РАСЧЕТ НА ПРОЧНОСТЬ КОТЛОВ, ТЕПЛООБМЕННЫХ АППАРАТОВ И СОСУДОВ ПОД ДАВЛЕНИЕМ

Руководство Р.010-2004

Москва 2016 Утверждено приказом Российского Речного Регистра

№ 32-п от 24.12.2004

Введено в действие с 07.02.2005

Издание 1 с изменением № 1

Изменение № 1 утверждено приказом Российского Речного

Регистра №47-п от 08.09.2016 и введено в действие с 14.08.2016

Ответственный за выпуск — С. В. Канурный

Оригинал-макет — Е. Л. Багров

СОДЕРЖАНИЕ

1 Область применения	5
2 Используемые термины и обозначения	6
3 Исходные данные для расчета прочности	
4 Основные расчетные параметры	9
4.1 Расчетное давление	9
4.2 Расчетная температура	9
4.3 Характеристика прочности материалов и допускаемые напряжения	11
4.4 Коэффициенты запаса прочности	12
4.5 Коэффициенты прочности	15
4.6 Прибавки к расчетным толщинам	18
5 Цилиндрические и сферические элементы и трубы	20
5.1 Элементы, подвергающиеся внутреннему давлению	20
5.2 Элементы, подвергающиеся наружному давлению	21
6 Конические элементы	24
7 Плоские стенки, днища и крышки	27
7.1 Плоские днища и крышки	27
7.2 Стенки, подкрепленные связями	29
7.3 Отбортовка плоских днищ	30
7.4 Укрепление вырезов	31
8 Трубные решетки	32
9 Выпуклые днища	34
10 Тарельчатые днища	37
11 Прямоугольные камеры	38
12 Укрепление вырезов в цилиндрических, сферических и конических стенках и выпуклых днищах	
12.1 Общие положения	
12.2 Размеры укреплений	
12.2 1 consepts jupetitietititi	1.1

12.3	Взаимное влияние вырезов	45
	Связи	
13.1	Размеры прочных связей	48
13.2	Соединения связей	49
14	Потолочные балки	51
15	Сварные соединения	52

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

- 1.1 Настоящее Руководство является основным документом, регламентирующим выполнение расчетов на прочность котлов, теплообменных аппаратов и сосудов под давлением для судов внутреннего и смешанного (рекаморе) плавания, находящихся под техническим наблюдением Российского Речного Регистра в соответствии с 8.1.1 ч. IV ПКПС.
- 1.2 Расчет на прочность изделий, входящих в номенклатуру объектов технического наблюдения, осуществляемого Речным Регистром, допускается выполнять с применением других методик, стандартов предприятия и т. п. В этом случае Речному Регистру для специального рассмотрения должны быть представлены исходные данные, используемая методика расчета и его результаты, которые будут проверены Речным Регистром расчетом по методике, изложенной в настоящем Руководстве.
- **1.3** Получаемые в результате расчета толіцины стенок являются минимально допустимыми для нормальных условий эксплуатации.

Нормы и методы расчета на прочность не учитывают технологических припусков, которые должны вводиться в виде прибавок к расчетной толщине.

Должны учитываться дополнительные напряжения от внешних нагрузок (осевых усилий, изгибающих и крутящих моментов), действующих на рассчитываемый элемент (в частности, нагрузок от собственной массы, массы присоединенных деталей и т. п.).

2 ИСПОЛЬЗУЕМЫЕ ТЕРМИНЫ И ОБОЗНАЧЕНИЯ

- **2.1** В настоящем разделе описаны специальные термины, используемые в расчетах на прочность элементов котлов, теплообменных аппаратов и сосудов под давлением, которые следует понимать следующим образом.
- .1 Рабочее давление максимальное допускаемое давление при нормальном протекании рабочего процесса в продолжительном режиме, за исключением допускаемого кратковременного повышения давления во время действия предохранительного клапана или других предохранительных устройств.
- .2 Расчетная температура стенки средняя по толщине стенки температура, принимаемая в зависимости от температуры среды в условиях обогрева для определения допускаемых напряжений.
- **.3** Расчетное давление давление, по которому производится расчет на прочность.
- .4 Расчетная паропроизводительность котла наибольшее количество пара расчетных параметров, производимого котлом в час при продолжительном режиме работы.
- .5 Стенки котлов, теплообменных аппаратов и сосудов под давлением стенки, ограничивающие объем паровых и водяных, газовых и жидкостных пространств, в том числе стенки соединительных патрубков и корпусов запорных устройств.
 - .6 Стенки необогреваемые стенки, которые:

отделены от топочного пространства или от дымохода огнеупорной изоляцией, причем расстояние между ними и этой изоляцией составляет не менее 300 мм;

защищены огнеупорной изоляцией, не подверженной воздействию теплового потока излучения.

.7 Стенки, защищенные от воздействия теплового потока излучения — стенки, которые покрыты огнеупорной изоляцией или закрыты плотным рядом труб (с максимальным зазором между трубами в ряду до 3 мм) или двумя рядами труб, расположенных в шахмат-

ном порядке, с продольным шагом, не превышающим двух наружных диаметров трубы, или тремя и более рядами труб, расположенных в шахматном порядке, с продольным шагом, не превышающим двух с половиной наружных диаметров трубы.

.8 Глухое днище — днище, не имеющее вырезов, или днище с вырезами, расположенными на расстоянии не менее 0,2 наружного диаметра от наружного контура цилиндрической части, диаметр которых не превышает учетверенной толщины стенки, но не более 100 мм.

```
2.2 В Руководстве приняты следующие обозначения параметров:
```

p — расчетное давление, МПа;

t — расчетная температура, °С;

s — толщина стенки, мм;

 $t_{\rm H}$ — температура насыщения при данном давлении, °C;

 Δt — разность температур, температурный напор, °С;

 $R_{\rm eH}$ — верхний предел текучести, МПа;

 $R_{\rm eL}$ — нижний предел текучести, МПа;

 $R_{\mathrm{eL/t}}$ — то же при расчетной температуре, МПа;

 R_{m} — временное сопротивление материала на растяжение, МПа;

 $R_{\mathrm{m/t}}$ — то же при расчетной температуре, МПа;

σ — допускаемое напряжение, МПа;

ф — коэффициент прочности;

 k_{σ} — коэффициент запаса прочности;

а — шаг отверстий, мм;

d — диаметр отверстий, мм;

f — площадь поперечного сечения, мм 2 ;

 $D_{\rm a}$ — наружный диаметр, мм;

D — внутренний диаметр, мм;

c — прибавка к размеру, мм;

E — модуль упругости, МПа;

F — сила, Н.

3 ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТА ПРОЧНОСТИ

- 3.1 База исходных данных для расчета формируется на основании анализа чертежей основных элементов котлов, теплообменных аппаратов и сосудов под давлением, на которых должны быть указаны все конструктивные размеры, в том числе радиусы закруглений, сведения о материале, сварке, расчетных давлениях и температурах.
- 3.2 Расчетные давления и температуры сред, коэффициенты теплоотдачи в различных сечениях трубных пучков, полостях, зазорах и т. д. следует принимать по результатам подробного теплового расчета или экспериментального исследования котла, теплообменного аппарата, сосуда под давлением или их физических или математических моделей.

4 ОСНОВНЫЕ РАСЧЕТНЫЕ ПАРАМЕТРЫ

4.1 РАСЧЕТНОЕ ЛАВЛЕНИЕ

4.1.1 Расчетное давление, с использованием которого производятся расчеты на прочность элементов котлов, теплообменных аппаратов и сосудов под давлением, следует принимать равным рабочему давлению среды.

Гидростатическое давление должно учитываться при определении расчетного давления, когда оно превышает 0,05 MПа.

- **4.1.2** Для прямоточных котлов и котлов с принудительной циркуляцией расчетное давление должно приниматься с учетом гидродинамических сопротивлений в элементах котла при расчетной паропроизводительности.
- **4.1.3** Для плоских стенок, подвергающихся давлению с обеих сторон, за расчетное давление следует принимать наибольшее из действующих давлений. Стенки в виде изогнутых поверхностей, подвергающиеся давлению с обеих сторон, следует рассчитывать на наибольшее внутреннее и наружное давление. Если с одной стороны стенки давление ниже атмосферного, то за расчетное следует принимать давление с другой стороны стенки, увеличенное на 0,1 МПа.
- **4.1.4** Для экономайзеров за расчетное давление должна приниматься сумма рабочего давления в паровом коллекторе котла и гидродинамических сопротивлений в экономайзере, трубопроводах и арматуре при расчетной паропроизводительности котла.
- **4.1.5** Для теплообменных аппаратов и сосудов под давлением холодильных установок расчетное давление должно приниматься согласно требованиям 9 ч. IV ПКПС.

4.2 РАСЧЕТНАЯ ТЕМПЕРАТУРА

4.2.1 При определении допускаемых напряжений в зависимости от температуры среды и условий обогрева расчетная температура стенки должна приниматься не менее указанной в табл. 4.2.1.

- 4.2.2 Расчетная температура обогреваемых стенок котла и омываемых паром необогреваемых стенок котла должна быть не менее 250 °C.
- 4.2.3 Применение неизолированных обогреваемых дымовыми газами стенок котлов толшиной более 20 мм допускается лишь для температур газов до 800 °C. Если при толщине стенок менее 20 мм и температуре дымовых газов выше 800 °C имеются участки протяженностью более восьми диаметров труб, не защищенные изолящией или рядом труб, то расчетная температура стенки должна определяться с помощью отдельного расчета.
- 4.2.4 Расчетная температура стенок теплообменных аппаратов и сосудов под давлением холодильного агента должна приниматься равной 20 °C, если не могут возникнуть более высокие температуры.

Таблица 4.2.1

Элементы котлов, теплообменных аппаратов и сосудов под давлением и условия их работы	Расчетная температура стенки, °C
1 Элементы, подверженные воздействию теплового потока излучения:	
1.1 Трубы котельные	$t_{\rm m} + 50$
1.2 Трубы пароперегревателей	r + 50
1.3 Волнистые жаровые трубы	t _M + 75
1.4 Гладкие жаровые трубы, коллекторы, камеры, огневые камеры	t _m + 90
2 Элементы, обогреваемые горячими газами, но защищенные от воздействия теплового потока излучения:	
2.1 Обечайки, днища, коллекторы, камеры, трубные решетки и трубы котельные	$t_{\rm m} + 30$
2.2 Коллекторы и трубы пароперегревателей при температуре пара до 400 °C	$t_{\rm m} + 35$
2.3 Утилизационные котлы, работающие без режима термической чистки поверхностей нагрева	$t_{\rm m} + 30$
2.4 То же с режимом термической чистки поверхностей нагрева	$t_{ m v}$
3 Элементы, обогреваемые паром или жидкостями	$t_{ m v}$
4 Элементы необогреваемые	t _m
В таблице принято:	

- $t_{\rm M}$ наибольшая температура нагреваемой среды в рассматриваемом элементе;
- t, наибольшая температура греющей среды.

4.3 ХАРАКТЕРИСТИКА ПРОЧНОСТИ МАТЕРИАЛОВ И ЛОПУСКАЕМЫЕ НАПРЯЖЕНИЯ

- 4.3.1 Для сталей в качестве расчетных характеристик должны приниматься:
- .1 верхний предел текучести $R_{\rm eH}$ при 20 °C или условный предел текучести $R_{\rm p0.2}$ при расчетных температурах до 50 °C;
 - .2 нижний предел текучести $R_{\rm eL/t}$ при расчетных температурах от 50 до 350 °C;
- .3 меньшее из значений минимального предела текучести $R_{\rm eL/t}$ и среднего значения предела длительной прочности за 100 тыс. ч $R_{\rm m/t^{100000}}$ при расчетной температуре выше 350 °C.
- **4.3.2** Для материалов без явно выраженной площадки текучести в качестве расчетной характеристики должно приниматься минимальное значение временного сопротивления $R_{\mathrm{m/t}}$ при расчетной температуре.
- **4.3.3** Для чугуна и цветных сплавов в качестве расчетной характеристики должно приниматься минимальное значение временного сопротивления $R_{\rm m}$ при 20 °C.
- **4.3.4** При использовании цветных металлов и их сплавов необходимо учитывать, что нагрев при обработке и сварке уменьшает прочность металла, поэтому при расчете на прочность деталей и узлов из этих металлов следует принимать характеристики прочности, соответствующие их состоянию после термической обработки.
- **4.3.5** Рекомендуемые значения характеристик сталей приведены в табл. 4.3.5-1 4.3.5-3. Данные этих таблиц могут быть заменены следующими уравнениями:

для углеродистой стали 10
$$R_{\rm eL/t} = 194,77228 - 0,00028653\,t^{2,111936};$$
 для углеродистых сталей 12К и 15К
$$R_{\rm eL/t} = 206,15318 - 0,0015018513\,t^{1,8633473};$$
 для углеродистой стали Ст. 3
$$R_{\rm eL/t} = 203,54105 - 0,00018332\,t^{2,1173203};$$
 для углеродистых сталей 16К, 20 и 20К
$$R_{\rm eL/t} = 238,43052 - 0,0075417499\,t^{1,6141531};$$
 для углеродистой стали 18К
$$R_{\rm eL/t} = 258,0561 - 0,007320873\,t^{1,6189428};$$
 для легированной стали 15ХМ
$$R_{\rm eL/t} = 226,41622 - 0,0000232686\,t^{2,3347557};$$

$$R_{\rm m/t}_{100000} = \left(42,852949 - 0,0027634 \cdot t^{1,5}\right)^2;$$

для легированной стали 12Х1МФ

$$R_{\rm eL/t} = 256,93792 - 0,0000738467 t^{2,2033129};$$

$$R_{\text{m/t}^{100000}} = \sqrt{95160,958 - 0.00051186 \cdot t^3};$$

для легированных сталей 16ГС и 09Г2С

$$R_{\rm eL/t} = 264,2894 - 0,00088333563 t^{1,9598587};$$

$$R_{m/t^{100000}} = (-4,1987356 + 2739668, 5/t^2)^2;$$

для легированной стали с повышенным содержанием марганца 22ГК

$$R_{\rm eL/t} = 339,02223 - 0,056619199 t^{1,2357579};$$

$$R_{m/t^{100000}} = -179,36368 + 58362700 / t^2;$$

для углеродистых сталей 10, 12К и 15К

$$R_{m/t^{100000}} = (-5,1857177 + 2569198,5/t^2)^2;$$

для углеродистых сталей 16К, 18К, 20 и 20К

$$R_{\text{m/t}^{100000}} = \left(-9,647793 + 172866,37/t^{1,5}\right)^2$$

Для материалов, не упомянутых в табл. 4.3.5-1 — 4.3.5-3, характеристики прочности являются предметом специального рассмотрения Речным Регистром.

Характеристики прочности котельных сталей принимаются по стандартам.

4.3.6 Допускаемое напряжение σ , применяемое при расчете прочных размеров, должно определяться по формуле, МПа:

$$\sigma = X_{\sigma} / k_{\sigma} \,, \tag{4.3.6}$$

где X_{σ} — характеристика прочности материала, МПа, принимаемая согласно 4.3.1 — 4.3.5;

 k_{σ} — коэффициент запаса прочности, выбираемый согласно 4.4 соответственно принятой характеристике прочности.

4.4 КОЭФФИЩИЕНТЫ ЗАПАСА ПРОЧНОСТИ

4.4.1 Для определения допускаемых напряжений должны быть использованы коэффициенты запаса прочности, приведенные в табл. 4.4.1-1 для элементов котлов, экономайзеров, пароперегревателей и в табл. 4.4.1-2 — для элементов теплообменных аппаратов и сосудов под давлением.

Коэффициенты запаса прочности для жаровых труб, огневых камер и подобных элементов указаны в 4.4.3.

Таблица 4.3.5-1

	$R_{\rm m}$,		I	асчет	ная тег	иперат	ypa, °C	0	
Марка стали		20	100	200	250	300	350	400	450
	МПа	ŀ	Іижни	й пред	цел тек	сучесті	и сталі	4 , МП	a
Углеродистая сталь 10	330	195	186	177	162	147	127	108	78
Углеродистые стали 12К и 15К	350	205	196	181	167	142	118	98	78
Углеродистая сталь Ст. 3		205	196	186	177	157	-	-	-
Углеродистые стали 16К, 20 и 20К		235	226	206	186	157	137	118	98
Углеродистая сталь 18К	430	255	245	226	206	177	157	137	118
Легированная сталь 15ХМ	440	225	226	221	216	216	206	196	191
Легированная сталь 12Х1МФ	440	255	255	250	245	235	226	216	206
Легированные стали 16ГС и 09Г2С		265	255	235	226	196	177	157	123
Легированная сталь с повышенным		335	324	304	284	275	255	245	235
содержанием марганца 22ГК									

Таблица 4.3.5-2

		_			Расче	тная	темп	ератур	pa, °C		
Марка стали	R _m , МПа	<i>R</i> _{ен} , МПа	370	380	390	400	410	420	430	440	450
	WIII	WIIIa	Пр	едел ,	длите	льной	проч	ност	и ста.	пи, М	Па
Углеродистые стали 10, 12К,	330-	195-	186	157	137	118	103	88	74	64	59
15K	350	205									
Углеродистые стали 16К, 18К,	440-	235-	216	186	162	142	127	108	98	83	69
20 и 20К	430	255									
Легированная сталь 15ХМ	440	225	-	-	-	-	-	-	-	-	265
Легированные стали 16ГС,	450	265	255	216	186	167	147	127	113	98	88
09Γ2C											
Легированная сталь с повы-	530	335	245	226	206	186	167	157	137	118	103
шенным содержанием марган-											
ца 22ГК											

Таблица 4.3.5-3

	R_{m} ,	R	Расчетная температура, °С								
Марка стали		$R_{ m eH}$, МПа	460	470	480	490	500	510	520	530	
		IVIIIa	Пред	ел дл	ителы	ной п	рочно	сти с	гали,	МПа	
Легированная сталь 15ХМ	440	225	245	226	196	157	137	118	103	88	
Легированная сталь 12Х1МФ		225	-	-	196	186	177	167	152	137	
Легированные стали 16ГС, 09Г2С		265	78	69	-	-	-	-	-	-	
Легированная сталь с повышен-		335	93	83	74	69	59	49	34	25	
ным содержанием марганца 22ГК											

 $\begin{tabular}{ll} T аблица & 4.4.1-1 \\ K оэффициент запаса прочности k_{σ} \\ элементов котлов, экономайзеров и пароперегревателей \\ \end{tabular}$

	Внутренне	е давление	Наружное	давление
Наименование	Стальной прокат и поковки	Стальное литье	Стальной прокат и поковки	Стальное литье
Цилиндрические и сферические стенки	1,7	2,2	1,9	2,5
Выпуклые днища	1,7	2,2	2,0	2,5
Котельные трубы и трубы пароперегревателей	1,7	-	2,0	-
Конические стенки	1,7	2,2	2,0	2,6
Плоские стенки	1,7	2,2	-	-
Тарельчатые днища	1,7	2,2	-	-
Трубные решетки	1,7	-	-	-
Прямоугольные камеры	1,7	-	-	-
Балки потолочные	1,7	-	-	-
Связи длинные и короткие, связанные трубы	2,5	-	2,5	-

- Примечание. Коэффициенты запаса прочности для жаровых труб, огневых камер, дымовых патрубков и других подобных элементов независимо от значений, приведенных в данной таблице, должны приниматься:
 - 3,0 для волнистых жаровых труб;
 - 2,5 для гладких труб и огневых камер;
 - 2,2 для дымовых патрубков, находящихся под давлением, и подобных стенок, омываемых газами.

 $\label{eq:Tadinu} \mbox{$T$ add π u i a} \quad 4.4.1-2$ Коэффициент запаса прочности $\emph{$k_{\sigma}$}$ элементов теплообменных аппаратов и сосудов под давлением

_	Вн	утреннее д	цавлени	ле <u> </u>	Наружное давление				
Наименование	Стальной прокат и поковки	Стальное литье	Чугун	Цветные сплавы	Стальной прокат и поковки	Стальное литье	Чугун	Цветные сплавы	
Цилиндрические	1,7	2,3	9,0	4,6	2,3	2,8	9,0	5,5	
и сферические									
стенки									
Выпуклые днища	1,7	2,3	9,0	4,6	2,3	2,8	9,0	5,5	
Трубы	1,7	-	-	4,6	2,3	-	-	5,5	
Конические	1,7	2,3	9,0	4,6	-	-	-	-	
стенки									
Плоские стенки	1,7	2,3	9,0	4,6	-	-	-	-	
Трубные решетки	1,7	-	-	4,6	-	-	-	-	
Тарельчатые	1,7	2,3	9,0	4,6	-	-	-	-	
днища									

- **4.4.2** Коэффициенты запаса прочности, приведенные в табл. 4.4.1-1 и 4.4.1-2, действительны для сталей, у которых отношение предела текучести к временному сопротивлению не более:
 - 0,65 для углеродистых сталей;
 - 0,70 для легированных сталей;
 - 0,75 для высокопрочных сталей.

Для деталей с отношением предела текучести к временному сопротивлению, превышающим указанные значения, коэффициент запаса прочности в каждом случае является предметом специального рассмотрения Речным Регистром.

4.4.3 Если в качестве расчетной характеристики принимается минимальное значение временного сопротивления $R_{\rm m/t}$ (см. 4.3.2), коэффициент запаса прочности должен быть не менее 3,7.

4.5 КОЭФФИШИЕНТЫ ПРОЧНОСТИ

4.5.1 Коэффициенты прочности сварных соединений должны приниматься по табл. 4.5.1-1 в зависимости от конструкции соединения и способа сварки; при этом значение коэффициента прочности сварного соединения ф в зависимости от класса котлов, теплообменных аппаратов и сосудов под давлением (см. табл. 4.5.1-2) следует принимать не менее указанного в табл. 4.5.1-3.

 $\label{eq:Tadinu} T\, a\, d\, \pi\, u\, u\, a \quad 4.5.1\text{--}1$ Значения коэффициента прочности сварных соединений ϕ

	Механизированн	ая ручная сварка	Автоматическая сварка			
Сварной шов	Стыковое соединение	Нахлесточное соединение	Стыковое соединение	Нахлесточное соединение		
Двусторонний	0,9	0,7	1,0	0,8		
Односторонний	-	0,6	-	0,7		
Односторонний на подкладке	0,8	-	0,9	-		
Односторонний без подкладки	0,7	-	0,8	-		

Примечания: 1. Во всех случаях должно быть обеспечено полное сплавление основного металла с наплавленным металлом корня шва.

- 2. Для электрошлаковой сварки коэффициент прочности сварного шва соединения $\phi=1,0.$
- **4.5.2** Значение коэффициента прочности цилиндрических стенок, ослабленных отверстиями одинакового диаметра, должно приниматься равным наименьшему из трех значений:
- **.1** коэффициента прочности цилиндрических стенок, ослабленных продольным рядом или коридорным полем отверстий с одинаковым шагом (рис. 4.5.2.1), определенного по формуле

Таблина 4.5.1-2

Наименование оборудования	Параметры	Класс
Котлы, в том числе утилизационные, ком-	$p > 0.35 \mathrm{MHa}$	I
бинированные, автономные водогрейные с температурой подогрева воды выше 115°C, а также паронагреватели и паросборники	<i>p</i> ≤ 0,35 MΠa	II
Обаграрами и нарам нарагамаратари	<i>p</i> > 1,6 МПа	I
Обогреваемые паром парогенераторы	<i>p</i> ≤ 1,6 M∏a	II
	$p > 4,0 \ \mathrm{M\Pi a}$ или $t > 350 \ ^{\circ}\mathrm{C}$	
	или $s > 35$ мм	1
Сосуды под давлением и теплообменные	1,6 < p ≤ 4,0 МПа или	II
аппараты	$120 < t \le 350$ °C или $16 < s \le 35$ мм	
	<i>p≤</i> 1,6 МПа и <i>t≤</i> 120°С и <i>s≤</i> 16 мм	III
Сосуды под давлением и теплообменные аппараты с токсичной, воспламеняющейся	Любые	I
рабочей средой		

Таблина 4.5.1-3

Оборудование	Коэффициент прочности сварного соединения ф					
	Класс I	Класс II	Класс III			
Котлы, пароперегреватели и паросборники	0,9	0,8				
Обогреваемые паром парогенераторы	0,9	0,8	_			
Теплообменные аппараты и сосуды под давлением	0,9	0,7	0,6			

$$\varphi = (a - d)/a;$$
 (4.5.2.1)

.2 приведенного к продольному направлению коэффициента прочности цилиндрических стенок, ослабленных поперечным рядом или полем отверстий с одинаковым шагом (рис. 4.5.2.1), определенного по формуле

$$\varphi = 2(a_1 - d)/a_1;$$
 (4.5.2.2)

.3 приведенного к продольному направлению коэффициента прочности цилиндрических стенок, ослабленных полем отверстий, расположенных в шахматном порядке и с равномерным расположением отверстий (рис. 4.5.2.3-1 и 4.5.2.3-2), определенного по формуле

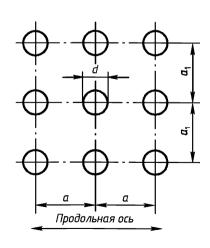
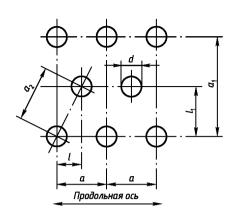



Рис.4.5.2.1

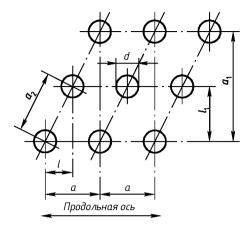


Рис.4.5.2.3-1

Рис.4.5.2.3-2

$$\varphi = k \left(a_2 - d \right) / a_2 \,, \tag{4.5.2.3-1}$$

где a — шаг между центрами двух соседних отверстий в продольном направлении, мм;

 a_1 — шаг между центрами двух соседних отверстий в поперечном (окружном) направлении (принимается по дуге средней окружности), мм;

 a_2 — шаг между центрами двух соседних отверстий в диагональном направлении, определяемый по формуле, мм:

$$a_2 = \sqrt{l^2 + l_1^2} \; ; \tag{4.5.2.3-2}$$

l — расстояние между центрами двух соседних отверстий в продольном направлении, мм;

 l_1 — расстояние между центрами двух соседних отверстий в поперечном (окружном) направлении, мм;

d — диаметр отверстия под трубы, закрепляемые вальцеванием, или внутренний диаметр приварных труб и высаженных штуцеров, мм;

k — коэффициент, определяемый по табл. 4.5.2.3 в зависимости от $l_{\it I}/l$ или с помощью формулы

$$k = 0,93373823 + 0,4844953 (l_1/l)^2 - 0,35846336 (l_1/l)^{2,5} + 0,0700321 (l_1/l)^3$$
.

Таблица 4.5.2.3

l_1 / l	5	4,5	4,0	3,5	3,0	2,5	2,0	1,5	1,0	0,5
k	1,76	1,73	1,70	1,65	1,60	1,51	1,41	1,27	1,13	1,0

4.5.3 Если в рядах или полях отверстий с равномерным шагом имеются отверстия разных диаметров, то в формулах (4.5.2.1), (4.5.2.2) и (4.5.2.3-1) для определения коэффициента прочности вместо d следует принимать значение, равное среднему арифметическому диаметров двух наибольших отверстий, расположенных рядом.

При непостоянном шаге отверстий одинакового диаметра в формулах для определения коэффициента прочности следует принимать наименьшие значения a, a_1 и a_2 .

- **4.5.4** В случае расположения отверстий в сварных швах коэффициент прочности следует принимать как произведение коэффициента прочности сварного соединения и коэффициента прочности стенки, ослабленной отверстиями.
- **4.5.5** Для бесшовных цилиндрических стенок, не ослабленных сварными соединениями и рядом или полем отверстий, коэффициент прочности ф следует принимать равным единице.
- **4.5.6** Коэффициенты прочности, определенные по формулам (4.5.2.1), (4.5.2.2) и (4.5.2.3-1) для стенок, ослабленных отверстиями под трубы, закрепляемые вальцеванием, должны приниматься не менее 0,3.
- **4.5.7** При изготовлении цилиндрических стенок из листов разной толщины, соединенных продольными сварными швами, расчеты толщины должны производиться для каждого листа с учетом ослабления стенки.
- **4.5.8** Определение коэффициента прочности стенок, ослабленных вырезами, подлежащими полному или частичному укреплению, производится в соответствии с разд. 12.
- **4.5.9** Коэффициент прочности плоских трубных решеток следует определять для тангенциального и радиального шагов по формуле (4.5.2.1); при расчете толщины трубной решетки должно приниматься меньшее из этих значений.

4.6 ПРИБАВКИ К РАСЧЕТНЫМ ТОЛЩИНАМ

4.6.1 Во всех случаях, когда прибавка к расчетной толщине стенки *с* не оговорена особо, она должна приниматься не менее 1 мм. Для стальных стенок толщиной более 30 мм, цветных сплавов или высоколегированных материалов, стойких к воздействию коррозии, а также для материалов, защищенных от воздействия коррозии, например, плакированных или облицованных пластмассой, по согласованию с Речным Регистром прибавка к расчетной толщине стенок может не приниматься.

4.6.2 Для теплообменных аппаратов и сосудов под давлением, которые недоступны для внутреннего осмотра или стенки которых подвержены сильной коррозии или износу, по требованию Речного Регистра прибавка c может быть увеличена.

5 ЦИЛИНДРИЧЕСКИЕ И СФЕРИЧЕСКИЕ ЭЛЕМЕНТЫ И ТРУБЫ

5.1 ЭЛЕМЕНТЫ, ПОДВЕРГАЮЩИЕСЯ ВНУТРЕННЕМУ ДАВЛЕНИЮ

5.1.1 Требования, приводимые ниже, действительны для следующих условий:

при $D_{\nu}/D \le 1,6$ – для цилиндрических стенок;

при
$$D_3/D \le 1,7$$
 – для труб;

при $D_{\rm a}/D \le 1,2$ – для сферических стенок.

Цилиндрические стенки с $D_a \le 200$ мм рассматриваются как трубы.

5.1.2 Толщина цилиндрических стенок и труб *s*, мм, должна быть не менее определяемой по формулам:

$$s = D_{a}p/(2\sigma\varphi + p) + c \tag{5.1.2-1}$$

или

$$s = Dp/(2\sigma\varphi - p) + c$$
, (5.1.2-2)

где D_{a} — наружный диаметр, мм;

p — расчетное давление (см. 4.1), МПа;

σ — допускаемое напряжение (см. 4.3.6), МПа;

ф — коэффициент прочности (см. 4.5), МПа;

D — внутренний диаметр, мм;

с — прибавка (см. 4.6), мм.

5.1.3 Толщина сферических стенок должна быть не менее определяемой по формулам:

$$s = D_{s}p/(4\sigma\phi + p) + c \tag{5.1.3-1}$$

или

$$s = Dp/(4\sigma\varphi - p) + c.$$
 (5.1.3-2)

Обозначения те же, что и в 5.1.2.

- **5.1.4** Толщины сферических и цилиндрических стенок и труб, мм, независимо от результатов, полученных по формулам (5.1.2-1), (5.1.2-2), (5.1.3-1), (5.1.3-2), должны быты не менее:
- .15 мм для цельнотянутых и сварных элементов:
- .2 12 мм для трубных решеток с радиальным расположением отверстий под трубы, закрепляемые вальцеванием;
- .3 6 мм для трубных решеток с приварными трубами;
 - **.4** указанных в табл. 5.1.4 (для труб).
- **5.1.5** Минимальные толщины стенок и труб из цветных сплавов и нержавеющих сталей могут быть приняты менее указанных в табл. 5.1.4, но не менее определяемых по формулам (5.1.2-1), (5.1.2-2), (5.1.3-1) и (5.1.3-2).

Таблипа 5.1.4

$D_{\rm a}$, mm	S, MM
До 20 (включ.)	1,75
Св. 20 до 30	2,0
Св. 30 до 38	2,2
Св. 38 до 51	2,4
Св. 51 до 70	2,6
Св. 70 до 95	3,0
Св. 94 до 102	3,25
Св. 102 до 121	3,5
Св. 121 до 152	4,0
Св. 152 до 191	5,0
Св. 191	5,4

Примечание. Уменьшение толщины стенки, вызванное изгибом или раздачей, следует компенсировать прибавками.

5.2 ЭЛЕМЕНТЫ, ПОДВЕРГАЮЩИЕСЯ НАРУЖНОМУ ДАВЛЕНИЮ

- **5.2.1** Требования, приведенные ниже, действительны для цилиндрических стенок при $D_{\rm a}/D \le 1,2$. Толщину труб с $D_{\rm a} \le 200$ мм следует определять согласно 5.1.2.
- **5.2.2** Толщина *s* гладких цилиндрических стенок с жесткими элементами или без них, в том числе гладких жаровых труб котлов, должна быть не менее определяемой по формуле, мм:

$$s = 50 \left(B + \sqrt{B^2 + 0.04AC} \right) / A + c \quad , \tag{5.2.2-1}$$

где

$$A = 200\sigma (1 + 0.1D_{\rm m}/l) (1 + 5D_{\rm m}/l)/D_{\rm m}, \qquad (5.2.2-2)$$

$$B = p(1 + 5D_{\rm m}/l), (5.2.2-3)$$

$$c = 0.045 pD_{\rm m}$$
, (5.2.2-4)

p — расчетное давление, МПа;

 $D_{\rm m}$ — средний диаметр, мм;

l — расчетная длина цилиндрической части между жесткими элементами, мм;

σ — допускаемое напряжение (см. 4.3.6), МПа;

с — прибавка (см. 4.6), мм.

В качестве жестких элементов могут приниматься торцовые днища, присоединения жаровой трубы к днищам и огневой камере, а также кольца жесткости (рис. 5.2.2) или конструкции, им подобные.

5.2.3 Толщина стенок *s* волнистых жаровых труб должна быть не менее определенной по формуле, мм:

$$s = Dp/(2\sigma) + c, \qquad (5.2.3)$$

где p — расчетное давление (см. 4.1), МПа;

D— наименьший внутренний диаметр жаровой трубы в волнистой части, мм;

- σ допускаемое напряжение (см. 4.3.6), МПа;
- *с* прибавка (см. 4.6), мм.
- **5.2.4** Если длина прямого участка волнистой жаровой трубы от стенки переднего днища до начала первой волны превышает длину волны, толщина стенки этого участка должна определяться по формуле (5.2.2-1).
- **5.2.5** Толщина стенки гладкой жаровой трубы должна быть не менее 7 и не более 20 мм. Толщина волнистой жаровой трубы должна быть не менее 10 и не более 20 мм.
- **5.2.6** Отверстия и вырезы в цилиндрических и сферических стенках должны быть укреплены в соответствии с разд. 12.
- **5.2.7** Толщина *s*-образных колец (рис. 5.2.7), соединяющих топки вертикальных котлов с обечайками и несущих вертикальные нагрузки, должна быть не менее определенной по формуле, мм:

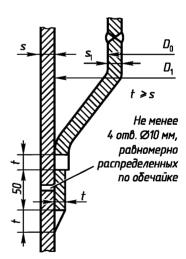


Рис. 5.2.7

$$s_1 \ge 3, 7\sqrt{pD_1(D_1 - D_o)}/\sigma + 1;$$
 (5.2.7)

где p — расчетное давление (см. 4.1), МПа;

σ — допускаемое напряжение (см. 4.3.6 и 4.4.3), МПа;

 D_1 — внутренний диаметр стенки котла, мм;

 D_{0} — внешний диаметр огневой камеры в месте соединения с кольцом, мм.

6 КОНИЧЕСКИЕ ЭЛЕМЕНТЫ

6.1 Толщина стенок *s* конических элементов, подвергающихся внутреннему давлению, должна быть не менее большего из значений, определяемых по формулам, мм:

.1 при $\alpha \le 70$ °

$$s = 0.25D_{a}py/(\sigma\varphi) + c$$
 (6.1.1-1)

или

$$s = D_c p/[(2\sigma\varphi - p)\cos\alpha] + c; \tag{6.1.1-2}$$

.2 при $\alpha > 70$ °

$$s = 0,3\alpha \left[D_{a} - (r+s) \right] \sqrt{p/(\sigma\varphi)} / 90 + c, \qquad (6.1.2)$$

где D_{a} — наружный диаметр (см. рис. 6.1-1 — 6.1-4), мм;

p — расчетное давление (см. 4.1), **МП**а;

у — коэффициент формы (табл. 6.1);

σ — допускаемое напряжение (см. 4.3.6), МПа;

ф — коэффициент прочности (см. 4.5):

для формул (6.1.1-1) и (6.1.2) следует принимать коэффициент прочности кольцевого сварного соединения, а для формулы (6.1.1-2) — продольного сварного соединения; для бесшовных обечаек, а также при расстоянии от кромки до кольцевого шва, превышающем значение $0.5\sqrt{D_{\rm a}s/\cos\alpha}$, коэффициент прочности следует принимать равным единице;

с — прибавка (см. 4.6), мм;

 D_c — расчетный диаметр (рис. 6.1.1–6.1.4), мм;

$$\left. \begin{array}{c} \alpha, \alpha_1 \\ \alpha_2, \alpha_3 \end{array} \right\}$$
 углы (см. рис. 6.1.1-6.1.4), град;

r — радиус закругления кромки обечайки (см. рис. 6.1-1, 6.1-2 и 6.1-4), мм.

Рис. 6.1-4

На рис. 6.1-1, 6.1-2 и 6.1-4 l – расстояние от кромки широкого конца параллельно образующей конусной обечайки, принимаемое равным 10-кратной толщине, но не более 0.5 длины образующей конусной обечайки, мм.

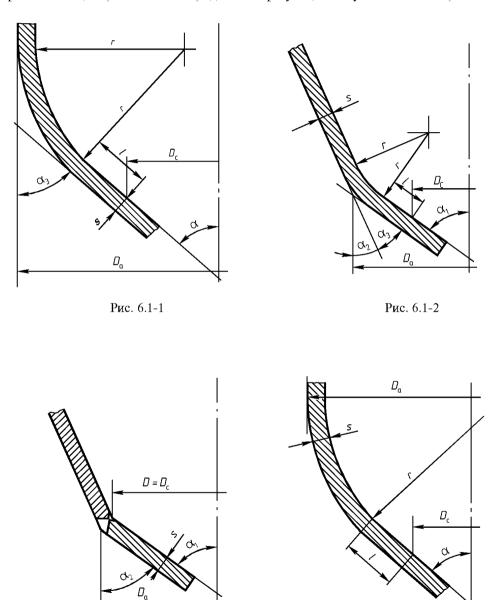


Рис. 6.1-3

	1 аолица ол											
Угол α,	Коэффициент формы y при отношении $r/D_{\rm a}$											
град	0,01	0,02	0,03	0,04	0,06	0,08	0,10	0,15	0,20	0,30	0,40	0,50
10	1,4	1,3	1,2	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1
20	2,0	1,8	1,7	1,6	1,4	1,3	1,2	1,1	1,1	1,1	1,1	1,1
30	2,7	2,4	2,2	2,0	1,8	1,7	1,6	1,4	1,3	1,1	1,1	1,1
45	4,1	3,7	3,3	3,0	2,6	2,4	2,2	1,9	1,8	1,4	1,1	1,1
60	6,4	5,7	5,1	4,7	4,0	3,5	3,2	2,8	2,5	2,0	1,4	1,1
75	13,6	11,7	10,7	9,5	7,7	7,0	6,3	5,4	4,8	3,1	2,0	1,1

Таблица 6.1

Примечание.

Для угловых соединений коэффициент формы у определяется при $r/D_0=0.01$.

- **6.2** Толщина стенок *s*, мм, конических элементов, подверженных наружному давлению, определяется согласно 6.1 при выполнении следующих условий:
- .1 коэффициент прочности сварного шва ф следует принимать равным единице;
 - **.2** прибавка c принимается равной 2 мм;
 - .3 расчетный диаметр D_c определяется по формуле

$$D_c = 0.5(d_1 + d_2)/\cos\alpha, (6.2.3)$$

где d_1 и d_2 — наибольший и наименьший диаметры конуса, мм;

.4 при α < 45 ° должно быть доказано, что не возникает упругая вогнутость стенок.

Давление p_1 , при котором возникает упругая вогнутость стенок, определяется по формуле, МПа:

$$p_1 = 26E \cdot 10^{-6} D_c \left[100(s - c)/D_c \right]^{2,5} / l_1 , \qquad (6.2.4)$$

где E — модуль упругости, $M\Pi a$;

 l_{I} — максимальная длина конуса или расстояние между подкреплениями конуса, мм.

Условием отсутствия упругой вогнутости стенок конуса является $p_1 < p$, где p – расчетное давление, МПа.

6.3 Сварные угловые соединения (см. рис. 6.1-3) допускаются только при $\alpha \le 30^\circ$ и $s \le 20$ мм. Соединение должно выполняться двусторонней сваркой. Для конусных обечаек, у которых $\alpha \ge 70^\circ$, угловые соединения могут выполняться без разделки кромок при условии выполнения требований 6.2.

Применение угловых соединений конусных элементов для котлов не рекомендуется.

6.4 Отверстия и вырезы в конических стенках должны быть укреплены в соответствии с разд. 12.

7 ПЛОСКИЕ СТЕНКИ, ДНИЩА И КРЫШКИ

7.1 ПЛОСКИЕ ДНИЩА И КРЫШКИ

7.1.1 Толщина плоских днищ s, не подкрепленных связями, и крышек (рис. 7.1.1-1-7.1.1-8 и 1.1-1.6 табл. 15.1) должна быть не менее определяемой по формуле, мм:

$$s = kD_c \sqrt{p/\sigma} + c, \qquad (7.1.1-1)$$

где k — расчетный коэффициент (рис. 7.1.1-1 – 7.1.1-8 и 1.1 – 1.6 табл. 15.1);

 $D_{\rm c}$ — расчетный диаметр, мм (рис. 7.1.1-2 — 7.1.1-7 и 1.6 табл. 15.1); для днищ, изображенных на рис.7.1.1-1 и 1.1 табл. 15.1,

$$D_{c} = D - r; (7.1.1-2)$$

где D — внутренний диаметр, мм;

r — внутренний радиус сопряжения днища, мм;

для прямоугольных или овальных крышек (см. рис. 7.1.1-8)

$$D_{c} = m\sqrt{2/\left[1 + (m/n)^{2}\right]}; (7.1.1-3)$$

где т— наибольшая длина стороны или оси лаза в свету, мм;

n — наименьшая длина стороны или оси лаза в свету, мм;

p — расчетное давление (см. 4.1), МПа;

 σ — допускаемое напряжение (см. 4.3.6), МПа;

с — прибавка (см. 4.6), мм.

На рис. 7.1.1-1 и 1.1 табл. 15.1 l — длина цилиндрической части днища, мм.

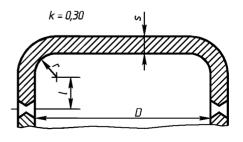
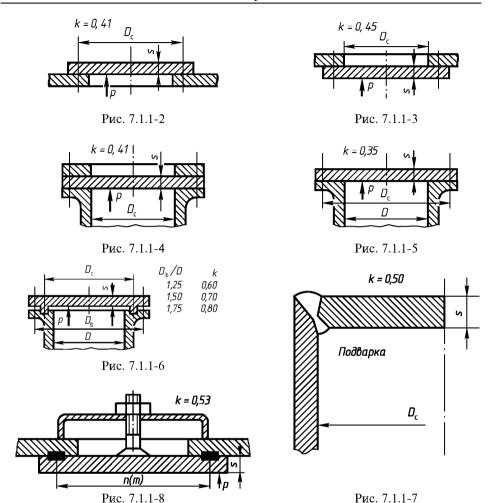



Рис. 7.1.1-1

7.1.2 Толщина днища s, мм, указанная на рис. 1.2 табл. 15.1, должна быть не менее определяемой по формуле (7.1.1-1).

Кроме того, следует соблюдать следующие условия:

.1 для круглых днищ

$$0,77s_1 \ge s_2 \ge 1,3p(0,5D_c-r)/\sigma;$$
 (7.1.2.1)

.2 для прямоугольных днищ

$$0.55s_1 \ge s_2 \ge 1.3 \, pnm / [\sigma(n+m)],$$
 (7.1.2.2)

где s_1 — толщина обечайки, мм;

 s_2 — толщина днища в районе разгрузочной канавки, мм. Во всех случаях значение s_2 должно быть не менее 5 мм.

Остальные обозначения – те же, что и в 7.1.1.

7.1.3 Толщина h плоских кольцеобразных оснований топок вертикальных котлов (рис. 7.1.3) должна быть не менее определенной по формуле, мм:

$$h \ge 150 \sqrt{pD_1} / \sigma \,, \tag{7.1.3}$$

где p — расчетное давление (см. 4.1), МПа;

 σ — допускаемое напряжение (см. 4.3.6), МПа;

 D_1 — внутренний диаметр стенки котла, мм.

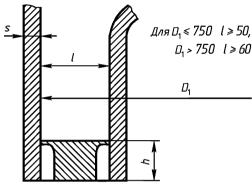


Рис. 7.1.3

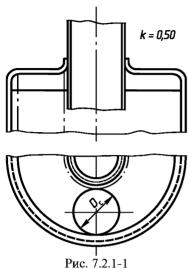
7.2 СТЕНКИ, ПОДКРЕПЛЕННЫЕ СВЯЗЯМИ

7.2.1 Толщина плоских стенок *s* (рис. 7.2.1-1 и 7.2.1-2), подкрепленных длинными и короткими связями, кницами, связанными трубами или другими подобными конструкциями, должна быть не менее определяемой по формуле, мм:

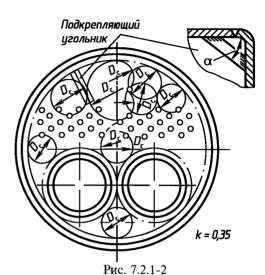
$$s = kD_c \sqrt{p/\sigma} + c \quad , \tag{7.2.1-1}$$

где k — расчетный коэффициент (см. рис.7.2.1-1 — 7.2.1-3 и рис. 5.1 — 5.3 табл. 15.1). Если рассматриваемый участок стенки подкреплен связями, для которых значения коэффициента k различны, то в формуле (7.2.1-1) принимается среднее арифметическое значений этих коэффициентов;

 D_c — расчетный условный диаметр, мм (см. рис. 7.2.1-1 и 7.2.1-2), принимаемый равным:


при равномерном распределении связей

$$D_c = \sqrt{{a_1}^2 + {a_2}^2} \; ; \tag{7.2.1-2}$$


при неравномерном распределении связей

$$D_c = 0.5(a_3 + a_4). (7.2.1-3)$$

Здесь a_1 , a_2 , a_3 , и a_4 — шаг или расстояние между связями (см. рис. 7.2.1-3), мм.

Во всех остальных случаях необходимо принимать D_c равным диаметру наибольшей окружности, которую можно описать через центры трех связей или через центры связей и начало закругления отбортовки, если радиус последней отвечает требованиям 7.3. Отбортовка стенки в этом случае рассматривается как укрепленная точ-

k = 0, 45

Рис. 7.2.1-3

ка. Отбортовка лаза за укрепленную точку приниматься не должна.

Остальные обозначения — те же, что и в 7.1.1.

7.3 ОТБОРТОВКА ПЛОСКИХ ДНИШ

7.3.1 При расчетах плоских стенок и днищ отбортовка учитывается только в тех случаях, когда ее радиусы не меньше значений, указанных в табл. 7.3.1.

Минимальный радиус отбортовки должен быть не менее 1,3 толшины стенки.

7.3.2 Длина цилиндрической части *l*, мм, плоского отбортованного днища должна быть не менее $0.5\sqrt{Ds}$ (см. рис. 7.1.1-1).

Табиина 731

7.3.3 Днища с разгрузочной канавкой должны иметь радиус закругления канавки r согласно 1.2 табл. 15.1.

7.4 УКРЕПЛЕНИЕ ВЫРЕЗОВ

7.4.1 Если фактическая толщина стенки больше, чем требуется по формулам (7.1.1-1) и (7.2.1-1), то максимальный диаметр d неукрепляемого выреза следует определять по формуле, мм:

Радиус	Наружный диа-						
отбортовки, мм	метр днища, мм						
25	До 350						
30	351 - 500						
35	501 - 950						
40	951 - 1400						
45	1401 - 1900						
50	Более 1900						

$$d = 8s_{\rm f} \left[1, 5 \left(s_{\rm f} / s \right)^2 - 1 \right] , \qquad (7.4.1)$$

где $s_{\rm f}$ — фактическая толщина стенки, мм;

s — расчетная толщина стенки, требуемая по формулам (7.1.1-1) и (7.2.1-1), мм.

7.4.2 Для вырезов диаметром более 4*s* или более определенного по формуле (7.4.1) следует предусматривать крепления их кромок.

Размеры укрепляющих элементов штуцеров и патрубков должны удовлетворять условию

$$s_{\rm r} \left[\left(h/s_{\rm f} \right)^2 - 0.65 \right] \ge 0.65d - 1.4s_{\rm f} ,$$
 (7.4.2)

где $s_{\rm r}$ — ширина укрепляющего элемента (рис. 7.4.2), мм;

h — высота укрепляющего элемента (рис. 7.4.2), мм.

Остальные обозначения — те же, что и в 7.4.1.

7.4.3 Расчетные высоты укрепляющих элементов должны определяться из условия

$$h_{1,2} \le \sqrt{(d+s_{\rm r})s_{\rm r}}$$
 , (7.4.3)

где $h_{1,2}$ — расчетные высоты штуцеров или патрубков (см. рис. 7.4.2), мм. Остальные обозначения — те же, что и в 7.4.1 и 7.4.2.

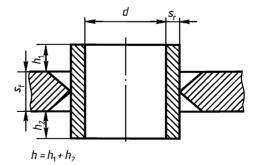


Рис. 7.4.2

8 ТРУБНЫЕ РЕШЕТКИ

8.1 Толщина *s* плоских трубных решеток теплообменных аппаратов должна быть не менее определенной по формуле, мм:

$$s = 0.9kD_{\rm B}\sqrt{p/(\sigma\varphi)} + c, \qquad (8.1)$$

где k — коэффициент, зависящий от отношения толщины корпуса δ к толщине трубной решетки s. Для трубной решетки, приваренной к корпусу по контуру, коэффициент k определяется по рис. 8.1 или с помощью уравнения $k=0,49964239-0,14036385 \left(\delta/s\right)^{1,5}$.

При этом следует предварительно задаваться толщиной s. В случае расхождения между предварительно заданным значением s и определенным по

формуле (8.1) более чем на 5% производится перерасчет. Для трубной решетки, закрепленной между фланцами корпуса и крышки с помощью болтов или шпилек, k=0,5;

 $D_{\rm B}$ — внутренний диаметр корпуса, мм; p — расчетное давление (см. 4.1), МПа;

о — допускаемое напряжение (см. 4.3.6), МПа. Для теплообменных аппаратов жесткой конструкции, если материалы корпуса и труб имеют различные коэффициенты линейного расширения, допускаемое напряжение должно быть уменьшено на 10%;

φ — коэффициент прочности трубной решетки, ослабленной отверстиями под трубы (см. 8.2);

с — прибавка, мм.

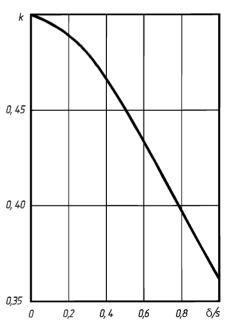


Рис. 8.1

8.2 Коэффициент прочности трубной решетки при 0.75 > d/a > 0.4 и $D_{\rm B}/{\rm S} \ge 40$ определяется:

при расположении отверстий по равностороннему треугольнику

$$\varphi = 0.935 - 0.65(d/a); \tag{8.2-1}$$

при коридорном и шахматном расположении, а также при расположении отверстий по концентрическим окружностям

$$\varphi = 0.975 - 0.68(d/a_2), \tag{8.2-2}$$

где d — диаметр отверстий в трубной решетке, мм;

- a шаг между центрами отверстий при расположении их по треугольнику, мм;
- a_2 меньший из шагов при коридорном, шахматном расположении и при расположении отверстий по концентрическим окружностям, мм.
- **8.3** Для отношений $d/a=0.75\div0.80$ толщина трубных решеток, вычисленная по формуле (8.1), должна удовлетворять условию $f_{\min}\geq 5d$, где f_{\min} минимальное допускаемое сечение трубной доски в мостике, мм².
- **8.4** Толицины трубных решеток, определяемые по формуле (8.1), для решеток с развальцованными трубами должны также удовлетворять условию

$$s = 10 + 0,125d. \tag{8.4}$$

Вальцовочные соединения трубных решеток с трубами должны, кроме того, удовлетворять требованиям 13.2.2 – 13.2.3.

8.5 Если трубные решетки подкреплены приварными или развальцованными трубами, которые удовлетворяют требованиям разд. 13, то расчет таких решеток может производиться согласно требованиям разд. 7.

9 ВЫПУКЛЫЕ ДНИЩА

9.1 Толщина *s* стенок выпуклых гладких днищ и днищ с вырезами, подвергающихся внутреннему или наружному давлению (рис. 9.1), должна быть не менее определяемой по формуле, мм:

$$s = D_a py / (4\sigma\varphi) + c, \qquad (9.1)$$

где $D_{\rm a}$ — наружный диаметр дниша, мм;

p — расчетное давление (см. 4.1), МПа;

у — коэффициент формы, зависящий от отношения высоты днища к наружному диаметру и от характера ослабления днища и выбираемый из табл. 9.1. Для оп-

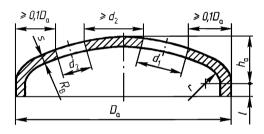


Рис. 9.1

Таблица 9.1

ределения y по табл. 9.1 значение s выбирается из ряда стандартных толщин. Окончательно принятое значение s должно быть не менее определенного по формуле (9.1). Для днищ эллиптической и коробковой формы $R_{\rm B}$ (см. рис. 9.1) является наибольшим радиусом кривизны.

Значения коэффициента формы у

Лнище	$h_{\rm a}/D_{\rm a}$	y^1	$y_A^{\ 2}$ при $d \ / \sqrt{D_{a} s}$						y _o ³
			0,5	1,0	2,0	3,0	4,0	5,0	,,,
Выпуклой эллиптической или коробковой формы $R_{\rm B} = D_{\rm a}$	0,20	2,9	2,9	2,9	3,7	4,6	5,5	6,5	2,4
Выпуклой эллиптической или коробковой формы $R_{\rm B} = 0.8 D_{\rm a}$	0,25	2,0	2,0	2,3	3,2	4,1	5,0	5,9	1,8
Выпуклой сферической формы $R_{ m B}{=}0.5D_{ m a}$	0,5	1,1	1,2	1,6	2,2	3,0	3,7	4,3	1,1

 $^{^{1}}$ Для района отбортовки и для глухих днищ.

² Для выпуклой части днища с неукрепленными вырезами.

³ Для выпуклой части днища с укрепленными вырезами

 $[\]Pi$ р и м е ч а н и е . d — больший размер неукрепленного выреза, мм.

Формула (9.1) действительна при условии выполнения следующих соотношений:

$$\begin{split} &h_{\rm a}/d_{\rm a} \geq 0,18~;~ \big(s-c\big)/D_{\rm a} \geq 0,0025~;~ R_{\rm B} \leq D_{\rm a}~;~ r \geq 0,1 D_{\rm a}~;\\ &150~{\rm mm} \geq l \geq \begin{cases} 25~{\rm mm}~{\rm при}~s \leq 10~{\rm mm};\\ 15~{\rm mm}~\pm~s~{\rm при}~10~{\rm mm} < s \leq 20~{\rm mm};\\ 25~{\rm mm}~+~0,5s~{\rm при}~s > 20~{\rm mm}. \end{cases} \end{split}$$

Для выпуклой части днища с неукрепленными вырезами данные табл. 9.1 могут быть заменены следующими формулами:

при
$$h_{\rm a}/D_{\rm a}=0.2~y_{\rm A}=2,260865+0,63952 \left(d/\sqrt{D_{\rm a}~s}\right)^{1,1742375}$$
; при $h_{\rm a}/D_{\rm a}=0.25~y_{\rm A}=1,611597+0,74583 \left(d/\sqrt{D_{\rm a}~s}\right)^{1,0891028}$; при $h_{\rm a}/D_{\rm a}=0.5~y_{\rm A}=0.852158+0,71022 \left(d/\sqrt{D_{\rm a}~s}\right)^{0.99437422}$.

Для промежуточных значений h_a/D_a коэффициент формы у определяется путем линейной интерполяции. Район отбортовки днища устанавливается на расстоянии не менее $0.1\ D_a$ от торца цилиндрической части (см. рис. 9.1);

- d больший размер неукрепленного выреза, мм;
- σ допускаемое напряжение (см. 4.3.6), МПа;
- ф коэффициент прочности (см. 4.5);
- c прибавка, мм, которая должна приниматься равной 2 мм при внутреннем давлении и 3 мм при наружном давлении. При толщине стенки более 30 мм указанные выше значения прибавки могут быть уменьшены до 1 мм.
- **9.2** Для выпуклых днищ огневых камер, вертикальных котлов в случае, если через них проходит патрубок дымохода, толщина стенки рассчитывается как для глухих днищ.
- **9.3** Для выпуклых дниш, подвергающихся наружному давлению, за исключением чугунных, необходимо производить проверочный расчет на устойчивость по формуле

$$36,6E_{\rm t} (s \cdot c)^2 / (100 pR_{\rm B}^2) > 3,3$$
, (9.3)

где $E_{\rm t}$ — модуль упругости при расчетной температуре, МПа; значения модуля упругости для стали приведены в табл. 9.3, данные которой могут быть аппроксимированы уравнением $E_{\rm t} = 207417, 49 - 56,751267\,t^{1,0753689}$.

Таблица 9.3

Расчетная температура, °C	20	250	300	400	500
Модуль упругости $E_{\rm t} \times 10^{-5}$ для стали, МПа	2,06	1,86	1,81	1,72	1,62

Для цветных сплавов значения $E_{\rm t}$ должны быть согласованы с Речным Регистром;

 $R_{\rm B}$ – максимальный внутренний радиус кривизны, мм.

Остальные обозначения те же, что и в 9.1.

9.4 Минимальная толщина стенки стальных выпуклых днищ должна быть не менее 5 мм. Для днищ, изготовленных из цветных сплавов и нержавеющих сталей, по согласованию с Речным Регистром минимальная толщина стенки может быть уменьшена.

10 ТАРЕЛЬЧАТЫЕ ДНИЩА

10.1 Толщина *s* глухого тарельчатого днища (рис. 10.1), подвергающегося внутреннему давлению, должна быть не менее определяемой по формуле, мм:

$$s = 3pD/\sigma + c, \tag{10.1}$$

где p — расчетное давление (см. 4.1), МПа;

D — внутренний диаметр фланца днища, принимаемый равным внутреннему диаметру корпуса, мм;

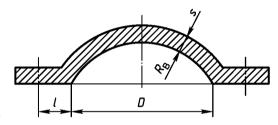


Рис. 10.1

- σ допускаемое напряжение (см. 4.3.6), МПа;
- *c* прибавка (см. 4.6), мм.

На рис. 10.1 размер l — расстояние от кромки внутреннего диаметра до оси крепящих болтов, мм.

10.2 Радиус кривизны днища $R_{\rm B}$ должен быть не более 1,2 D, а расстояние l — не более 2 s.

11 ПРЯМОУГОЛЬНЫЕ КАМЕРЫ

11.1 Толщина *s* стенки прямоугольных камер (рис. 11.1-1), подвергающихся внутреннему давлению, должна быть не менее определяемой по формуле, мм:

$$s = pn/(2,52\sigma\varphi_1) + \sqrt{4,5kp/(1,26\sigma\varphi_2)}$$
, (11.1-1)

где p — расчетное давление (см. 4.1), МПа;

n — половина ширины стороны камеры в свету, перпендикулярной к рассчитываемой, мм;

 σ — допускаемое напряжение (см. 4.3.6), МПа;

 ϕ_1 и ϕ_2 — коэффициенты прочности камер, ослабленных отверстиями, определяемые следующим образом:

 ϕ_1 — по формуле (4.5.2.1);

 ϕ_2 — по формуле (4.5.2.1) при d<0,6 m;

$$\phi_2 = 1 - 0,6 m/a$$
 при $d \ge 0,6 m;$
(11.1-2)

при смещении отверстий в формулу (11.1-2) необходимо вместо a подставить a_2 (рис. 11.1-2);

при наличии в прямоугольных камерах продольных сварных соединений (рис. 11.1-1) коэффициенты прочности ϕ_1 и ϕ_2 принимаются равными коэффи-

Рис. 11.1-1

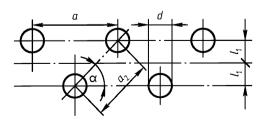


Рис. 11.1-2

циенту прочности сварного соединения, выбираемому согласно 4.5; продольные сварные соединения должны по возможности располагаться на участке l_1 , для которого k=0;

при наличии в стенке камеры нескольких ослаблений разных видов в расчет следует вводить наименьшее значение коэффициента прочности;

- d диаметр отверстий, мм. Для овальных отверстий в качестве размера d (см. рис. 11.1-2) следует принимать их размер в направлении продольной оси; в формулах для определения коэффициента прочности (4.5.2.1) и (11.1-2) в качестве d для овальных отверстий должен приниматься их размер в направлении, перпендикулярном оси камеры;
- k расчетный коэффициент для изгибающего момента, действующего в середине боковой стороны или по линии центров отверстий, мм 2 , для средней линии стороны камеры, определяемый по формулам:

$$k = (m^3 + n^3) / [3(m+n)] - 0.5m^2; (11.1-3)$$

для рядов отверстий или продольных соединений

$$k = (m^3 + n^3)/[3(m+n)] - 0.5(m^2 - l_1^2);$$
(11.1-4)

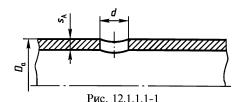
- m половина ширины рассчитываемой стороны камеры в свету, мм. При получении по формулам (11.1-3) и (11.1-4) результатов с отрицательным знаком значение k следует принимать по модулю. В случае смещения отверстий коэффициент k необходимо умножить на $\cos \alpha$ (см. puc. 11.1-2);
- l_1 расстояние рассматриваемого ряда отверстий от средней линии стороны камеры (см. рис. 11.1-2), мм.
- **11.2** Если по специальному согласованию с Речным Регистром в камерах допускаются угловые сварные соединения, то толщина стенки таких камер должна быть не менее определяемой по формуле, мм:

$$s = p\sqrt{m^2 + n^2}/(2,52\sigma\varphi_1) + \sqrt{4,5k_e p/(1,26\sigma\varphi_2)}, \qquad (11.2-1)$$

где k_e — расчетный коэффициент для изгибающего момента на кромках, определяемый по формуле, мм²:

$$k_{\rm e} = (m^3 + n^3) / [3(m+n)]$$
 (11.2-2)

Остальные обозначения — те же, что и в 11.1.


11.3 Радиус закругления сторон прямоугольных камер должен быть не менее 1,3 толщины, в любом случае он должен быть не менее 8 мм. Толщина стенок камеры под трубы, закрепляемые вальцеванием, должна быть не менее 14 мм; ширина перемычки между отверстиями — не менее 0,25 шага между центрами отверстий. Толщина стенок в районе закругления должна быть не менее определяемой по формулам (11.1-1) и (11.2-1).

12 УКРЕПЛЕНИЕ ВЫРЕЗОВ В ЦИЛИНДРИЧЕСКИХ, СФЕРИЧЕСКИХ И КОНИЧЕСКИХ СТЕНКАХ И В ВЫПУКЛЫХ ДНИЩАХ

12.1 ОБЩИЕ ПОЛОЖЕНИЯ

12.1.1 Различают вырезы:

- .1 при которых ослабление в районе выреза компенсируется избыточной толщиной (рис. 12.1.1.1-1 и 12.1.1.1-2);
- .2 укрепленные с помощью дискообразных накладок (приварышей), соединенных с укрепляемой сваркой стенкой (рис. 12.1.1.2-1 и 12.1.1.2-2);
- .3 укрепленные с помощью приварных трубообразных элементов: штуцеров, втулок, патрубков и т. п. (рис.12.1.1.3-1 12.1.1.3-3).

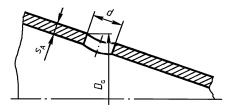
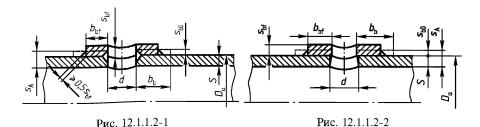
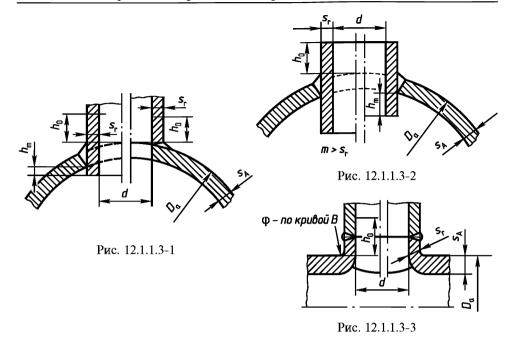




Рис. 12.1.1.1-2

12.1.2 Толщины стенок, у которых имеются вырезы, должны удовлетворять требованиям, приведенным в разд. 5-7.

12.2 РАЗМЕРЫ УКРЕПЛЕНИЙ

12.2.1 При избыточной по сравнению с расчетной толщине стенки дополнительное укрепление выреза можно не производить. При этом увеличенная толщина $s_{\rm A}$ не должна быть менее определенной по формулам, мм:

для цилиндрических стенок

$$s_{\rm A} = pD_{\rm a}/(2\sigma\phi_{\rm A} + p) + c;$$
 (12.2.1-1)

для сферических стенок

$$s_{\rm A} = pD_{\rm a}/(4\sigma\varphi_{\rm A} + p) + c;$$
 (12.2.1-2)

для конических стенок

$$s_{\rm A} = pD_{\rm c}/[(2\sigma\varphi_{\rm A} - p)\cos\alpha] + c,$$
 (12.2.1-3)

где $\phi_{\rm A}$ — коэффициент прочности укрепляемой стенки, ослабленной вырезом, определяемый в зависимости от безразмерного параметра $z=d/\sqrt{D_{\rm a}(s_{\rm A}-c)}$ по кривой исполнения A (рис. 12.2.1) или с помощью уравнения

$$\phi_{\mathbf{A}} = 0,99999 - 0,64495496 z + 0,38256807 z^{1,5} - 0,097418225 z^2 + 0,010042817 z^{2,5}.$$

В записанном уравнении так же, как и в предыдущих и последующих уравнениях, аппроксимирующих личные данные или заменяющих графики, в членах правой части сохранены все знаки после запятой, поскольку эти уравнения ориентированы на "машинный" счет.

Значения s_A в выражении для безразмерного параметра z должны быть такими же, как и вычисленные по формулам (12.2.1-1) – (12.2.1-3);

d — диаметр выреза (внутренний диаметр штуцера, втулки или патрубка) или размер оси овального или эл-

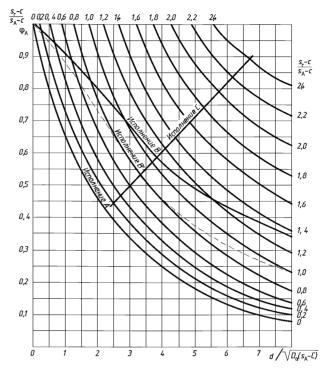


Рис. 12.2.1

липтического выреза в продольном направлении, мм.

Остальные обозначения – те же что в 5.1.2 и 6.1.

12.2.2 При укреплении вырезов в цилиндрических, сферических и конических стенках с помощью дискообразных накладок (приварышей) размеры накладок следует определять по формулам:

$$b_{\rm b} = \sqrt{D_{\rm a}(s_{\rm A} - c)};$$
 (12.2.2-1)

$$s_{\rm bo} \ge s_{\rm A} - s_{\rm f}$$
, (12.2.2-2)

где $b_{\rm b}$ – наибольшая эффективная ширина накладки (см. рис. 12.1.1.2-1 и 12.1.1.2-2), мм;

 s_{bo} – высота (толщина) накладки (см. рис. 12.1.1.2-1 и 12.1.1.2-2), мм;

 s_{A} — суммарная толщина укрепляемой стенки и накладки ($s+s_{bo}$), определяемая согласно 12.2.1, мм;

 $s_{\rm f}$ – фактическая толщина укрепляемой стенки, мм.

Остальные обозначения – те же, что и в 12.2.1.

Если фактическая ширина накладки меньше принятой, то соответственно должна быть увеличена ее высота по формуле

$$s_{\rm bf} \ge 0.5 s_{\rm bo} \left(1 + b_{\rm b} / b_{\rm bf} \right),$$
 (12.2.2-3)

где $s_{\rm bf}$ – фактическая высота (толщина) накладки, мм;

 $b_{\rm bf}$ – фактическая ширина накладки, мм.

Толщина сварного шва крепления накладки к укрепляемой стенке должна быть не менее $0.5 s_{\rm hf}$ (см. рис. 12.1.1.2-1).

- **12.2.3** При укреплении выреза в цилиндрических, сферических и конических стенках с помощью привариваемых трубообразных элементов размеры таких укреплений должны быть не менее значений, определенных следующим образом:
- .1 толщина стенки трубообразного элемента (пітуцера, втулки, патрубка и т.п.) $s_{\rm r}$, мм, определяется в зависимости от безразмерного параметра $d/\sqrt{D_{\rm a}(s_{\rm A}-c)}$ и коэффициента прочности $\phi_{\rm A}$ по кривым исполнения C (см. рис. 12.2.1), при этом вместо $s_{\rm A}$ и $\phi_{\rm A}$ на рис. 12.2.1 необходимо подставить значения $s_{\rm f}$ и $\phi_{\rm f}$; здесь $\phi_{\rm f}$ фактический коэффициент прочности стенки толщиной $s_{\rm f}$, определяемой по формулам (5.1.2-1) (5.1.2-2) и (6.1.2) путем решения уравнения относительно ϕ .

Вместо кривых исполнения С рис. 12.2.1 можно заменить применить уравнение

$$\begin{split} \left(s_{\mathrm{r}}-c\right)/\left(s_{\mathrm{A}}-c\right) &= 0,068122288+0,64965159\,z+1,6289637\,x-0,053601163\,z^2+\\ &+0,19506837\,x^2-0,010771264\,z\,x+0,0019261032\,z^3+\\ &+0,16813482\,x^3+0,076087445\,z\,x^2+0,0080427193\,z^2x, \end{split}$$
 где $x = \log\left(\phi_{\mathrm{f}}\right),\ z$ — см. 12.2.1.

По найденному соотношению $(s_r-c)/(s_A-c)$ определяется минимальная толщина штуцера, втулки или патрубка s_r , мм. В указанном отношении под s_A подразумевается фактическая толщина s_f ;

.2 минимальная расчетная высота трубообразного элемента $h_{\rm o}$ определяется по формуле, мм:

$$h_0 = \sqrt{d(s_r - c)}$$
 (12.2.3.2-1)

Если фактическая высота трубообразного элемента $h_{\rm f}$ менее определенной по формуле (12.2.3.2-1), то должна быть соответственно увеличена толщина $s_{\rm rf}$ по формуле

$$s_{\rm rf} = s_{\rm r} h_{\rm o} / h_{\rm f}$$
 (12.2.3.2-2)

- **12.2.4** Расчет укреплений вырезов выпуклых днищ следует производить следующим образом:
- .1 для вырезов без укрепления толщина стенки днища должна определяться с учетом выреза путем введения в формулу (9.1) вместо y значения y_A , определяемого по данным табл. 9.1 или заменяющим их формулам (см. 9.1);
- .2 для вырезов, укрепляемых дискообразными накладками, размеры накладок должны определяться согласно 12.2.2, при этом суммарную толщину укрепляемой стенки s_4 , мм, следует определять по формуле

$$s_{\rm A} = 0.25 p D_{\rm a} y_{\rm o} / (\sigma \phi_{\rm A}) + c,$$
 (12.2.4.2)

где y_0 – коэффициент формы, определяемый по табл. 9.1.

Остальные обозначения – те же, что и в 12.2.2;

- .3 для вырезов с трубообразными укреплениями размеры последних должны определяться согласно 12.2.3, причем в безразмерной величине $d/\sqrt{D_a(s-c)}$ вместо D_a подставляется (D_a +2s); при этом определяется фактический коэффициент прочности ϕ стенки днища толщиной s путем решения уравнения (9.1) относительно ϕ и подстановкой $\phi = \phi_A$, $y = y_o$ и $s = s_A$ (см. 9.1).
- **12.2.5** Для сквозных трубообразных элементов, у которых размер внутренней выступающей части $h_{\rm m} \ge s_{\rm r}$ (см. рис. 12.1.1.3-1 и 12.1.1.3-2), толщина стенки штуцера, втулки или патрубка может быть уменьшена на 20 %, но должна приниматься не менее требуемой толщины для данного расчетного давления.
- **12.2.6** Отношение толщины s_r стенки трубообразного укрепления к толщине укрепляемой стенки s должно быть не более 2,4. Если по конструктивным соображениям это отношение будет принято более 2,4, то в расчет должна приниматься толщина трубообразного укрепления, не превышающая 2,4 толщины укрепляемой стенки.
- 12.2.7 Дискообразные накладки и трубообразные элементы могут быть использованы для укрепления вырезов в комбинированном виде (рис. 12.2.7). В этом случае размеры элементов укреплений должны определяться с одновременным учетом требований, предъявляемых к диско- и трубообразным укреплениям.

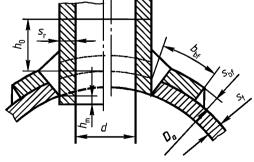


Рис. 12.2.7

12.2.8 Для высаженных штуцеров (см. рис. 12.1.1.3-3) толщина стенки s_A должна быть не менее значения, определенного по формулам (12.2.1-1) - (12.2.1-3) и (12.2.4.2), где коэффициент ϕ_A прочности стенки, ослабленной высаженным штуцером, определяется (см. рис. 12.2.1):

для $d/D_a \le 0.4$ — по кривой исполнения B;

для $d/D_a = 1$ – по кривой исполнения B';

для $0,4 \le d/D_{\rm a} \le 1$ — путем интерполяции между значениями $\phi_{\rm A}$, полученными с помощью кривых \emph{B} и $\emph{B}^{'}$.

Кривая исполнения B может быть аппроксимирована уравнением

$$\phi_{A} = \frac{1 - 0,32504121\,z + 0,051541069\,z^{2} - 0,00221821\,z^{3}}{1 - 0,24104482\,z + 0,038642594\,z^{2} + 0,00021662267\,z^{3}} \ ,$$

а кривая исполнения $B^{'}$ — уравнением

$$\phi_{A} = \frac{0,999999 - 0,3763077 z + 0,087355272 z^{2} - 0,00420065175 z^{3}}{1 - 0,26502171 z + 0,062559802 z^{2} + 0,0064948209 z^{3}},$$

где z — см. 12.2.1.

Толщина s, стенки высаженного бурта, мм, должна быть

$$s_{\rm r} \ge s_{\rm A} d/D_{\rm a} , \qquad (12.2.8)$$

но не менее требуемой толщины для расчетного давления.

12.3 ВЗАИМНОЕ ВЛИЯНИЕ ВЫРЕЗОВ

12.3.1 Взаимное влияние вырезов можно не учитывать при условии, что

$$(l + s_{\rm r1} + s_{\rm r2}) \ge 2\sqrt{D_{\rm a}(s_{\rm f} - c)},$$

$$(12.3.1-1)$$

где $(l + s_{r1} + s_{r2})$ — расстояние между двумя соседними вырезами (рис. 12.3.1-1 и 12.3.1-2), мм;

 D_a — наружный диаметр укрепляемой стенки, мм;

 s_f — фактическая толщина укрепляемой стенки, мм;

с — прибавка (см. 4.6), мм.

Если значение $(l + s_{r1} + s_{r2})$

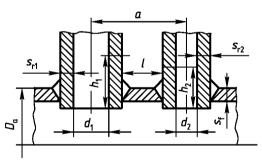


Рис. 12.3.1-1

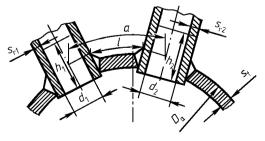


Рис. 12.3.1-2

меньше указанного в формуле (12.3.1-1) значения величины $2\sqrt{D_a(s_{\rm f}-c)}$, то следует проверить напряжение, возникающее в сечении между вырезами при действии расчетного давления. При этом напряжения, возникающие как в продольном, так и в поперечных направлениях, не должны превышать допускаемых согласно формуле

$$F/f_{c} \le \sigma \,, \tag{12.3.1-2}$$

где F — нагрузка от расчетного давления, действующая в сечении между вырезами (см. 12.3.2), H;

- $f_{\rm c}$ площадь сечения между вырезами (см. 12.3.3), мм²;
- σ допускаемое напряжение (см. 4.3.6), МПа.
- **12.3.2** Нагрузка от расчетного давления, H, действующая в сечении между двумя вырезами, должна определяться следующим образом:
- для вырезов, расположенных в продольном направлении цилиндрической стенки,

$$F_a = 0.5D \, pa$$
; (12.3.2.1)

.2 для вырезов, расположенных по окружности в цилиндрических и конических стенках, а также для вырезов, расположенных в сферических стенках,

$$F_{\rm b} = 0.25 Dpa;$$
 (12.3.2.2)

.3 для вырезов в выпуклых днищах

$$F_{\rm b} = 0.25 D \, pay \,, \tag{12.3.2.3-1}$$

где D – внугренний диаметр (для конических стенок — измеряемый у центра выреза), мм;

p — расчетное давление (см. 4.1), МПа;

a — шаг между двумя смежными вырезами (определяется по окружности с наружной стороны, как показано на рис. 12.3.1.2), мм;

у — коэффициент формы (см. 9.1).

При расположении вырезов в цилиндрических стенках с косым шагом для определения нагрузки используется формула (12.3.2.2) и результаты, получаемые по этой формуле, следует умножить на коэффициент

$$k = 1 + \cos^2 \alpha, \tag{12.3.2.3-2}$$

где α — угол наклона линии, соединяющей центры вырезов, к продольному направлению, град.

12.3.3 Расчетную площадь f_c сечения между двумя смежными вырезами с трубообразными укреплениями следует определять по формуле, мм²:

$$f_c = l(s-c) + 0.5[h_1(s_{r1} - c) + h_2(s_{r2} - c)], \qquad (12.3.3)$$

где l — ширина перемычки между двумя смежными укреплениями (см. рис. 12.3.1-1 и 12.3.1-2), мм;

s — толщина укрепляемой стенки, мм;

с — прибавка (см. 4.6), мм;

 s_{r1} и s_{r2} — толщины трубообразных укреплений (см. рис. 12.3.1-1 и 12.3.1-2), мм;

 h_1 и h_2 — высоты укреплений, мм, определяемые по формулам:

 $h_{1,2} = h_0 + s -$ для несквозных укреплений;

 $h_{1,2} = h_{\rm o} + s + h_{\rm m} -$ для сквозных укреплений;

 $h_{\rm o}$ — расчетная высота трубообразного укрепления [см. формулу (12.2.3.2-1)], мм;

 $h_{\rm m}$ — внутренняя выступающая часть трубообразного укрепления (см. рис.12.1.1.3-1, 12.1.1.3-2, 12.2.7), мм.

Для вырезов, укрепленных другими способами (комбинированными элементами или дискообразными укреплениями и т.п.), расчетная площадь сечения $f_{\rm c}$ определяется аналогично.

12.3.4 Для высаженных штуцеров, расположенных в одном ряду, коэффициент прочности ϕ , определенный по формуле (4.5.2.1), для этого ряда должен быть не менее коэффициента прочности ϕ_A , определенного по кривым исполнения B и $B^{'}$ на рис. 12.2.1. Если $\phi < \phi_A$, то для определения толщины стенки согласно 12.2.8 следует принимать значение коэффициента ϕ .

Настоящее требование относится также к приварным штуцерам, расположенным в одном ряду, толщина которых определена только из условия действия внутреннего давления.

13 СВЯЗИ

13.1 РАЗМЕРЫ ПРОЧНЫХ СВЯЗЕЙ

13.1.1 Площадь поперечного сечения длинных и коротких связей, угловых связей и труб, подверженных растягивающим или сжимающим нагрузкам, должна быть не менее определяемой по формуле, мм²:

$$f = p_{\rm s} f_{\rm s} \sigma \cos \alpha \,, \tag{13.1.1}$$

где p — расчетное давление (см. 4.1), МПа;

- $f_{\rm s}$ наибольшая площадь поверхности подкрепляемой стенки, приходящаяся на одну связь и ограничиваемая линиями, проходящими под прямым углом через середины прямых, соединяющих центр связи с соседними укрепленными точками (связями), мм². Площадь сечения связи и труб, находящихся в пределах этой площади, может быть вычтена из площади поверхности, приходящейся на одну связь;
 - σ допускаемое напряжение (см. 4.3.6), МПа;
- α угол между угловой связью и стенкой закрепления связи (см. рис. 7.2.1-2), град.
- **13.1.2** Для связей, подвергающихся продольному изгибу, допускаемые напряжения от изгиба должны приниматься с коэффициентом запаса прочности не менее 2,25.
 - 13.1.3 В случае применения конструкции днища с отдельной подкреп-
- ляющей связью (рис. 13.1.3) последняя должна быть рассчитана так, чтобы она могла воспринимать не менее половины нагрузки, приходящейся на днище. Толщина такого днища должна удовлетворять требованиям 7.2.1.
- **13.1.4** Толщина δ стенок дымогарных труб должна быть не

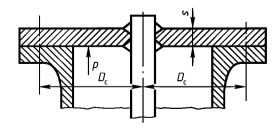


Рис. 13.1.3

менее толщины, указанной в табл. 13.1.4 или рассчитанной с помощью уравнения, мм:

$$\delta = 1000 / \left(-966, 35815 + 1555, 958 \times \exp\left(-d_{\pi} / 1000 \right) - 169, 28245 p^{0,5} \right),$$

Таблина 13.1.4

Наружный	Тол	лщина стенки, мм		
диаметр	3,0	3,5	4,0	4,5
трубы, мм	Рабоч	тее дав	ление,	МПа
50	1,1	1,85	-	-
57	1,0	1,65	-	-
63,5	0,9	1,5	2,1	-
70	0,8	1,35	1,9	-
76	0,75	1,25	1,75	2,25
83	-	1,15	1,6	2,1
89	-	1,05	1,5	1,9

где $d_{_{
m I\! I}}$ — диаметр дымогарной трубы, мм;

p — рабочее давление, МПа.

Толщина стенок связных труб диаметром более 70 мм должна быть не менее:

6 мм – для периферийных труб;

5 мм – для труб, расположенных внутри трубного пучка.

13.2 СОЕДИНЕНИЯ СВЯЗЕЙ

13.2.1 Площадь сечения среза соединений приварных связей должна удовлетворять условию

$$\pi d_a e/f \ge 1,25$$
, (13.2.1)

где d_a — диаметр связи (для труб – наружный диаметр), мм;

e — толщина сварного шва (рис. 5.1 - 5.3 табл. 15.1), мм;

f— площадь поперечного сечения связи (см. 13.1.1), мм 2 .

- **13.2.2** Прочность закрепления вальцованных труб в трубных решетках должна проверяться осевой нагрузкой, при этом можно считать, что закрепление труб обеспечивается, если значение $pf/(20\ s\ l)$ не превышает:
 - 15 для соединения гладких труб;
 - 30 для соединений с уплотнительными канавками;
 - 40 для соединений с отбортовкой труб. Здесь *s* толщина трубы, мм;
- l длина вальцовочного пояска, мм; должна приниматься не менее 12 мм и не более 40 мм.

Остальные обозначения – те же, что и в 13.1.1.

13.2.3 Вальцовочное соединение гладких труб с трубной решеткой должно обеспечивать прочность сцеплений $q \ge 250$ Н/мм в соответствии с формулой

$$q = F/l$$
, (13.2.3-1)

где q — прочность сцепления трубы в отверстии на 1 мм длины вальцовочного пояска, H/мм; при автоматизированном процессе вальцевания сле-

дует принимать q = 250 Н/мм; в остальных случаях q определяется экспериментальным путем. При занижении этого значения следует пропорционально увеличить толщину трубной решетки;

F— сила натяжения, необходимая для разобщения вальцовочного соединения, H;

L — длина вальцовочного пояска, мм, которая должна быть не менее определяемой по формуле

$$l = p f_{\rm s} k_{\rm r} / q \,, \tag{13.2.3-2}$$

 $k_{\rm r}$ — коэффициент запаса прочности вальцовочного соединения, равный $k_{\rm r}$ = 5.

Остальные обозначения — те же, что и в 13.1.1.

14 ПОТОЛОЧНЫЕ БАЛКИ

14.1 Момент сопротивления W потолочных балок прямоугольного сечения должен быть не менее определяемого по формуле, мм³:

$$W = 1000 M/(1.3\sigma z), \tag{14.1-1}$$

где M — изгибающий момент балки, H·м; для прямоугольного сечения

$$M = p \, a \, l^2 / \, 8000;$$
 (14.1-2)

- p расчетное давление (см. 4.1), МПа;
- а шаг установки балок, мм;
- l расчетная длина балки, мм;
- σ допускаемое напряжение (см. 4.3.6), МПа;
- z коэффициент жесткости подкрепляемой стенки; для конструкции, изображенной на рис. 14.1, z=1,33;
 - h высота балки, которая должна быть не более $8s_1$, мм;
 - s_1 ширина балки, мм.

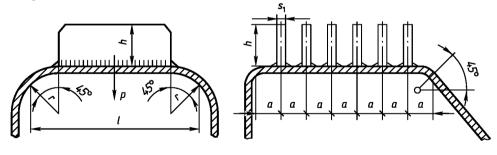


Рис. 14.1

15 СВАРНЫЕ СОЕДИНЕНИЯ

15.1 Размеры конструктивных элементов подготовленных кромок свариваемых деталей и размеры швов сварных соединений следует принимать в соответствии с действующими стандартами с учетом способа сварки.

Типовые примеры допускаемых сварных соединений приведены в табл. 15.1. Различные варианты сварных соединений не должны рассматриваться как эквиваленты друг друга, а последовательность расположения сварных соединений не свидетельствует о порядке их расположения по прочностным характеристикам. Представленные варианты сварных соединений деталей следует применять при условии обеспечения надлежащей прочности конструкции.

15.2 В зависимости от характеристик применяемых материалов, а также от дальнейшего развития техники сварки могут быть допущены и другие варианты сварных соединений. В этом случае, а также тогда, когда типовые примеры сварных соединений не могут быть применены полностью, тип сварного соединения должен быть согласован с Речным Регистром.

Таблица 15.1

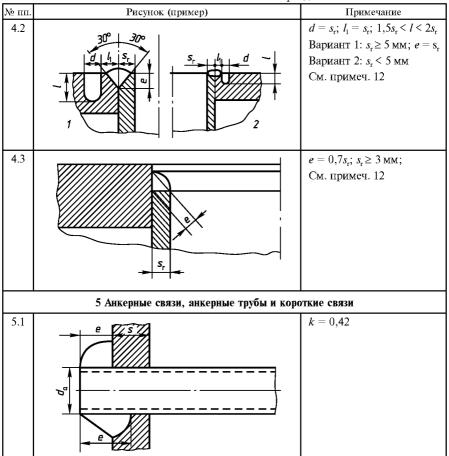
№ пп.	Рисунок (пример)	Примечание			
	1 Плоские днища крышек				
1.1		k = 0.38; $r \ge s/3$, ho he mehee 8 mm; $l \ge s$			

Продолжение табл. 15.1

		должение табл. 15.1
№ пп.	Рисунок (пример)	Примечание
1.2	5 572	$k=0,45;$ $r \ge 0,2s,$ но не менее 5 мм; $s_2 \ge 5$ мм См. примеч. 1
1.3	S S S S S S S S S S S S S S S S S S S	$k=0,5;$ $s_2 \le s_1$, но не менее 6,5 мм; $s_3 \ge 1,2 \ s_1$ См. примеч. 1
1.4		k=0,45 См. примеч. 1

Продолжение табл. 15.1

		должение табл. 15.1
№ пп.	Рисунок (пример)	Примечание
1.5		k=0,55 См. примеч. 1
1.6		k = 0.57
	2 Выпуклые днища	
2.1	1 1 1 ≥ 2s	Допускается для котлов и сосудов под давлением I, II и III классов. См. примеч. 2 и 17
2.2	> 2s	Допускается для котлов и сосудов под давлением II и III классов


Продолжение табл. 15.1

, I	_	должение табл. 15.1
№ пп.	Рисунок (пример)	Примечание
2.3	45 51 1,55	Следует избегать данного соединения. Допускается только для сосудов III класса, где отсутствует опасность коррозии, при $s_1 \le 16$ мм; $D \le 600$ мм
2.4	S ₁ 3s 3s max 25	Допускается только для сосудов III класса при $s_I \le 16$ мм; $D \le 600$ мм
	3 Трубные решетки	
3.1		$k=0,45;$ $e=0,7$ s_I ; $s_I \le 16$ мм
3.2		$k=0,45;$ $e=s_I/3$, но не менее 6 мм; $s_I>16$ мм См. примеч. 5 и 6

Продолжение табл. 15.1

2.0		должение табл. 15.1
№ пп.	Рисунок (пример)	Примечание
3.3	S D D D	$k = 0,45;$ $r \ge 0,2 s$, но не менее 5 мм
3.4		$k = 0,45;$ Вариант 1: $e \ge 0,7$ s_I , но при $e > 13$ мм предпочтителен вариант 2, где $l = s_I/3$, но не менее 6 мм См. примеч. 7
3.5	Solution of the state of the st	k = 0.45; $r \ge 0.2 s$, Ho He MeHee 5 MM
	4 Трубы	
4.1	30°	$e = s_r;$ $e \ge 5$ мм; $s_r \ge 2,5$ мм См. примеч. $9,10,11$

Продолжение табл. 15.1

Продолжение табл. 15.1 № пп Рисунок (пример) Примечание 5.2 k = 0.34≥ 3,5d_a k = 0.385.3 Короткие связи 25 6 Патрубки, штуцеры, приварыши 6.1 Приварные патрубки несквозные 6.1.1 $s_r \le 16$ мм; $l = s_r / 3$, но не менее 6 мм

Продолжение табл. 15.1

λς. Ι		одолжение таол. 15.1 I — п
№ пп.	Рисунок (пример)	Примечание
6.1.2	\$5.44 \$1.50	$l_I = s_r / 3$, но не менее 6 мм См. примеч. 13
6.1.3	5, l ₁	$I_2 = (1,5 \div 2,5)$ мм; $I_I \ge s_p/3$, но не менее 6 мм См. примеч. 14
6.1.4	До После обработки	<i>l</i> ₁ ≥ <i>s</i> _r /3, но не менее 6 мм См. примеч. 15 и 16
6.1.5		$I_I = (10 \div 13)$ мм См. примеч. 15

Продолжение табл. 15.1

№ пп.	Рисунок (пример)	Примечание
	6.2 Приварные патрубки сквознь	
6.2.1	S. S	Соединение применяется в основном при $s_r < s / 2$; $e = s_r$
6.2.2		Соединение применяется в основном при $s_r \cong s / 2$; $e = (6 \div 13)$ мм; $e + l = s_r$
6.2.3		Соединение применяется в основном при $s_r > s / 2$; $e \ge s / 10$, но не менее 6 мм
•	6.3 Высаженные штуцеры	
6.3.1		

Продолжение табл. 15.1

№ пп.	Рисунок (пример)	Примечание
6.3.2		См. примеч. 17
	6.4 Патрубки с дискообразными укрепляющих	ми накладками
6.4.1	\$5. ≥10 MM V2	$l > s_r / 3$, ho he mehee 6 mm
6.4.2	S ₁ 11 ≥15°	$l > s_r / 3$, но не менее 6 мм; $l_1 \ge 10$ мм
6.4.3	S _r	$e+I=s_{\rm r}$ или $s_{ m b}$; при этом следует принимать наименьшее значение $I_{ m l} \ge 10$ мм

Продолжение табл. 15.1

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		должение табл. 13.1
№ пп.	Рисунок (пример)	Примечание
6.4.4	Jag en	$e_1+l\geq s_r$; $l_1\geq 10$ мм; $2s_r\leq (e_2+l)+$ наименьшее значение $(s_{\rm bf}+e_1)$ или l_1
	6.5 Приварыши и штуцеры под шпи	льки
6.5.1		$d_2 \le d_1 + 2s_{\min}$ См. примеч. 18
6.5.2		s ≤ 10 мм См. примеч. 19 и 20
6.5.3		$l \ge 6$ mm; $s \le 20$ mm
6.5.4		s ≥ 20 mm

Продолжение табл. 15.1

		должение табл. 15.1
№ пп.	Рисунок (пример)	Примечание
	6.6 Приварыши и штуцеры для резьбовых	соединений
6.6.1		
6.6.2		
6.6.3	Ηα∂δαθκα нα οδραδοπκу d	$d \le s;$ $d_{\rm e} = 2d;$ $h \le 10$ мм; $h \le 0.5$ s См. примеч. 21
6.6.4		

Окончание табл. 15.1

Примечания.

- 1. Сварное соединение применимо для котлов с диаметром обечайки до 610 мм. Для сосудов под давлением оно может применяться без ограничений, если $R_{\rm m} \le 460~{\rm M\Pi a}$ или $R_{\rm eH} \le 365~{\rm M\Pi a}$.
- 2. Уменьшение толщины обечайки для фланцевого участка днища может быть выполнено с внутренней или с наружной стороны.
- 3. Тип сварного соединения для случаев, когда сварка доступна с обеих сторон обечайки.
- 4. Для обечаек толщиной более 16 мм угловые швы выполняются с разделкой кромок обечайки согласно 3.2 настоящей таблицы.
- 5. Тип сварного соединения для случаев, когда сварка доступна только с наружной стороны обечайки.
- 6. Для обечаек толщиной менее 16 мм угловые швы могут выполняться без разделки кромок обечайки. Высота кольца должна быть не менее 40 мм.
- 7. Зазор между внутренним диаметром обечайки и наружным диаметром трубной решетки следует уменьшить до минимально возможного.
- 8. Конец трубы, выступающей за пределы сварного шва, удаляется фрезерованием или шлифованием.
- 9. Расстояние между трубами должно быть не менее $2.5s_r$, но не менее 8 мм.
- 10. При ручной электродуговой сварке необходимо, чтобы $s_r \ge 2.5$ мм.
- 11. Рекомендуется, когда необходимо, свести к минимуму деформации трубной решетки, возникающие при сварке.
- 12. Приварка труб производится ручной электродуговой сваркой.
- 13. Подкладное кольцо должно быть плотно пригнано и после сварки удалено.
- 14. Применяется, когда возможна сварка с внутренней стороны патрубка.
- 15. Применяется для патрубков малых размеров по сравнению с размерами сосуда.
- 16. После сварки патрубок обрабатывается до конечного размера d.
- 17. Цилиндрические участки l должны иметь размеры, позволяющие производить рентгенографирование в случае необходимости.
- 18. Зазор между приварышем и сосудом не должен превышать 3 мм.
- 19. Зазор между диаметром отверстия и наружным диаметром штуцера должен быть как можно меньше и в любом случае не должен превышать 3 мм.
- 20. Верхние отверстия под шпильки должны быть смещены по отношению к нижним.
- 21. Суммарная толщина обечайки сосуда и наплавленного металла должна быть достаточной для обеспечения необходимого числа витков нарезки.