равнополочных уголкав (крестовае сечение) погаст 8509-72

	Сечение поясо	Pacyemnoe conpomubnenue cmanu Ry x(c/cm²	Несуща я способность элемента $N = RR_y X_C (X_C : 0.95), тс$
]	2 180×6	2400	42,78
	2 190x7		58.08
-	2 80 16		57.92
,	2 L 90×7		75,96
	2 J00×8	3250	96.34
7	2 L 125×8		121.64
1	2 140×9		152,52
• 1			

раскосов из парных равнополочных уголков (тавровое сечение) по 10078509-12, присоединенных на сбарке

Сечение элемента	Pacuemnoe conpomubnenue cmanu Ry nsc/cn²	чесущая спасобность эленента N= ARyXc 4(Xc = 0.95), то
2180 46	2400	19,49
2190×7		29,14
2 <u>/</u> 80×6		21.49
21 90×7	32 <i>50</i>	33,26
21100×8	,	47.86

774-82KM

РАЗДЕЛ V

ПРИМЕР РАСЧЕТА КАРКАСА ЗДАНИЯ И ПОДБОРА МАРОК БЛОКОВ ПОКРЫТИЯ

(4) +			· · · · · · · · · · · · · · · · · · ·		u, c	47 4	3 2	426	, 7,	, <u>Z</u>	<u> </u>	
	š			,	-	7	7	7		~	,	ક
(A)	رن	a	Ÿ	9	4.	9	4	٥	4	ريا	Ľ	5
34004	15	17	18	17	18	17	18	150	18	٧,	15	15
2,000	2	1	1	1	1	1	1	1	1	1	1	ī
9) 000072	19	#	10	11	10	11	10	11	10	11	10	5
(a) (b)	13	12	12	12	12	12	12	12	12	12	12	ĮΨ
(*)					1200	10× 1	2= /44	y acc				
((3	6	5		9		9 6		3 (
•	ø		Ucs	x 00	Hble	e 7	a HH	61E				

Условия площадки строительства: Bec cheroboro nompobo $P_o^H = 150 \text{m/c/m}^2 \left(\frac{1}{N} \right) paioh)$ Скоростной напор ветра $q_0^n = 78\kappa rc/n^2 (\bar{y} район)$

Mun HECMHOCMU - A

Многолетняя средненесечная теппература:.. января $t_i = -24$ °С, июля $t_{\bar{v}_{\bar{i}}} = +15$ °С расчетная воздуха: наружного tx = 40°С; BHYMPBHHERO t 8x = 13,8°C

	_		
1	Cemra	KOJOHH	

12×24M 2 Размеры здания в плане 144.1440

Конструктивные данные

3 высота до наза констручции покрытия - 84 м

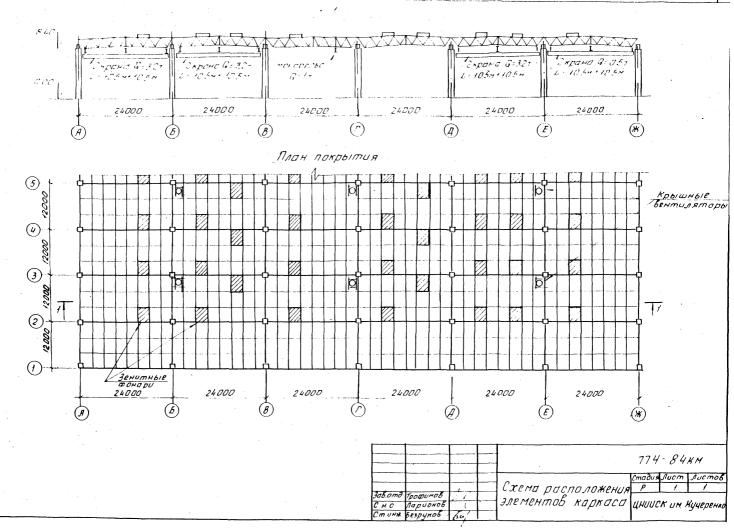
и Стайка факверка стальные с шогом вы

5 Стены- трехслойные панели типа "Сэндвич"- q=20кг/ m^2

6 Прогоны стенового ограждения стальные посерии 1432 2-17. 7 Утеплитель покрытия жесткие нинераповатные плиты

h = 100MM, Y = 250 Kr/M3. в На покрытии предуснотрена установка зенитных фа-

Hapeu (ch sucm 84 KM)


9 Крышные вентиляторы КЦЧ-84-6 ЛВ устанавливаются по одному на блок примерно с шогом 24м вдоль здания и 48м-DODEREK BOAHUA (EM JUEM 84KM)

Перепад высаты h = 12м. высота парацета 0,6 м. 10 вдаль оси, 13 цех приныкает к существующему зданию Поптаянная нагризка на пакрытие (кгс/мг)

//	UCITOSAALIS AULPYSKU AU TU			
NN 11/11	Вид нагрузки	Нарма тивн нагрузка	Коэффиц перегрузки	Расчетная нагрузна
1	COOCMOCHHOIU OCC OJOKO	31	1,05	33
2	Профили рованный настил H15- 150-08	11.2	1.05	12
3	Пароизоляция из 1 слоя рубероиж	4	12	5
U	4 OTE O ALLITTE AB	25	12	10

четырёх слойный водойзоля-ционный ковер 12 19 Гравийная защита на билим-20 13 26 HOU NOCTOURE - 10 MM UMOro 109 125

Cm HC	Лари онов Безрук ов	K.		· · · · · · · · · · · · · · · · · · ·	ЦНИИС	KUM KY	14ерена
308 om 8	Τροφυνοδ		Общие	данные	Emađus P	Sucm	SUCMO
					774-		·

Back

Презвостемьных подбой влонов

В по ях , Г , Д "U , 12 - 15 - ВЛОН СЛМ 24 450 (по табл 16 листв/нч). В ас ях , Г , Д "U , 12 - 15 - ВЛОН СЛМ 24 540 ; со ф.ле(10) — — мет миств/нг 35 + 02 + 05 x 225 + 63 + 154 - 45 миств/нг 540 мгс/нг 2

в ссях "А" - "В" и "А"- Е" (кроне влаков у перепада высаты) влак СЛМ24-450К (по табл. 16, лист 81 км):

в осях "Я"- "В" и "Д"- "Е" у перепада высоты - СПМ24-510К. в осях "Е"- "Ж"- блок СПМ24 - 450 (по табл 16, лист 8/км);

в осях "Е"- "Ж" у перепада высоты - влок СПМ24-540 35+92+0,5×225+63+154 = 457 кгс/м² 4 540 кгс/м²:

в осях "В",-Г"- блоки ряд гвые СПМ 24-450, ч перепада высаты СПМ 24 -540;

Маркировка блоков повидам загружения смлист 83км

Результаты выбора колонн: Коланны железобетонные индивибуальные: среоняя -

 $EJ_{max} = EJ_{min} = 14200 \, \text{гс м}^2$; крайная - $EJ_{max} = 8020 \, \text{гс M}^2$, $EJ_{min} = 1600 \, \text{гс M}^2$; связи - 24 80 х в

Расчет поперечной рамы каркаса Расчетный перепад температуры для холодного времени года

 $\Delta t^{x} = t^{ex} - t^{x}_{o} = 13.8 - (-16.2) = 30^{\circ}C$

Нагрузки на рядовую рану от ветра: $W_1 = 3.28 \times 0.8 \times 2 = 5.25 \text{ тс}$ нагрузка с 12м приблуженно $W_2 = 3.28 \times 0.6 \times 2 = 3.94 \text{ тс}$ (см табл. 7, лист 74км) $W_3 = 0.42 \text{ тс}$

Apridentine yourust purere care

PACHEMHOR CIENT

om nepenada mennepamypo/
05 10 13 13 10 0.5

124000 | 24000 | 24000 | 24000 | 24000 | 24000 |

(A) (B) (P) (A) (B) (B)

Максимальная продольная сила в ригеле поперечной рамы а) для влока, примыкающего к наружной стене (васях "Я", \mathcal{E} " и " \mathcal{E} " "Ж") \mathcal{N} = [-44-0.5] ~ 0.9 = -4.4 ~ 0.5 ~ 0.9

8) 819 OCMBNOHOLX SNOKOB N= (-29-10) x 0.9 = +3.570

Onpedenence younus cmadus nucm nucmos

Jasamo Ticar 108
July Unodoop Inemenmos P 1 19

CTHC Sapraca UHUUCK UH KYVEPEHMO

Timur Sespynos 6.

Расчет прадольной рамы каркаса

Нагоизки на редовине пами от ветпа I_V , 328 г 08 г I_V - 1051 с нагоизка с 24м приближенно I_V , 328 г I_V - 1051 с нагоизка с 24м приближенно I_V - 1051 с нагоизка с 104 г I_V - 1051 с нагоизка с 104 г I_V - 1051 с нагоизка с 104 г I_V - 1051 с нагоизка с 104 г I_V - 1051 с нагоизка с 104 г I_V - 1051 с нагоизка с 104 г I_V - 1051 с нагоизка с 104 г I_V - 1051 с нагоизка с 104 г I_V - 1051 с нагоизка с 104 г I_V - 1051 с нагоизка с 104 г

U32Uбная жесткость колонн ЕJ=218t

от ветровой нагрузки

-103 -108 -109 -108 -112 -44 -46 -49 -10 -08 -05 -025

12000×12=144000

12000×12=144000

12000×12=144000

12000×12=144000

12000×12=144000

12000×12=144000

12000×12=144000

12000×12=144000

12000×12=144000

12000×12=144000

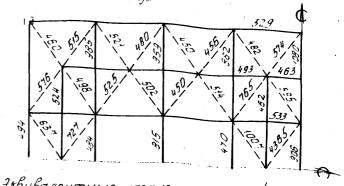
от перепада тенпературь!

10 18 24 27 -75 -78 -78 -78 -27 -24 -1.8 -1.2

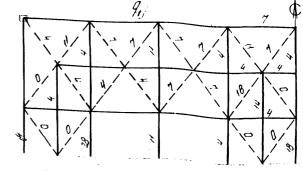
12000 x12 = 144000

1 (2) (3) (4) (3) (6) (7) (8) (9) (0) (2)

Максимальная продольная сила в ригеле продольной рамы: $a/\partial n$ в влока примыканощего к наружной стене (в асях 1",2") N=(-10.3-1.0) 0.9= -10.2τ c; в) для блока у перепада высот N=(-0.25-1.0) 0.9=-1.1 τ c;

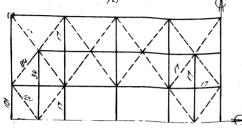

6) для остольных блоков N= (-11,2-7,5) 0,9=-16,8 TC

поветь несищей спесовности
менентов блоков

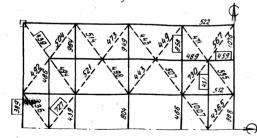

тип в Блоки в осяж "Г"и,Д" и 2" - 12" без подвесного кранового оборудования гооберяем блок СПМ24460
1 Чесищая способность элементов из тобл 17, лист 81км

[д]

529



2 Эквивалентные нагрузки от силы $N_1 = -3.5 \text{ те }$ в ригеле поперечной раны (по тобл 3, лист 74 тм)



774-85KM

926 ригеле продольной раны (по тобл 4, лист 926

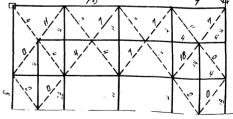
ч Несущая способность элементов с учетом ранных сил $[q_j]$ = $[q_j]$ - q_{ij} - q_{2j}

выделены эжвивалентные нагрузки по стержням, определяющие несущую способность группы элементов $[q_i]$. $[q_i]_{min}$ = 389 кгс/м² ([i]группо)

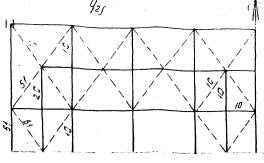
 5 βερπυκαπομοίε μοιρίζικυ μα δλακ

 cοδεπβεμμού βεε δλακα 28,3 '05=30 κτε.'μ²

 κροβλε ε μαεπυλαή
 92κτε./μ²


 cheroβαη ματρίχηκα
 09.225=203κτε./μ²

 Umozo
 325 κτε./μ²


Минимально допустимая нагрузка $[q_i]_{min} > q = 325 \, \text{кrc/m}^2$ Окончательно принимаем блок СПМ 24-450.

Мип 2. Блок в осях "Г"-"Д" у торца здания Вертикальные нагрузки теже, что и для блока типа<u>Т</u> Проверяен блок СПМ 24-450

1. Эквивалентные нагрузки от силы $N_1 = -3.57$ с в ригеле поперечной рапы (по тобл 3, лист 74 км)


г Энвивалентные нагризки от силы № 10220 в ригеле

3 Эквивалентные нагрузки от ветра.
Реакция одной стойки фахверка: при активном
давлении- R=328 08: 2,62 тс, при ветровом от сасе
R=328 06: 1.97 тс. По табл в (лист 74км) апределяем эквивалентные нагрузки для элементов. Коэффициент

COYEMBHUU 0,9.

Для элементов верхнего пояса, непосредственно восприниманощих усилия от стойки фахверка, эквивалентного нагрузки получены для случая активного довления (без схобок) и ветрового отсоса (в схобках) и месциом стоеобность этементов блока СРМ24-450 сучетом ранных сил и ветровой нагрузки

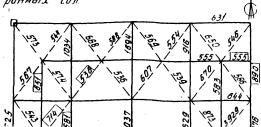
выделены эквивалентные нагрузки по стержням определяющие несущую способность группы элементов [9,] 5 вертикальные нагрузки на блок.

Дополнительное сочетание нагрузок

Мип нагрузки	Коэф Соче-	INBUB.	מחצאתם מר אם	HOIE A	OB NO	C/ME	7
	πακυί	Ĩ	Ũ	111	ĮŸ.	Ÿ	vi
Собственный вес блоко	1	30	30	30	30	30	30
Кровля с настилам	1	92	92	92	92	92	92
Енеговая нагрузка	0,9	203	203	203	203	203	203
Нагрузко отконсали в : 0,43 к Вдаль длинной стороны	-	19	12	-10	41	52	60
Umozo		344	337	325	356	377	385
Допустимые нагрузки [q;]	1	454	396	429	422	637	771

Для эленентов \overline{V} группы проверяем сочетание нагрузон от собственного беса и активного давления ветра $\Sigma n q_3 = 30.92 \cdot 127/0.9 = 19 \text{ кгс/м}^2$. Несущая способность этих элементов при сжатии $[q_i] = 602 \text{ кгc/m}^2$, т.е. вы ше / см. табл. 17, лист 8 frm.) Окончательно принимаем блан CNM 24-450

774-85KM


Тип 3 Блок в осях "Г" и "Д", "12", 13", примыкающий к перепаду высоты (h=12м) длинной стороной вылет консоли в=0.73м (вдоль длинной стороны)

Проверяем несущую способность элементов блока СПМ 24-540

1 Эквивалентные нагрузки от силы N, =-3,5тс в ригеле поперечной рамы см. блок типа 1.

2. Эмвивалентные нагрузки от силы N_2 =-1.1 τ с β ригеле продольной раны (по табл. 4. лист 74 км)

з Несущая способность элементов [g;] с учетом ранных сил

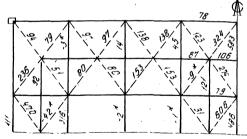
4 Вертикальные нагрузки на блок Основные сочетания нагрузок*

Пип нагрузки	.५०२क कायमण	34606	DOEHM DM 3.4	HOIE HO	17.DC3.K	U 70	,
	HUÚ	Ž	-	jn -	18	ř	٧,
Собственный вес блоко	1	35	3.5	3.5	35	35	35
Ввс кровли с настилог	1	92	92	92	92	92	92
Равнамерно распределен снегабая нагрузка С. Цсоз	1	225/	225/	275/113	225/	225	225
Нагризка ат консоли в-0.13, при снеговой нагрС-1/с-0.5	1	46/30	27/18	-23/	97	122	143
Нагрузка от снегового мешка h: 12; C= 1.6, S=2,4м	1	70	-/42	-71	154	445	
Umozo:		398 / 340	379 /	352/	457	649	495
Ποημεπинь ιε μοτρμακυ [Q] πο παδλ. 17		559	857	598	540	7/4	/557 894

Дополнительные сочетания нагрузок*

Пип нагрузки	Ко эф соче-	Arbubu Pynn	המאשתה מא שם	HOIE HE	72.043K	TU DO	2)
	таний	Ž	Ĩ	<u>///</u>	ĮĪ	y.	νį
Сабственный вес блока	1	35	35	35	3.5	35	35
вес правли с настила м	1	92	92	92	92	92	92
Равномерно-распредел снеговая нагр С-1/с-0.5	0.9	203/101	203/101	203/	203/	203/	203/
Hazpyska om konconu 5-0,73 m npu C=1/C=0,5	-	43/28	25/17	-21/14	90/59	114/15	133/87
मवर्ष्ण्यस्य वना ट्रमहरवर्षवः २० संस्थास्य	0.9	63	-/38	-64	139	401	203
Umozo:		373/ 319	355 283	330/ 228	420/	603	463/
Donycmumble Horpysku [eg:] no n.3		555	651	581	536	7/4	890

 $^{*)}$ атдельно расснатриваются два варианта распределения снеговой нагрузки: 1) равнамерно-распределенный снег при C:1; 2) то же при C:0.5 и снеговой мешок.


Окончательно принимаем блок СЛМ24-630.

Преверяем несущую способность элементов блока
СЛМ 24-450K

1 Эхвивалентные нагрузки ат силы $N_1 = 3.5 \, {\rm TC}$ в ригеле поперечной рамы см. блок типа! 2 Эхвивалентные нагрузки от силы $N_2 = 16.8 \, {\rm TC}$ см. блок

munat

3 Эхвивалентные ногрузки ат подвесных кранов по табл 8, лист 75км с коэффициентом сочетаний: n=0.85x0.9=0.765

*отрицательные эквивалентные нагрузки в дальнейших расчетах принимаем равными нульа

ранных сил и прановых нагрузом чи чев ни

5. Вертикальные нагрузки на блок

Собственный весблока - 32 кгс/н²

Технологическое оборудование 20к/с/н²

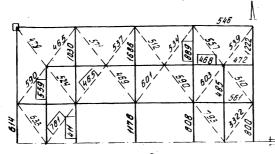
Вес кровли с настилом 92 кгс/н²

Снеговая нагрузка 09x225 = 203 кгс/н²

Даполнительное сочетание нагрузок

774-85KM

Мип 5 блоки в осях "12" "13 с подвесными кранами, без вентиляторов и зенитных фонарей. Перепад высоты вдаль длинной стороны блока $h=1.2\,\mathrm{m}$, ширина снегового мешка $24\mathrm{m}$, консоль $b=0.73\,\mathrm{m}$


Probepsen Hecywyn chocobhocmb Bloka CNM24-510x

A Этвивалентные нагрузки ат ранных сил $N_0 = 3.5 \, \text{mc}$ и $N_2 = -1.1 \, \text{mc}$ сн. блоки типа I и I .

и му -- ит с сн. олоки типо и из.
2. Эквивалентные нагрузки от двух подвесных

кранов Q = 3.2 тс см. блок типа 4

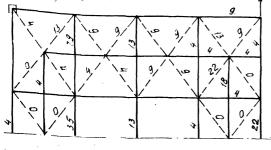
3. Несущие способности элементов с учетом ранных сил и крановых нагрузом

выделены нагрузки [q,], определяющие несущую способнасть группы элементов

4. Вертикальные нагрузки на блок.
Расснатриваем два варианта распределения снеговой нагрузки: 1) равномерно- распределенный снег при С=1;
2) то же при С=1,5 и снеговой мешок.

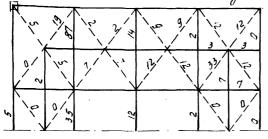
Основные сочетания ногрузок

77	1010 0040	HE TOURNAM ENCHEHMOB (NIC/M2)								
Пип нагрузки	таний	Ī	<u> </u>	<u>III</u>	ĮŪ	ξ	νį			
Собственный вес блока	1	34	39	39	39	74	.39			
Кровля с настилом	1	92	92	92	92	92	92			
Снеговая нагрузка	1	225	225	225	225	225	225			
Нагрузка от консали в = 0.73, при С = 1/C=0.5	/	46/30	27 /8	-23	97 63	122/77	143			
Нагрузка от снегового неш на h = 1.2; С = 1.8; S = 2,4 м	1	/10	42	1-71	154	445	/22			
Umoro		402/	383	358	453/	478	199			
Ωοηγεπυνδιέ κατρήμα [Q;] Νο παδλίτ		559	657	612	549	781	938			


Дополнительные сочетания нагрузок

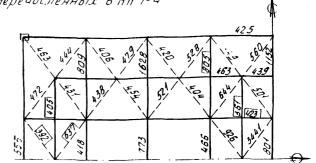
Мип нагрузки	K0300 C04E	3x8ub.	Эквивалентные нагрузки по груп- пам элементов (кгс/м²)								
	MQ - HUÚ	Ĩ	Ū	ji)	ĪŸ	Ī	v/				
Собственный вес блока	1	39	39	39	39	39	39				
Кровля с настилам	1	92	92	92	92	92	92				
Рабномерно-распределен Снеговая нагр прис= (/c:0.5	0.9	203/	203/	203	203	203	203				
Harpyska om kohlosu 8: 0.73 npu C:1/C:0.5	-	43/28	25/17	-21/	90/59	114	133				
[NeroBou Mewon: h=12; 5-24n; C=16	0.9	63	38	64	/139	401	87				
Umoro		377 323	359 287	334 232	424	·	467				
Aanycmunbie Harpysku no n.3		468	559	411	465	781	986				

Окончательно принимаем блок СПМ24-510К


774 - 85 KM

поль в сель в сель в в и 1 2" приныкающие к наружным стенам Консали по караткой и влинной старане в: 0,43 м. Праверяем несущую способнасть блака слм 24-450 к. 1 Эквивалентные нагрузки ат силы North 4470 в ригеле поперечно раны

2. Эквивалентные нагрузки от силы N_2 =-10,2au с сн. блок типо2 3. Эквивалентные нагрузки от ветра/коэфф сочетаний 0,9)


а) нагрузка по схепе 3 (сп. лист 74хм, таб. 5и 6)

 δ) нагрузка па схене 4 (табл 5 и 6, лист 74ки) ст. блок типа 2. Для дальней ших расчетов прининаем максимальные величины эквивалентных нагрузок Q_3 , из схем нагружения 3 и 4 (см. лист 74 км., табл. 5 и 6)

4 Эквивалентные ногрузки от двух кранов Q 32те см блак типа 4

5 Несущие способности элементов с учетом нагрузок, перечисленных 6 пл 1-4

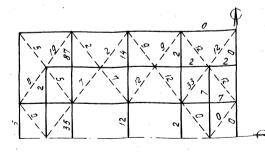
в Вертикальные нагрузки на блок (без кранов)

Дополнительные сочетания нагрузок

• •					, ,					
Пип нагрузки	K03A) C048-									
men nacpysna	יטטאסרין	Ĩ	<u> </u>	ıı,	ĮĪ	<u> </u> \bar{y}	Ÿ,			
Сабственный вес блока	1	32	32	32	32	32	32			
Кравля с настилом	1	92	92	92	92	92	92			
Снеговая ногрузка С: 1	9	203	203	203	203	203	203			
Нагрузка от консали в:0,43 вдоль алин стараны	-	19	5	-10	41	52	60			
Es Umora:		346	332	327	368	379	387			
Допустиные нагрузки по п 5		423	405	361	392	637	805			

Дополнительную проверку элементов VI группы с учетом ветровой нагрузки см. блок типа 2. Для блоков типа в окончательно принимаем марку СПМ 24.4.501

774-85KM


Пип 7 влаки в осна "2" "12", R" в" приныкающие к насумной стене кереткой стороной Вылет конеали частила у наружной стены в одям. Подвесное технологическое оборудование $q = 30 \, \mathrm{kG/m}^2$:

Проверяем чесьщию способность блока СПМ 24-458К 1 Эхвивалентные нагрузки от рамных сил Л, = 4470-

2 Эквивалент чаг чагрузки от подвесных кранов см. блок типа 4.

Реакция одной стойки фахверка с наветренной стороны: R=328 Q8=2,627 c; с заветренной R=328 Q6=197cc. Коэффициент сочетаний Q9. Нагрузка на блак по схене 3 (см. табл. 5, лист. 74 км)

3. Эквивалентные нагрузки от ветра (лист 74км, табл. 5 ив.)

з пасчетные несущие способности элементов

5. Расчетные вертикальные нагрузки на блом одинаковы для всех групп элементов:

Собственный вес блока $30 \, \text{к/c/h}^2$ Технологическое оборудование $30 \, \text{к/c/h}^2$

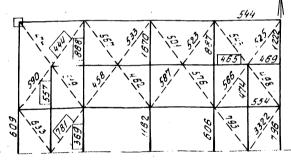
Вес кровли с настил**ом** 92 кГс /м² Снеговая нагрузна 0.9 225 : 203 кГс /м²

Umozo: 355 k[c/n² < [q] = 366k[c/n² [[q] = no 111 pynne эленентов)

Окончательно прининаем блок CNM 24-450K

774-85KM

TUNE BROKE & ONER 12 - 13, 6 - 5 0, E - X ARUNO NEW шие к перепату высеты h=1,2 м и к наружной стене ουθεραε η μεσυμιγίο υπουοδιμοσης διοσκο CAM24-510K 1 Эквивалентные нагрузки от рамных сил Ми-44 те-


CM ENOR MUNG 6; N2 =- 1.176-CM ENOR MUNG 3.

г эквивалентные нагрузки ст двух кранов 4=32+с CM SJOK MUNG 4

з Эквивалентные нагрузки от ветра с торца блока

CH SNOK MUNG 6.

4 Несциие способности эленентов блока и часточ нагрузок, перечисленных в п.п. 1-3

выделены эквивалентные нагрузки, определяющие

5 Вертина заные нагрузки на блок аналогичны! 8.10×4 muna 5

Есновные сечетания

Мил нагрузки	coue.,	3KEUC ZPYNI	5011CA 1011 3)	IMHOI ICMBH	e Haz	DY346 'n [c	1 170 14 2
, 5	חמאמע	Ī	"		ĪŸ	Ÿ	VI
Сумнарна я вертикальн	_	402/144	363	356/ 244	453	478 / 653	499 / 551
DORYCMUNDIE HOLPYSKU [O] TO MODA 17		559	657	612	549	781	9 3 8

Пополнительные сочетония

коэфф С04 0 -	эквивалентные ногрузки по группан элементов (к/c/н²								
тан.	<u>-</u>	<u>″</u>	ı <u>ı</u>	IV	Į.	Y/			
-	377/323	359 287	334 / 232	424 /	448/	467/ 522			
~	465	557	369	444	781	868			
	C048-	тан. <u>Т</u> - 317/323	тан. <u>Т</u> <u>Т</u> — 377 359 — 323 287	тан	тан. <u>Г</u> <u>Г</u> <u>Г</u> <u>Г</u> <u>Г</u> <u>Г</u> <u>Г</u> <u>Г</u> <u>Г</u> <u>Г</u>	тан. <u>I</u> <u>I</u> <u>II</u> <u>II</u> <u>IV</u> <u>V</u> - 323 287 232 430 607			

ногрузки: в числителе- равномерно-распределенная при С=1; в знаменателе - то же при С= 0,5 и снеroboù Mewor

расчетную несущую способность группы элементов [д.] Окончательно принимаем блок СЛМ 24-510к

тип 9 Блоки в ссях, 6"-"В" U. 2"-, 12" с крышными вентиля порани 1'8. истановленными в приопорных NOHELEC Apobeosen BOOK CAM24-450K.

1 Эквивалентные чегрузки от ранных сил, падвесных кранов и несущие способности элементов для восприятия вертикальных нагризок см. п.п. 1-4 для блока muna 4

2 Вертикальные нагрузки на влок (дополнительное сочетание)

Собственный вес блака 32 кгс/н2;

Технологическое оборудование 4 к/с/м2

Вес кровли с настилом 92 кгс/м2.

CHEROBAR HORPUSKA 0,9 x 225 = $203\kappa \Gamma c/m^2$

Крышной вентилятор 0,9 x 1,2 x 28 = 30 нгс/м² (см лист 77 км)

Umoro: 361 KTC/M2 L[q,]min (определяющей является 11 группа элементов

[9,]min = 365 Mrc/M2

DKOHYOMENGHO ADUHUMOEM BAOK CAM 24-450K

Mun 10. 6 NOKU & OCAX, A"-, E", , 2" -, 12" Se3 KPSIWHDIX BEHMU. ляторов. Предуснотрена установка двух зенитных фонарей вдоль крайнего ряда панелей верхнего пояса (CM SUCM 84 KM)

1 Эквивалентные нагрузки от силы N;=-3,57 с в ригеле

2 Зжвивалентные нагрузки ст силы Л, : 16.8т с в оигеле продольной рань см блаж типа 1. 3 Эквивалентные нагрузки от двух кранов на KONEE 20430000 BENHOEMBLO Q= 3.2TC CM. BAOM muna 4

4. Расчетные несущие способности эленентов с учетом ранных сил и прановых нагрузок соответствуют аналогичным для блака типа 4 (CM.n.4)

5 Вертикальные нагрузки на блок Дополнительное сочетоние Coscombenhoiù bec onora 32 mrc/m2 TexHONORUYECKAR HARPYSKA 10HIC/M2 BEC KPGBAUC HACMUSOM 92 KIC 142 Снеговая нагрузка 0,9 х 225 = 203 кгс/м2 Эквивалентная нагрузка от изненения схены

работы настила (лист 79км) 0,06× (203+92)=18кгс/н2 Umozo: $355\pi rc/m^2 \angle [q_i] = 365\pi rc/m^2$

Оконнательно принимаем блак СЛМ24-450к.

TEN H BOOM & OCCUT. 4" - E'C 2" - 12" C SEHUTHEINU DOHOFANU U KTEWHEME BOHMUORTODOME

ROOBERSON FACK CAM 24-45AK

1 Эквивалентные нагрузки от ранных гил, подвесных

кранов и несищие способности элементов см пл 1.4 BAR ENDRA MUNA 4

2 Bepmukanshbie Harpysku Ha finak

Пополнительное сочетачие

Собственный вес блака

Пехнологическая нагрузка 10 KTE/M2

Вес кровли с настилом 92 NTC/M2

CHEZOBOR HOZPYSKO 0,9 x 225 = 203 KTC/M2 Эквивалентная нагрузка от изменения

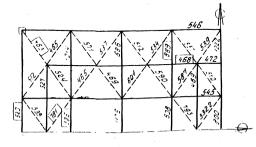
czeno padomol

0,06x (203+92) = 18xrc/m2 настила

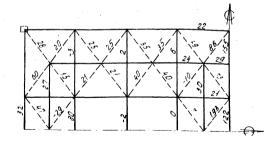
Эквивалентная нагрузка от

крышного вентилятора

31 Mrc/M2

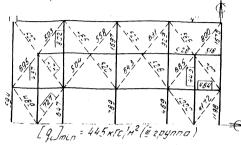

Umozo: 384mrc/m²>[q]=373mrc/m²

30 KTE/M2


Несущая способность эленентов "группы ниже требусной. Необходино принять более тяжелый SAOK.

Проверяем несущую способность элементов δροκα CΠM 24-510 κ

з Эквивалентные нагрузки ат ранных сил подвесных кранов см пл 1-3 для блака типа 4. 4 Расчетные несущие способности элементов с учетом нагрузак по п. 3.



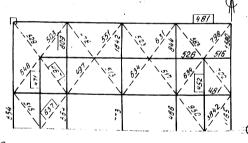
Определянощей по несущей способности является Шzpynna элементов [q.]min=395кгс/m²> In q. Окончательно принимаем блок СПМ 24-510к

*) в тобл. 16 для данных условий рекомендуется блак СПМ24-450. Однако проверка показала, что расчетная несущая способность элепентов т группы этого блака недостаточна.

L LOCULINE PROCEEDED ASSMEHTES E LUSTION HORRYBOK, MEDEUUCHEHHEIX BEILLE!

5 Вертикальные нагрузки на блок (без кранов) Дополнительное сочетание Cobembenhoid bec broka 32 KIC/M2 BECKPOBNUC HOCMUNDM - 92 MIC/M2 Технологическая нагрузка ЗОКГС/н2 CHEZOBAR HOZDYSKO 0,9 x 225= 203K/C/M2 L'mora: 357x1c/m2 < [9,]min

Оженчательно прининаем блак СПМ24-450к

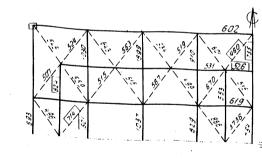

Mun 13 Ener & orex "E" - & U 1 - 2" npunbikateuguu к напимным стеням караткой и длинной стороной.

Вылет консоли настила вдоль наружных стен в 243м ADOBEDAEN S. OK CAM 24-450x

т Эквивалентные нагрузки от ветра, ранной силы

N,=-4,4TC CM ENOR MUNO 6; OM CUNDI N2=-10,2TC- MUN 2. 2 Эквивалентные нагрузки от подвесных кранов CM. SHOK MUNG 12

3 Несищие способности элементов с учетом нагрузок, перечисленных выше:



4 вертикальные нагрузки- см. блак типа 2 с yvemon pashuyoi b coocimbenhon bece 2xrc/n2 Ман же да на проверка несущей способности элемен. тов у группы с учетам ветравой нагрузки. Для всех групп элементов несущая способность

обеспечена Окончательно принимаем блок СПМ24-450к *)эквивалентные нагрузки от ветра приняты по максимольным значениям для схем нагружения Зи 4 (см табл 5, JUCM 74KM

My . 4 SMOK & OCAX "E' - AB' U . 12" - 13" APUNDIKOHO. щий дринней стороной к перепади высоты h:1,2m, консоль в = 0,73m Ширина снегового HEWKO 2,4N

Проверяем блок СЛМ24-540 1 Эквивалентные нагрузки гт ранной силь! NI = 3,5TC CM MUN 1, OM N2 = -1,17C - MUN 3 г эквивалентные нагрузки от двух подвесных кранов Q = 0,5 тс -см блок типа 12 з Несущие способности элементов с учетом рамных сил и крановых HORP43OK

и Расчетная вертикальная нагрудка на блок:

Попалнительные сочетания нагрузок

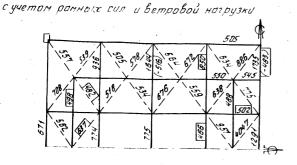
Пип ногрузки	COUE.	179.114.1 00 01.6111100 (11/2)/91							
	таний	Ī	11	111	ĮV	Ī	\vec{vi}		
Собственный вес блого	1	35	35	35	35	3.5	35		
Кровля с настилом	1	92	92	92	92	92	92		
Раві амерно распределенная снеговая нагрузка С=1/c=0,5	0.9	203/101	203/	203/	203/	203	203		
Hazpyska om kohcanu 8= 013 npu C= 1/C= 0.5		43/28	25/14	-21/-14	90	114	/11		
CHETOBOU MEWON h: 1,2M S: 2,4M; C: 1,6	0.9	63	-/38	-64	139	401	8		
Umaza:		373	355/	330/	420/	444/	463		
Допустиные нагрузки		526	624	501	460	7/4	73		

Основные сочетания нагрузок

Пип нагрузки	KO3QD COYE MOHUU	3×606	ON IN	HBIE EMEHN	HOZDY	TC/M	2)
;	MUNOU	Ī	<u> "</u>	<u>iii</u>	/ <u>v</u>	$\bar{\underline{y}}$	ν̈́/
Собственный вес блока	1	35	35	35	35	35	35
Кровля с настилом	1	92	92	92	92	92	92
Рабномерно-распределен. снеговая нагр. С=1/C=0,5	1	225	225/	225	225/113	225	225
Hazpuska om kohconu 6:073 npu chez Hazp C:1/C:0,5	1	46/30	27/18	-23	97/63	122	143
Нагрузка от снегового	1	70	-/42	-/11	-/154	->	<u> -/</u>
· Umozo:		398	379/ 300	352/	457	445	495
תמובות בישר שישר בישר מא משר מא משח מא משח מא מא מא מא מא מא מא מא מא מא מא מא מא		559	657	598	540	714	894

Оканчательно принимаем блок СПМ 24-540

Тип 15. Блок в осях B^{n} , P^{n} и, P^{n} , P^{n} , приныкающий длинной стороной к наружной сточе Консоль B^{n} , B^{n}


П ил нагрузки	5039 CC4E- MOHUU	E. POUDDOM THEMENDOS (KIC/M2)							
	,,,,,,,,,,,,	Ĩ	Ĭ.	<u>"</u>	Įν	<u> </u>	V.		
Собственный вес блоко	1	30	30	30	30	30	30		
Кровля с настилом	1	92	92	92	92	92	92		
Снеговая нагрузка	0,9	203	203	203	203	203	203		
Нагрузка ат консоли 8=0,43м	-	19	12	-10	41	52	60		
Нагрузка от тали *	0,9	33	15	128	102	167	88		
Umozo:		377	352	453	468	544	473		
Aonycmumbie Harpysku (ch. onok mun 2 n.4)		454	420	433	422	637	771		

ADNOSHUMESOHBIE COYEMANUA HAZPYSOK

^{*} Эквивалентные нагрузки от тали принимаем

по данчым так; д. постодня Россматой ваньта узаы подвески 22 г.т. нообходить учиты вать, что в узеля поиходить по поветь по поветы доптина очено осохиции, поскольку насоцика постодоляется между двумя спежными влокани.

Допустичье начини [д] превышены для Тий групп Гринимаем влон СПМ 24-450К и пооберим месущую споспочность его элементов. 3 Несущая способность элементов блока СПМ 24-450К

5 Сравним вертикальные нагрузки (n,2) с допустимыми (n,3)

Рактические вертикальные нагр.	377	352	453	467	545	473
допусти ные нагрузки	502	498	486	482	637	850

Проверка несущей спасобности элементов ў группы с учетам ветровой нагрузки см. блак типа 2 и аканчательна принимаем блак СПМ 24-450К.

, щий к перепаду выгаты (5-1.2 к) длиниой сторочной выгает консоли в = 0.73 к Спочеряем несущую способность влока СОМ24-540

"LYS Bran & OCAX, 5"-, 1"U, 12-, 13", POUNDINGE

- Эквивалентные нагрузки эт сэлы $N_1 = 3.5$ те в ригеле поперечной рамы см блок типа 1; 2 Эквивалентные нагрузки от силы $N_2 = -1.1$ те в ригеле продольной рамы см блок типа 3.

з Несущая способность элементов с учетом рамных сил $[q_j]$

выделены эквивалентные нагрузки, определяющие несущую способность группы эленентов [9,]

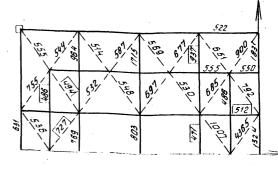
Дальней шие расчеты показали, что несущая способность эленентов \bar{y} группы недостоточна Принимаем блок СПМ 24-630.

774- 85KM

" Вертикальные негризки на влек Основные сочетания насециок

Mun HOEDUANE	KOZA COUE- VIIO	VE- EDUDDICH PREMEHITIOS (KIC/M2)								
	HUU	j	11	111	ĮŪ	ž	vi			
Собственный вес блоко	1	35	35	35	35	35	3.5			
вес кровлис настилон	1	92	92	92	92	92	92			
Равномерно распределенная снеговая нагрузкас-1/с-0.5	1	225	225/113	225/113	225/	225	225			
Нагрузка от консоли в QBM при смеговой нагр.С-1/с-25	/	46/30	27/18	23/	97 63	122	143			
Harpysna om cheroboro newnah:12:Co:16; S:24 h	/	10	- 42	-/11	154	445	122			
Umoro:		398/	379	352/	449/	474	4.95			
Φοηγεπυνοίε κατρίζκυ πο παδη 17		645	661	677	841	1236	93			

Дополнительные сочетания нагрузок


Мип нагрузки	КОЭФ СОЧЕ-	<i>3x6u6</i> 2pynn	anehm anehm	HOIE H	orpys	KU NO	<u> </u>
	тании	Ī	<u>I</u>	<u>n</u> ī	ıÿ	Ī	Į,
Собственный вес блока	1	35	35	35	35	35	3
вес кровли с настилам	1	92	92	92	92	92	9
Равномерно-распределенная снеговая нагрузка С=1/c=0,5	0.9	203/101	203/101	203/	203/	203	20
Нагрузка от консоли в-азх при С=1/(С=0,5)	-	43/28	25/17	-21/-14	90/59	114	133
Ногрузка от гнеговога мешка	0,9	63	38	-64	139	75	<
Нагрузка от тали	0,9	33	15	128	102	167	1
Umozo		406/	370/	458/	522 528	611	55)
Lonyemunbie notpysku cydemon n.n. 1 u2		641	655	664	634	1235	9

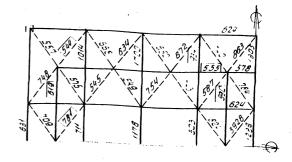
Окончательно принимаем блок СПМ 24- 630

том блоко в осях .. В - Л" вся ковишных вентиляторов Лодвеска понорельса с тально осуществляется в узлах "2" и "7" (см лист 76 км. пабл 9) Проверяем блок СПМ 24-45 См

1 Эквивалентные нагрузки от ранных силсм. блок типа в

2. Расчетные несущие способности эленентов с учетом ранных сил.

Выделены эквивалентные нагрузки, определяющие росчетную несущую способность группы элементов [9]


з Вертикальные чагризки на блок

Ton HOLDESTE	५०३म ८०५९-	2κουδαπενιπικού ματράτιο μος (μις/μ²)							
	HUU	Ī	3	Ž.	2	v	y/		
Гобственный вес блоко	./	32	32	32	32	32	32		
вес кровли с настилом	/	92	92	92	92	92	92		
Снеговая нагрузка	0,9	203	203	203	203	203	203		
Нагрузка от тали	0,9	33	15	128	102	167	88		
Umara:		350	342	455	429	494	415		
Donycmunoie Harpysku		512	486	471	494	72~	937		

Окончательна принимаем блок СПМ24-450К

Пип 18. Блоки в осях "8"-"Г"с крышными вентиляторами N8. Остальные нагрузки те же, ито и для типа 17. Блок СПМ24-450К не проходит по несущей способности \overline{M} группы элементов (см. тип 17. п. 3) Принимаем блок СПМ24-510К.

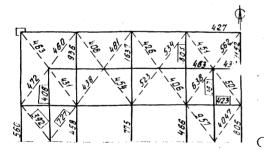
1. Эквивалентные нагрузки от ранных сил см блок типа 1. : Гостотные несищие способности злементов Синстом фанных сил

з. Вертикальные нагрузки на блок

0							
Рактические Бертикаль. ные нагрузки	394	376	489	463	528	449	l
Danyemumble Harpysku no n. 2	555	619	590	544	781	934	
							Į

Окончательно принимаем блок СПМ 24-510 К.

Тип 19. Блаки в осях "Б"-"В", Д"-"Е" и "1"-,2" прины кающие к наружным стенам длинной стороной консоль 6 = 0,43 м. На блаки подвешены краны Q = 3,21 с.


Проверяен блок СПМ 24 450К.

- Сленда, тентине намеряму стемлы Л, 35т в ризеле поперсиней рамы им блек типа?

з Эжвивалентные нагрузки от ветра с фахверка см блок типа 2

4. Эквивалентные чегоцики ат двих подвесных кранов $Q = 32\tau c$ сн влок типа 4

5 Несущая способность элементов блока СПМ24-450к с учетом эквивалентных нагрузок по пл. 1-4 $[q_i] = [0_i] - \sum_{i=1}^n q_{q_i}$

выделены эквивалентные нагрузки, определяющие несущую способность группы: элементов [4,]

6 Расчетные вертикальные нагрузки на блок Даполнительные сочетания нагрузок

Мил нагрузки	КО ЭФ СОЧ E- МОНИЙ	Эквивалентные нагрузки по группот эленентов Ткгс/н2						
		Ī	<i>!</i> 7	Ĩ.	ΙŽ	ν̄	v/	
Сооственный вес блока	1	32	32	32	32	32	32	
Кровля с настилом	1	92	92	92	92	92	92	
Снеговая нагрузка С= 1	0.9	203	203	203	203	203	203	
Нагрузка от консоли 6:0,43 вдоль длин стор	-	19	5	-10	41	52	60	
Umoro:		346	332	327	368	379	387	
допустиные нагрузки по п. 5		423	406	367	392	727	805	

Дополнительную проверки элементов VI группы с учетом ветровой нагрузки с фохверка ст. блак типа 2.

Окончательно прининаем блок СПМ24-450к