РАО "ГАЗПРОМ" ВСЕРОССИЙСКИИ НАУЧНО - ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ПРИРОДНЫХ ГАЗОВ И ГАЗОВЫХ ТЕХНОЛОГИЙ (ВНИИГАЗ)

ОКСТУ 3375 ГРУППА Е 02

РУКОВОДЯЩИЙ НОРМАТИВНЫЙ ДОКУМЕНТ

Применение электростанций собственных нужд нового поколения с поршневым и газотурбинным приводом

РД 51 - 015 86 23 - 07 - 95

Обязательно для электростанций системы РАО "Газпром" Дата введения 1 марта 1997 г.

Москва 1997 г.

PAO "FASTIPOM"

ВСЕРОССИЙСКИЙ НАУЧНО - ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ
ПРИРОДНЫХ ГАЗОВ И ГАЗОВЫХ ТЕХНОЛОГИЙ
(ВНИИГАЗ)

РУКОВОДЯЩИЙ НОРМАТИВНЫЙ ДОКУМЕНТ

Применение электростанций собственных нужд нового поколения с поршневым и газотурбинным приводом

РД 51 - 015 86 23 - 07-95

Директор отделения "Транспорт газа"

Исления 3.Т.Гапиуппи

Начальник лаборатории

"Источники электроснабжения"

_ И.А.Трегубов

Москва 1996 г.

- s/acc

Руководящий нормативный документ "Применение ЭСН нового поколения с поршневым и газотурбинным приводом", разработан с учетом существующих стандартов и нормативных документов, в том числе: "Правил технической эксплуатации электрических станций и сетей Российской Федерации", сборника директивных материалов no эксплуатации энергосистем, "Руководства по эксплуатации электростанций собственных нужд", "Правил устройства электроустановок", государственных стандартов на поршневые двигатели, газовые турбины, электростанции и электрооборудование, а также инструкций по эксплуатации действующих электростанций и технической документации на вновь создаваемые электростанции.

РД разработан коллективом сотрудников ВНИИГАЗа и Управления Главного энергетика РАО "Газпром"

Руководители разработки: Савенко Н.И., Трегубов И.А. д.т.н.

Разработчики: Корнеев А.А., Беляев А.В. к.т.н.,

Фомин В.П. к.т.н.

В подготовке справочных Овчаров В.П., Зыкин И.М.

материалов принимали участие: Джигало С.И.

Руководящий документ предназначен для разработчиков электростанций и проектных институтов, а также может быть использован при подготовке обслуживающего персонала электростанций.

Руководящий документ разработан впервые.

Оглавление

. Общие указания	5
1.1 Область применения ЭСН	
1.2 Общие требования к конструкции ЭСН	
2. Теплотехническая часть	
2.1 Топливная система	
2.2 Масляная система	
2.3 Системы охлаждения и технического водоснабжения	
2.4 Системы забора воздуха и выхлопа	_ 17
2.5 Приводной двигатель (ГТД и ДВС) генератора	
3. Электротехническая часть	_ 21
3.1 Главная схема и оборудование электростанций напряжением 6(10) кВ _	_ 21
3.2 Генератор	_ 23
3.3 Собственные нужды	
3.4 Постоянный ток	_ 29
3.5 Требования к вспомогательному оборудованию	31
4. Управление и контроль	32
5. Оценка надежности ЭСН	37
5.1 Показатели надежности	37
5.2 Методы нахождения показателей надежности	39
5.3 Оптимизация показателей надежности	39
6. Экологические требования	40
Нормативные ссылки	42
Приложение 1. Термины и определения	47
Приложение 2. Наиболее распространенные электроагрегаты с ДВС отечественного и зарубежного производства.	49
Наиболее распространённые электроагрегаты с ГТУ отечественного и зарубежного производства.	51
Приложение 3. Методика оценки показателей надежности,	
применяемая в США	57

1 Общие указания

1.1 Область применения ЭСН

- 1.1.1 На электростанциях собственных нужд (далее ЭСН) газодобывающих и газотранспортных предприятий РАО "Газпром" широко применяются газотурбинные и поршневые электроагрегаты, которые используются в качестве основных (базовых), резервных и аварийных источников электроснабжения (табл. 1) [1,2].
- 1.1.2 В настоящей работе приведены требования к вновь создаваемым и модернизируемым основным и резервным ЭСН с газотурбинным и поршневым приводом, работающим на природном газе.
- 1.1.3 В случае применения поршневых двигателей внутреннего сгорания (ДВС), работающих на жидком топливе, необходимо руководствоваться работами [2,19,21].
- 1.1.4 В качестве двигателя для электроагрегатов мощностью свыше 1500 2500 кВт рекомендуется использовать газотурбинный привод (ГТД). ДВС имеют приоритет по КПД и моторесурсу, однако газотурбинные двигатели не требуют массивного фундамента и больших СМР на месте установки, обладают наибольшей энергонезависимостью, так как вспомогательные механизмы (маслонасосы смазки и регулирования могут иметь привод от вала ГТД, а охлаждение масла может быть выполнено цикловым воздухом). Обоснование применения типа привода производится на стадии разработки исходных требований и технико-экономических обоснований привода в каждом конкретном случае.
- 1.1.5 Применение поршневых двигателей, работающих на природном газе, характерно для электроагрегатов небольшой мощности (до 1500÷2500 кВт) для нефтегазовой промышленности.
- 1.1.6 Общее количество и мощность агрегатов, устанавливаемых на ЭСН, определяется указаниями [3,4] и принимается на основании технико экономических расчетов и расчетов надежности электроснабжения объекта [5, 6].

Таблица 1 Назначение электростанций собственных нужд (ЭСН)

Режим работы, потребители
Электростанции с наработкой за год свыше 3000 ч, коли-
чеством пусков за год - менее 20, временем непрерывной
работы - более 3500 ч, временем пуска и приема нагрузки
до 30 мин. Обеспечивают электроэнергией все технологи-
ческие нагрузки объекта, сопутствующих инфраструктур
(жилпоселков, котельных и т.д.) и сторонних потребите-
лей.
Электростанции с наработкой за год ~ 300÷3000 ч.
количеством пусков ~ 20÷50 пуск/год, временем пуска и
приема нагрузки не более 5 мин. Способны обеспечить
электроэнергией все технологические нагрузки объекта,
сопутствующих инфраструктур и сторонних потребителей
при отключении основного источника электроэнергии.
Электростанции, предназначенные для аварийного элек-
троснабжения потребителей 1 категории, в том числе,
особой группы электроприемников при отключении основ-
ного или резервного источника электроэнергии. Продол-
жительность работы, как правило, до 300 ч/год, количест-
во пусков - свыше 50 пуск./год, время пуска и приема на-
грузки от 5 до 30 с.

1.1.7 При выборе единичной мощности ГТД для привода генератора необходимо учитывать снижение мощности агрегата при максимальных температурах и повышение - при минимальных. Изменение мощности определяется по техническим условиям на поставку агрегатов. В случае отсутствия в технических условиях поправок мощности, номинальная мощность для конкретных условий применений должна быть рассчитана в соответствии с ГОСТ 20440. Параметры ДВС несущественно меняются от внешних условий.

- 1.1.8 Выбор электроагрегатов по уровню автоматизации для основных и резервных электростанций должен производиться с учетом допустимой длительности перерывов электроснабжения и ущерба для технологического процесса добычи и транспорта газа [1], а также с учетом применения аварийных источников энергии [2].
- 1.1.9 При выборе единичной мощности агрегатов необходимо учитывать существующий мошностной ряд электроагрегатов.
- В табл. 2 приведен перечень наиболее перспективных агрегатов, рекомендуемых для применения на ЭСН.
 - 1.1.10 В приложениях содержатся:
 - в приложении 1 термины и определения:
 - в приложении 2 таблица 1 наиболее распространенные электроагрегаты с ДВС отечественного и зарубежного производства, таблица 2 наиболее распространенные энергетические ГТУ отечественного и зарубежного производства;
 - в приложении 3 методика оценки показателей надежности, применяемая в США.

Таблица 2 Мощностной ряд электростанций, рекомендованных к применению на объектах РАО "Газпром"

						_		Pa-	Пол-
N۷	Тип элек-	Вид привода,	Изготовитель	Изготовитель	Ce-	Вид	кпд	cypc	ный
	тростан-	двигателя	привода	электростанции	рия	ton-		до	pe-
	ции, мощ-					лива		к/p,	cypc,
	ность							тыс.	тыс.
								час	час
1	TM3-104	6415/18	AO "TM3"	AO "TM3"		Д	36	20	
	100 KBT		Екатеринбург	Екатеринбург					
2	3,1-2000	В2 серии б	AO "TM3"	AO "TM3"	1995	Д	35	20	40
	200 xBT		Екатеринбург	Екатеринбург	1997	ГД	34	20	40
3	АСГД-500	1214418/20	AO "Ssesga"	АО "Звезда"	1995	ΓД	37	7	20
l	500 KBT		С -Петербург	С -Петербург	1997	Г	35	7	20
4	гдг-	6[4H21/21	АО "Волгоди-	АО "Волгоди-	1996	Г	34	40	80
1	500/1500	(6 ДМ 21 Э)	зельмаш"	зельмаш"	İ	l	l	l	ļ
1	500 KBT		Балаково	Балаково		L	l		1
5	ДГ-98	GLAH 1Y	YO. 5; WO.	AO "PYMO"	1996	٦	36	60	25
1	800 NBT	36'45	Н Новгород	Н Новгород	L		l	İ	лет
6	3A-1000C	SF4H21/21	AO TM3"	AO "TM3"	1996	Д	37	36	85
	1000 kBT	(8 ДМ 21 Э)	Екатеринбург	Екатеринбург	1997	ГД	35	36	85
7	rroc.	TTT-1500	АО Пролетар-	АО "Пролетар-	1996	Γ	22	50	100
II `	1500-2F	судовой	ский з-д	ский з-д"	1	i	1	1	1
1	1500 KBT	1	СПетербург	СПетербург		ļ	1	1	1

								Pe-	Пол-
Ne	Тип элек-	Вид привода,	Изготовитель	Изготовитель	Ce-	Вид	кпд	сурс	ный
	тростан-	двигателя	привода	электростанции	рия	топ-		до	pe-
1 1	ции, мощ-	1				лива	۱ '	κp,	сурс,
	ность						l	тыс.	тыс.
								час	час
8	NAGC-	Д-30ЭУ	AO	AO	1996	٢	22	25	40
	2500M .	3 ^{*#} серии	"Авиадвигатель"	"Авиадвигатель"			1	l	
	2500 кВт	авиационный	Пермь	Пермь					
9	ЭГ-2500	ГТД-2,5	ОЗ "Энергия"	АО КрТЗ Кон-	1996	٢	29,5	20	40
	2500 xBT	судовой	Кривой Рог	стар"			-		1 1
				Кривой Рог			ГТД		<u> </u>
10	гтэс-	Д-30ЭУ-2	AO	НПО "Искра"	1997	Γ	24,3	40	80
li .	4000	авиационный	"Авиадвигатель"	Пермь		i	Ì	1	
lL_	4000 кВт		Пермь						
11	GL-6000	ДВ-71	НПП Машпроект	АО "Белэнерго-	1995	Г	30,5	10	30
 	6000 кВт	судовой	Николаев	маш" Белгород		<u> </u>			1
12	69C-9,5	HK-149	АО Моторо-	АО "ЦКБ Лазу-	1998	٦	32 -	15	50
11	9500 kBT	звизпионне	строитель"	рит" -разработчик,]	1	для]	1 1
11	1		Самара	изготовитель не оп- ределен			вода	1	1 1
13	ПЭС-12	ПС-90	АО "Авиадви-	НПО "Искра"	1998	<u></u>	34 -	30	50
II ,,,	12 MBT	эвизционный	гатель"	Пермь	1.550	'	для	"	"
11	12	- Corrections	Пермь		1	1	при-	l	1 1
11_			<u> </u>	<u> </u>		<u> </u>	вода		
14	FT3C-16	ДВ-90	НПП-Машпроект	ПО "Заря"	1997	Γ	35	20	60
IL.	16 MBT	судовой	Николаев	Николаев		<u> </u>	<u> </u>		1
15	T3C-20	AЛ-31 СТЭ	УМПО	фирма "Модуль"	1998	٦	35,8	15	45
11	20 MBT	авиационный	Уфа	АО Кировский з-	l	l	1	Į.	1 1
H	1		Ì	A.	1		1		
1				С -Петербург	<u> </u>		<u> </u>		
16		НК-37	АО "Моторо-	фирма "Модуль"	1998	٦	36,4	20	60
-	25 MBT	3	строитель"	АО Кировский з-	1	1			
-	 		Самара	д С -Петербург	1.05		1	1	100
17	1	ITY-25	AO "TM3"	AO TM3	1999	Г	31,8	25	100
11	(совмест-	1	F	\	1	1	1	ŀ	1
11	но с АО	1	Екатеринбург	Екатеринбург				1	
-	"Мосэнер-	1			1	1	1		1
1	(ro ⁻)		1						

Усповные обозначения: Д - дизельное топливо;

ГД - газ/дизельное топливо;

r - ras;

Ж - авиационное или дизтопливо.

1.2 Общие требования к конструкции ЭСН

- 1.2.1 ЭСН должны строиться из унифицированных блок модулей и легкосборных конструкций зданий. Блочно модульная конструкция должна позволять нормально эксплуатировать размещенное в ней оборудование, в том числе осуществлять обслуживание и ремонт. Блочно модульная конструкция должна также обеспечивать длительное хранение оборудования.
- 1.2.2 Модули многоагрегатных ЭСН должны иметь полную заводскую готовность и позволять собрать на месте монтажа следующие укрупненные блоки:

- машинного зала;
- электротехнический;
- химводоочистки (XBO);
- ремонтный (с комплектом инструментов, монтажных и погрузочных приспособлений);
- центрального щита управления (ЦЩУ);
- вспомогательных устройств;
- теплоснабжения (котел утилизатор);
- отключающих кранов и газовых фильтров, установки подготовки топливного и пускового газа:
- повысительной подстанции и ЗРУ 110 кВ.

Кроме вышеперечисленного оборудования в комплексе сооружений ЭСН должны быть включены объекты индивидуального, вспомогательного обслуживающего назначения, определяемые генпроектировщиком ЭСН:

- ОВК (объединенный вспомогательный корпус и администрация);
- склад ГСМ;
- трансформаторная башня;
- гараж;
- складские помещения;
- резервуары запаса воды и другое оборудование обеспечивающее нормальный пуск и жизнеобеспечение ЭСН.
- 1.2.3 Модули по своим габаритам и массе должны позволять транспортировку автомобильным, железнодорожным и водным транспортом. Вес не более 30 60 т в одном блок модуле.
- 1.2.4 Конструкция блоков ЭСН должна обеспечивать выполнение требований настоящего РД, "Правил технической эксплуатации электрических станций и сетей Российской Федерации" (РД 34.20.501-95) и других, действующих нормативных документов [14, 15, 16, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36,37].
- 1.2.5 ЭСН и ее модули для условий Севера должны, как правило, изготавливаться в климатическом исполнении УХЛ по ГОСТ 15150 для работы при температуре наружного воздуха от минус 55° С до плюс 45°С,

относительной влажности воздуха до 98% при температуре плюс 25°C, сейсмичности до 7 баллов.

Охлаждающий воздух и окружающая среда не должны содержать токопроводящей пыли, взрывоопасных и других смесей, вредно действующих на изоляцию обмоток и ухудшающих охлаждение генератора.

Запыленность наружного воздуха не выше 0,5 г/м³, скорость воздушного потока у поверхности земли до 50 м/с, возможно действие любых метеоусловий (дождь, снег, туман, роса, иней).

Должны также учитываться другие природные условия, свойственные району применения.

- 1.2.6 Расположение и компоновка оборудования в модулях не должны затруднять монтаж, демонтаж, а также выемку отдельных устройств, узлов и сборочных единиц для их технического обслуживания.
- 1.2.7 Помещения ЭСН должны иметь устройства автоматической пожарной сигнализации с выдачей сигнала на центральный щит управления и в пожарное депо, а наиболее опасные в пожарном отношении помещения ЭСН установки автоматического пожаротушения (ГОСТ 12.1.004).

Перечень наиболее опасных в пожарном отношении объектов и помещений устанавливается техническим заданием на проектирование ЭСН [29, 30, 31].

- 1.2.8 Системы вентиляции и отопления ЭСН должны разрабатываться с учетом технических требований заводов изготовителей оборудования, абсолютных максимумов и минимумов температур районов строительства и комфортных условий для обслуживающего персонала.
- 1.2.9 На ЭСН также должны быть предусмотрены системы питьевого водоснабжения и канализации, выполняемые в зависимости от мощности ЭСН, самостоятельными или с подключением к соответствующим системам технического объекта.

2 Теплотехническая часть

2.1 Топливная система

- 2.1.1 Основным и резервным топливом для агрегатов ЭСН является природный газ, подготовленный в соответствии с требованиями ГОСТ 29328-92 и ТУ на двигатели. Основные характеристики газообразных топлив приведены в ГОСТ 5542 и в табл. 3 и 4.
- 2.1.2 Давление и температура природного газа, содержание примесей в газе должны быть согласованы между разработчиком и заказчиком ЭСН [14,15].
- 2.1.3 Все элементы топливной системы, подводящие газ к ГТД, должны быть размещены в изолирующем коробе, имеющем дверцы для удобства проведения регламентных работ и фланец для проведения вентиляционной трубы. Короб должен иметь постоянную естественную вентиляцию, а также оборудован принудительной вентиляцией с автоматическим включением от газосигнализатора, датчик которого устанавливается в верхней части короба.

При концентрации метана в коробе ≥ 0,5% подается предупредительный сигнал на щите оператора и должен включаться вентилятор короба. При концентрации метана ≥ 1,0% срабатывает аварийная сигнализация и должна автоматически отсекаться подача газа к турбогенератору с одновременным сбросом газа в атмосферу открытием свечи.

Должен быть предусмотрен также контроль загазованности помещения ЭСН с подачей предупредительного сигнала на щит при концентрации ≥ 0,5% и аварийного отключения подачи газа к турбогенератору при концентрации метана ≥ 1,0% [30, 32, 33].

- 2.1.4 На вводе трубопровода с газом внутрь помещения ЭСН должно устанавливаться отключающее устройство в доступном для обслуживания и освещенном месте. При установке регулятора давления топливного газа внутри помещения ЭСН запорным устройством на вводе может считаться задвижка или кран перед регулятором давления.
- 2.1.5 Не допускается пересечение трубопроводов с газом вентиляционных шахт, воздуховодов, электрических распределительных проводок.

- 2.1.6 Топливная система ГТД должна иметь продувочную свечу с запорным устройством. Устройство свечи должно соответствовать требованиям "Правил безопасности в газовом хозяйстве" [35].
- **2.1.7** Арматура, устанавливаемая на трубопроводах топливного газа, должна быть легкодоступна для управления, осмотра и ремонта.

Таблица 3 Основные параметры компонентов топлив

Параметры	Метан	Этан	Пропан	Бутан	Пентан	Изооктан	Этилен
, iapamorpo.	(CH ₄)	(C₂H ₆)	(C ₃ H ₈)	(C ₄ H ₁₀)	(C ₅ H ₁₂)	(C ₈ H ₁₈)	(C₂H₄)
	(31,4)	(021.6)	(031.18)	.(041110)	(05/112)	(=0.1,0)	(-2.4)
Молекулярный	16,03	30,05	44,06	58,08	72,09	114,2	28,03
вес							
Газовая постоян-	52,81	28,22	19,25	14,6	11,78	7,6	30,25
ная, кгс.м/кг.К							
Температура ки-	- 161,6	- 88,6	- 42,2	- 0,5	36	99,2	- 103,5
ления, °С							
Плотность:	0,67	1.273	1,867	2,46	3,05	-	1,187
в парообразном					İ		
состоянии, кг/м³;]				
в жидком состоя-	0,415	0,446	0,51	0,58	0,626	0,67	0,58
нии, кг/л							
Показатель адиа-	1,28	1,2	1,15	1,11	1,07	1,05	1,25
баты			ļ	<u> </u>	<u> </u>		
Теплота испаре-	122,6	~	103	94	-	65	115
ния, ккал/кг	<u> </u>		ļ	 		 	
Низшая теплота						-	
сгорания:							
в парообразном	8087	14340	20485	26679	32940	51000	13280
состоянии,					İ		
ккал/м³;	11895	14004	10070	10045	10000	40450	44400
то же, ккал/кг; в жидком состоя-	4940	11264 5065	10972 5560	10845	10800	10450 7837	11188
нии, ккал/л	4940	3065	3360	6320	6//0	1831	6900j
Количество воз-		 	 	-	 	-	
духа, теоретиче-	1				Į.		
ски необходимое				İ			
для полного сго-		1)		Ì	
рания:							1
м ³ /м ³ топлива;	9,52	16,66	23,01	31,09	38,08		14,29
м ³ /кг топлива	14,2	12,1	12,81	12,64	12,83	12,35	12.8
Теплота сгорания		812	847	855	843	850	868
стехиометриче-							
ской смеси,							
ккал/м³							

Метан (СН₄)	Этан (С₂Н₅)	Пропан (С₃Н _в)	Бутан (С₄Н₁₀)	Пентан (С₅Н ₁₂)	Изооктан (С ₈ Н ₁₈)	Этилен (С₂Н₄)
590÷ 690	550÷ 600	510÷ 580	480÷ 540	475÷ 510	480÷ 520	475÷ 550
2020	2020	2043	2057	2072	2100	2154
1,0	1,038	1,042	1,047	1,051	1,058	1,0
	1,82	1,70	1,67	1,84		
	0,42	0,398	0,348	0,303		
-	0,86	0,835	0,855	0,874		
3	580÷ 605	510÷ 580	475÷ 550	475÷ 500		
	590÷ 690 2020 1,0 1,88 0,65	590+ 550+ 690 600 2020 2020 1,0 1,038 1,88 1,82 0,65 0,42 0,95 0,86 1,0 0,95 0,86	(CH ₄) (C ₂ H ₆) (C ₃ H ₈) 590÷ 690 550÷ 580 510÷ 580 2020 2020 2043 1,0 1,038 1,042 1,88 1,82 1,70 0,65 0,42 0,398 0,95 0,86 0,835 0,05 0,86 0,835 0,05 0,80÷ 605 510÷ 580	(CH ₄) (C ₂ H ₆) (C ₃ H ₈) (C ₄ H ₁₀) 590÷ 690 550÷ 600 510÷ 580 480÷ 540 2020 2020 2043 2057 1,0 1,038 1,042 1,047 1,88 1,82 1,70 1,67 0,65 0,42 0,398 0,348 0,95 0,86 0,835 0,855 1,0 0,00 580÷ 605 510÷ 580 475÷ 550	(CH ₄) (C ₂ H ₆) (C ₃ H ₈) (C ₄ H ₁₀) (C ₅ H ₁₂) 590÷ 690 550÷ 690 510÷ 580 480÷ 540 475÷ 510 2020 2020 2043 2057 2072 1,0 1,038 1,042 1,047 1,051 1,88 1,82 1,70 1,67 1,84 0,65 0,42 0,398 0,348 0,303 0,95 0,86 0,835 0,855 0,874 0,05 580÷ 580 510÷ 580 475÷ 500 500	(CH ₄) (C ₂ H ₆) (C ₃ H ₈) (C ₄ H ₁₀) (C ₅ H ₁₂) (C ₈ H ₁₈) 590÷ 690 550÷ 600 510÷ 540 475÷ 480÷ 520 2020 2020 2043 2057 2072 2100 1,0 1,038 1,042 1,047 1,051 1,058 1,88 1,82 1,70 1,67 1,84 0,65 0,42 0,398 0,348 0,303 0,95 0,86 0,835 0,855 0,874 1,0 580÷ 580÷ 580 550 550 500

Таблица 4

Составы природных и искусственных газов в % объема

Газ	CH₄	C _n H _m	H ₂	co	CO ₂	N ₂
Природный	92-99	0.1-5.65			0.1-1.0	1-1.7
Нефтяной (попутный)	72-95	4-12			0.1-2.0	0.4-16
Коксовый	26.8	2.4	52.8	7.6	1.8	8.6
Сланцевый	23.86	5.7	38.75	10.91	18.88	1.9
Биогаз (очищенный)	78.2	0.8	1.2	4.0	13.1	2.7

2.2 Масляная система

- 2 2.1 Запас масла принимается на срок, оговоренный в задании на проектирование ЭСН [34].
- 2.2.2 При наружной установке резервуаров запаса масла и низких температурах предусматривается подогрев масла в резервуарах до температуры, обеспечивающей перекачку масла.
- 2.2.3 Перекачку масла рекомендуется осуществлять шестеренчатыми электронасосами, а в качестве резервного предусматривать насосы с ручным приводом.
- 2 2.4 Запас масла для ЭСН должен храниться в специальных металлических резервуарах или в бочках. Резервуары должны быть защищены от статического электричества и иметь молниезащиту. При хранении запаса масла в бочках на открытой площадке или под навесом должно быть предусмотрено специальное помещение для разогрева бочек. При хранении бочек с маслом на закрытом складе должно быть предусмотрено его отопление, обеспечивающее подогрев масла до температуры плюс 10°С.
- 2.2.5 Масляная система ЭСН должна обеспечивать потребность двигателя и генератора, прием, хранение и учет расхода масла, подачу чистого масла в мерную емкость и маслобаки агрегатов, слив отработанного масла, очистку масла на участке регенерации, очистку масла непосредственно в маслобаке агрегата.

- 2.2.6 Расходные баки масла объемом 5 м³, должны устанавливаться в специальном помещении, отделенном стенами из несгораемых материалов с пределами огнестойкости не менее 0,75 ч. Это помещение должно иметь выходы в другие помещения ЭСН через тамбур и непосредственно наружу. Максимальное количество масла, которое может храниться в этом помещении в резервуарах и в таре не должно превышать 150 м³.
- 2.2.7 Расходные баки емкостью свыше 1 м³ должны иметь аварийный слив. Аварийный слив масла осуществляется в наружный подземный резервуар, размещенный вне здания ЭСН на расстоянии не менее 1 м от "глухой" стены здания и не менее 5 м при наличии в стенах проемов. Аварийный трубопровод каждого бака должен иметь только одну задвижку, установленную в удобном для обслуживания и безопасном при пожаре месте. При установке расходных баков в отдельном помещении эта задвижка устанавливается вне помещения. Диаметр трубопровода аварийного слива должен обеспечивать самотечный слив из баков за время не более 10 мин.
- 2.2.8 Расходный бак должен иметь переливной трубопровод, обеспечивающий слив масла самотеком в резервуар аварийного слива с расходом не менее 1,2 производительности перекачивающего насоса.
- 2.2.9 Расходные баки должны иметь дыхательную систему, исключающую попадание паров масла в помещение ЭСН. Дыхательные трубопроводы должны выводиться наружу здания и иметь молниеотводы. Огневые предохранительные клапаны не предусматриваются.
- 2.2.10 Расходный бак должен иметь фильтр грубой очистки, установленный на трубопроводе, подающем масло в бак. Фильтр может размещаться как внутри бака, так и вне его. Нижнюю часть патрубка на этом трубопроводе внутри бака следует размещать на высоте не менее 50 мм от днища бака.
- 2.2.11 Отработанное масло откачивается из системы насосом в специально предусмотренную емкость или переносную тару. Объединять трубопроводы чистого и отработанного масла запрещается.
- 2.2.12 Масляная система ЭСН должна предусматривать возможность промывки и быть защищенной от коррозии. Следует применять параллельную прокладку маслопроводов и трубопроводов теплоснабжения для предохранения масла от переохлаждения.

- 2.2.13 Для поддержания ЭСН в готовности к быстрому запуску в холодное время; масляные баки агрегатов ЭСН должны иметь обогрев.
- 2.2.14 Масло для смазки должно сохранять свои качества в диапазоне возможных температур наружного воздуха.
- 2.2.15 Расходные баки должны быть оборудованы уровнемерами, в которых предусматривается возможность сигнализации максимального и минимального уровня масла.
- 2.2.16 Целесообразна проработка вопроса использования для смазки подшипников генератора масла, применяемого в приводе электроагрегата.

2.3 Системы охлаждения и технического водоснабжения

2.3.1 На ЭСН, как правило, должны применяться системы воздушного охлаждения. Допускается применение систем воздушно - водяного охлаждения.

Водоснабжение электростанции должно обеспечивать нормальную работу системы охлаждения всех электроагрегатов в номинальном режиме с учетом:

- восполнения безвозвратных потерь в системе охлаждения технической воды внешнего контура, которые принимаются ориентировочно в размере до 3% от общего расхода оборотной воды, а также продувки оборотной системы для поддержания солевого равновесия, размер которой составляет до 2 % от общего расхода оборотной воды (в зависимости от выбранного типа охладителя указанные значения должны быть уточнены расчетом);
- подпитки умягченной водой внутреннего контура охлаждения 0,1% от объема первоначальной заправки;
- потребности в воде на вспомогательные нужды.
- 2.3.2 Для внутреннего контура системы охлаждения двигателей может быть использован конденсат, умягченная вода котельной. При невозможности централизованного получения умягченной воды должно предусматриваться приготовление ее на ЭСН с помощью дистиллятора.
- 2.3.3 Для электроагрегатов с двухконтурной системой охлаждения качество воды внешнего контура должно соответствовать требованиям завода изго-

товителя. Вода этого контура, как правило, должна быть без механических примесей и следов нефтепродуктов.

- 2.3.4 В качестве охладителей воды для внешнего контура электроагрегатов целесообразно использовать аппараты воздушного охлаждения.
- 2.3.5 Блок радиаторного охлаждения, как правило, должен размещаться в помещении, в котором поддерживается температура воздуха, исключающая его размораживание.

Допускается применять в системе охлаждения жидкости, замерзающие при низких температурах (антифриз, тосол). При этом блок охлаждения устанавливается в отдельном не отапливаемом помещении или на специальной площадке.

2.3.6 Система охлаждения должна исключать возможность замерзания и превышения давления в холодильниках двигателя, значений, установленных заводами - изготовителями. Емкость бака обессоленной воды для подпитки внутреннего контура охлаждения должна обеспечивать работу контура в течение 10 суток. Резервные ЭСН с ГТД должны допускать запуск и последующую работу без снабжения технической водой.

2.4 Системы забора воздуха и выхлопа

- 2.4.1 Параметры воздуха, поступающего в ЭСН, должны соответствовать требованиям завода изготовителя .
- 2.4.2 Комплексное устройство воздухоподготовки ЭСН должно обеспечивать исключение попадания посторонних предметов (в том числе льда) в двигатель, очистку циклового воздуха, противообледенительную защиту, снижение шума на всасе до санитарных норм, безаварийную работу при засорении фильтрующих элементов (наличие байпаса).
- 2.4.3 При отсутствии требований завода изготовителя к качеству циклового воздуха принимается:
 - для ГТД остаточная среднегодовая запыленность не более 0,3 мг/м³, в том числе с концентрацией пыли с размером частиц более 20 мкм не

- выше $0,03 \text{ мг/м}^3$. Допускается кратковременная (не более 100 ч в год) концентрация пыли до 5 мг/м^3 с частицами размером не более 30 мкм;
- **п** для агрегатов с поршневым приводом предельная запыленность воздуха не более 5 мг/м^3 .
- 2.4.4 Газоотводящее устройство на выхлопе двигателя должно обеспечивать отвод продуктов сгорания и снижение шума на выхлопе до санитарных норм. Высота трубы определяется с учетом обеспечения допустимых концентраций вредных веществ в выбросах.
- 2.4.5 Для основных (базовых) ЭСН с ГТД с целью повышения их экономичности должна предусматриваться утилизация тепла отходящих газов. Отсутствие утилизации должно иметь технико экономическое обоснование.
- 2.4.6 Для ЭСН с поршневым приводом должен предусматриваться глушитель. Глушитель устанавливается на кровле ЭСН или на отдельно стоящих металлических конструкциях и заканчивается выхлопной трубой и при необходимости оборудуется искрогасителем.
- 2.4.7 Общее сопротивление всасывающего и выхлопного тракта, включая глушитель, определяется расчетом. Величина его не должна превышать значения, указанного в технических условиях на поставку электроагрегата.
- 2.4.8 Блок подготовки воздуха системы охлаждения генератора должен обеспечивать очистку воздуха от пыли, снега и капельной влаги, подогрев генератора и возбудителя перед пуском и в период нахождения в горячем резерве (потоком подогретого воздуха при неподвижном роторе) при отрицательных температурах наружного воздуха.

2.5 Приводной двигатель (ГТД и ДВС) генератора

- 2.5.1 Двигатель должен обеспечивать длительную устойчивую параллельную работу генератора с энергосистемой любой мощности с двигателями аналогичных типов, а также на автономную нагрузку [20, 21, 25].
- 2.5.2 Запуск ГТД должен осуществляться с помощью электростартера, пускового дизеля или турбодетандера, работающего на газе, сжатом воздухе или другим способом. Запуск ДВС должен осуществляться электростартером

или сжатым воздухом. При воздушной системе пуска емкость баллонов воздуха должна обеспечивать 4 - 6 пусков ДВС и 3 - 4 пуска ГТД без пополнения баллонов. Заполнение емкостей сжатого воздуха для пуска двигателей должно предусматриваться от автономных компрессоров.

- 2.5.3 Главный насос смазки и регулирования ГТД должен иметь привод от вала двигателя, резервный (пусковой) от электродвигателя переменного тока, аварийный от электродвигателя постоянного тока. Резервный и аварийный маслонасосы должны иметь устройство технологического АВР.
- 2.5.4 Конструкция двигателя должна предусматривать возможность осмотра сборочных единиц и деталей в соответствии с регламентом технического обслуживания без вскрытия других элементов, имеющих более длительный межремонтный ресурс.
- 2.5.5 Применение одновальных ГТУ, обеспечивающих более высокую динамическую устойчивость электроагрегата, предпочтительно с точки зрения параллельной работы.
- 2.5.6 ГТД должен работать надежно с мощностью на 20% выше номинальной при снижении температуры атмосферного воздуха ниже значения, установленного для нормальных условий и без превышения номинальной температуры газа перед турбиной.
- 2.5.7 Должно предусматриваться устройство для обеспечения проворота ротора турбогенератора.
- 2.5.8 Конструкция ГТД должна обеспечивать отбор воздуха в пределах 1% на технологические нужды и обогрев воздухоочистительного устройства.
- 2.5.9 Регулятор частоты вращения двигателя должен обеспечивать длительную устойчивую работу с номинальной мощностью при отклонении частоты вращения выходного вала привода генератора от 98% до 101% номинальной. При аварийных режимах в энергосистеме должна допускаться работа генератора с частотой вращения до 92% и более 101%.
- 2.5.10 На холостом ходу должна обеспечиваться возможность регулировки частоты вращения выходного вала от 90 % до 105% номинальной с главного щита управления или по месту (для синхронизации генератора).
- 2.5.11 Степень статической неравномерности регулирования частоты вращения выходного вала должна быть в пределах 4% ±0,2% номинальной часто-

ты вращения с возможностью ее регулирования на месте эксплуатации от 4% до 0%; степень нечувствительности системы регулирования частоты вращения при любой нагрузке не должна превышать 0,2% номинальной частоты вращения.

- 2.5.12 Регулирование частоты вращения и управление подачей топлива считается устойчивым, если:
 - значение двойной амплитуды установившихся колебаний, вызываемых устройствами регулирования частоты вращения, не превышает 0,4% номинальной частоты вращения генератора, работающего на изолированную сеть при установившейся нагрузке;
 - значение двойной амплитуды установившихся колебаний подводимой энергии, вызываемых устройствами регулирования частоты вращения и управления подачей топлива, не приводит к изменению мощности генератора свыше 8% номинальной при работе параллельно с другими агрегатами в сеть при номинальной частоте вращения и установившейся нагрузке.
- 2.5.13 Должна обеспечиваться устойчивая работа агрегата при одиночной и параллельной работе в следующих режимах:
 - при работе на стационарных режимах и нагрузках от холостого хода до 1,2 номинальной мощности (для ГТУ) или 1,1 номинальной мощности (для ДВС),
 - при мгновенных сбросах и набросах нагрузки равной 100% номинальной для ДВС, при этом допускается отклонение частоты вращения не более ± 7,5% от номинальной. Время восстановления частоты с точностью ± 0,5% должно составлять не более 5 с.

Мгновенный сброс 100 % нагрузки не должен приводить к остановке энергетической газовой турбины. Допустимые режимы загрузки турбины должны быть установлены в ТУ на поставку.

2.5.14 Помимо регулятора частоты вращения в схеме регулирования должно быть предусмотрено устройство для быстрой кратковременной разгрузки ГТУ (электрогидравлический преобразователь), действующее по факту аварии в главной электрической схеме электростанции (возникновение к.з., внезапное отключение нагрузки и пр.) на кратковременное закрытие регулирующих

клапанов с их последующим открытием (после окончания импульса) до прежнего значения.

- 2.5.15 Автомат безопасности должен надежно отключать ГТУ при повышении частоты вращения на 10-15% выше номинальной.
- 2.5.16 Выбросы вредных веществ с отработавшими газами не должны превышать нормативов, установленных в ГОСТ 29328.

3 Электротехническая часть

3.1 Главная схема и оборудование электростанций напряжением 6(10) кВ

- 3.1.1 Главная схема электростанции должна обеспечивать:
- выдачу 100% расчетной рабочей мощности на генераторном напряжении 10,5 или 6,3 кВ в любом рабочем режиме электростанции;
- достаточную гибкость и надежность работы во всех рабочих, ремонтных и аварийных ситуациях;
- наличие резервной вращающейся генераторной мощности в рабочих или ремонтных режимах;
- возможность включения в работу не менее одного электроагрегата, находящегося в холодном резерве;
- возможность расширения электростанции (34).
- 3.1.2 Главное распредустройство генераторного напряжения ЗРУ 6(10) кВ, как правило, должно быть выполнено общим для всех генераторов и состоять не менее чем из двух секций, объединенных секционным выключателем. Рекомендуется применение кольцевой схемы сборных шин генераторного напряжения с количеством секций не менее трех.

Для генераторов мощностью более 10 МВт допускается применение блочных схем генератор - повысительный трансформатор 10/110 (220) кВ, что требует соответствующего обоснования.

3.1.3 Подключение потребителей рекомендуется выполнять непосредственно от шин генераторного напряжения. При наличии большого количества мелких потребителей допустимо образование отдельного реактированного ЗРУ сторонних потребителей (ЗРУ - СП - 10 кВ).

- 3.1.4 Должна быть предусмотрена возможность подключения к шинам генераторного напряжения двух повышающих трансформаторов 6(10)/110 кВ или линий связи 6(10) кВ с соседними электростанциями.
- 3.1.5 Собственные нужды электростанции должны быть запитаны непосредственно от шин генераторного напряжения.
- 3.1.6 Распредустройства ЗРУ 6(10) кВ и ЗРУ СП 6(10) кВ должны быть выполнены на базе комплектных распредустройств с выкатными вакуумными выключателями.
- 3.1.7 Для защиты от коммутационных и грозовых перенапряжений в ЗРУ 6(10) кВ и ЗРУ СП 6(10) кВ должны быть применены нелинейные ограничители перенапряжений (ОПН). ОПН должны быть установлены в каждой ячейке с выключателем со стороны отходящей линии, а также один комплект общий на каждой секции шин. При необходимости допускается дополнительная защита с помощью RC цепочек. Ограничители перенапряжений и RC цепочки должны допускать длительную работу под линейным напряжением сети.
- 3.1.8 Должно быть предусмотрено частичное заземление нейтрали сети 6(10) кВ через резисторы с ограничением активной составляющей тока металлического однофазного замыкания до значения 30-40 А.
- 3.1.9 Главная схема должна быть оборудована следующими устройствами релейной защиты (РЗ) и противоаварийной автоматики (ПА):
 - на линиях связи с системой токовая отсечка или дифференциальная защита, максимальная токовая защита, защита от замыкания на землю, делительная защита, сигнализация перегрузки;
 - общесекционные защиты дифференциальная и дуговая каждой секции, защита минимального напряжения с действием на отключение отходящих линий (по выбору), автоматическая частотная разгрузка, автоматика быстрой разгрузки работающих генераторов при внезапном отключении одного из них с действием на отключение отходящих линий (по выбору), сигнализация замыканий на землю;
 - генераторы см. раздел 3.2.30;
 - синхронизацией (точной ручной и автоматической) на выключателях генераторов, всех секционных выключателях и выключателях связи с энергосистемой;

- устройства заземления нейтрали должны быть оснащены автоматикой, обеспечивающей поддержание тока 033 на уровне 30 - 40 А и защитой, отключающей это устройство при отказе защиты от однофазных замыканий отходящих линий или генераторов.
- 3.1.10 Все устройства РЗ и ПА предпочтительно выполнять на базе цифровой техники с учетом обеспечения работоспособности в условиях низких температур.
- 3.1.11 Управление выключателями должно осуществляться с главного щита управления, при этом должна быть обеспечена соответствующая аварийная и предупредительная сигнализация. Для опробования и наладки должно быть предусмотрено местное управление из ячеек, осуществляемое переключателями выбора режима управления.
- 3.1.12 Для управления и сигнализации должен применяться оперативный постоянный ток напряжением 220 В.
- 3.1.13 В ЗРУ 6(10) кВ и ЗРУ СП 6(10) кВ должны быть выполнены механические и электромагнитные блокировки с целью предотвращения неправильных операций оперативным персоналом.
- 3.1.14 Схемы защиты, автоматики и управления должны быть выполнены так, чтобы исчезновение и последующее восстановление напряжения в оперативных цепях не приводило к ложному их действию или отключению присоединений.
- 3.1.15 Применение высоковольтных плавких предохранителей не допускается (кроме установки для защиты трансформаторов напряжения).
- 3.1.16 Для питания трансформаторов КЦ и ABO газа должны применяться радиальные схемы.

3.2 Генератор

3.2.1 Номинальная мощность должна соответствовать максимальной мощности приводного двигателя, получаемой в условиях низких температур воздуха. Частота вращения - 3000 об/мин (1000 - 1500) номинальное напряжение 0,4; 6,3(10,5) кВ, коэффициент мощности - 0,8, соединение обмоток - звезда.

- 3.2.2 Изоляция обмотки статора и ротора должна быть класса нагревостойкости F с тепловым использованием в классе В. Предельное допустимое превышение температуры обмоток генератора не должно быть более 90°C.
- 3.2.3 Генератор должен иметь, как правило, воздушное охлаждение, рассчитанное на работу при температуре окружающего воздуха от -55°C до +45°C, влажности 98% при 25°C, запыленности 0.5 r/m^3 .
- 3.2.4 Со стороны нулевых выводов в генераторе должны быть установлены трансформаторы тока для дифференциальной и максимальной токовой защиты.
- 3.2.5 Генератор должен допускать аварийные перегрузки по току статора на 10% в течение 60 минут и двукратную в течение 1 минуты при номинальных значениях напряжения, частоты и коэффициента мощности.
- 3.2.6 Генератор, включая все элементы возбуждения, должен выдерживать без повреждений двух- и трехфазное короткое замыкание на выводах в течение 5 с. После отключения короткого замыкания должно обеспечиваться достижение номинального напряжения с точностью 1% за время не более 1,5 с.
- 3.2.7 Валопровод турбина-генератор должен выдерживать действие повышенного знакопеременного пульсирующего момента 10 МН•м(уточняется при проектировании), обусловленного действием апериодической составляющей тока к з
- 3 2.8 Генератор должен обеспечивать длительную устойчивую параллельную работу с энергосистемой любой мощности, с генераторами аналогичной и разных серий, а также на автономную нагрузку.
- 3.2.9 Генератор должен допускать мгновенный сброс и наброс нагрузки, равной номинальной мощности, и запуск асинхронного двигателя с пусковым током, не превосходящим двукратный номинальный ток.
- 3.2.10 Генератор должен допускать длительную работу при несимметричной нагрузке (коэффициент небаланса токов в фазах до 20%), если токи в фазах не превышают номинального значения. Коэффициент небаланса линейных напряжений при этом не должен превышать 5% от установившегося значения.
- 3.2.11 Характеристики генератора и системы возбуждения должны обеспечивать надежное возбуждение генератора при частоте вращения 92 105% номинальной и качество электроэнергии в соответствии с ГОСТ 13109 [25].

- 3.2.12 Параметры генератора и возбудителя должны обеспечивать значение установившегося тока трехфазного к.з. на выводах генератора не менее трехкратного номинального тока статора.
- 3.2.13 Тип возбуждения бесщеточное с контролем тока возбуждения генератора.
- 3.2.14 Система возбуждения должна допускать возможность работы как с автоматическим регулятором возбуждения (АВР), так и с ручным регулированием возбуждения. Должна быть обеспечена возможность переключения режима возбуждения без отключения генератора от сети.
- 3.2.15 Регулятор напряжения должен подключаться к трансформаторам тока, устанавливаемым со стороны рабочих выводов генератора.
- 3.2.16 Должна быть предусмотрена релейная форсировка возбуждения, действующая при снижении напряжения генератора ниже 0,85 номинального. Кратность форсировки должна быть достаточной для обеспечения значения установившегося трехфазного к.з. на зажимах генератора не менее трехкратного номинального тока. Допустимое время форсировки должно определяться по тепловой характеристике ротора, но составлять не менее 20с.
- 3.2.17 Увеличение напряжения генератора сверх номинального при работе регулятора возбуждения и форсировки, связанной с подключением нагрузки, не должно быть более 10%.
- 3.2.18 Система автоматического регулирования возбуждения (APB) генератора при подключении номинальной нагрузки не должна допускать снижение напряжения более чем на 20% номинального в течение 2 с. Допускается снижение напряжения в пределах 40% номинального напряжения турбогенератора в течение 0.1 с.
- 3.2.19 В системе возбуждения должна быть предусмотрена возможность подключения внешних контактов, дающих команду на гашение поля, при поступлении которой система возбуждения должна обеспечивать полное развозбуждение генератора.
- 3.2.20 В системе возбуждения должны быть сформированы следующие сигналы для передачи на пульт управления электростанции: "неисправность возбудителя", "форсировка возбуждения", "готовность APB к пуску".

- 3.2.21 Система возбуждения генератора должна быть выполнена таким образом, чтобы:
 - отключение любого из коммутационных аппаратов АРВ и управления возбудителем не приводило к ложным форсировкам возбуждения в процессе пуска, останова и работы генераторов;
 - исчезновение напряжения оперативного тока в цепях APB и управления возбудителем не приводило к нарушению работы генератора.
- 3.2.22 Распределение реактивных мощностей при параллельной работе генераторов должно осуществляться с помощью устройств, создающих статизм внешних характеристик по реактивному току Степень статизма внешней характеристики по реактивному току должна составлять 3% с возможностью регулирования в диапазоне 0 3%. При этом отклонение напряжения от напряжения, установленного по статической характеристике, не должно превышать $\pm 1.5\%$.
- 3.2.23 Генератор должен включаться на параллельную работу в сеть методом точной синхронизации (автоматической или ручной).
- 3.2.24 Генератор должен изготовляться на подшипниках скольжения с циркуляционной смазкой под давлением. Подшипник со стороны газотурбинного двигателя должен быть упорноопорным.
- 3.2.25 На корпусах подшипников должны быть предусмотрены площадки для вибродатчиков [17].
- 3.2.26 В патрубках подшипников генератора масляных уплотнениях, предназначенных для слива масла, должны быть смотровые окна для наблюдения за струей выходящего масла. В патрубках подшипников должны быть устройства для установки индикатора температуры и датчиков дистанционного измерения температуры.
- 3.2.27 Для измерения температуры активной стали сердечника и обмотки статора, в статор должно быть уложено не менее шести термопреобразователей сопротивления. Должны быть предусмотрены термопреобразователи для измерения температуры охлаждающего воздуха.
 - 3.2.28 Генератор должен быть оборудован системой пожаротушения.
- 3.2.29 Для предотвращения циркуляции токов через вал и подшипники генератора должна быть предусмотрена изоляция стула и трубопроводов смазки подшипников со стороны возбудителя генератора.

- 3.2.30 Генераторы мощностью более 1 МВт по ПУЭ [16] должны быть оборудованы следующими устройствами защиты:
 - дифференциальной защитой;
 - максимальной токовой защитой с комбинированным пуском напряжения с действием на отключение смежных секционных выключателей (1-я ступень) и на отключение выключателя генератора (2-я ступень);
 - защитой от замыканий на землю в обмотке статора;
 - защитой от двойных замыканий;
 - защитой от потери возбуждения:
 - сигнализацией перегрузки;
 - защитой от обратной мощности с выдержкой времени (для генераторов с приводом от ГТД, кроме ГТД со свободной силовой турбиной);
 - должно быть обеспечено отключение генератора от защит двигателя;
 - устройством гашения поля генератора;
 - сигнализацией замыкания на землю обмотки возбуждения.

3.3 Собственные нужды

- 3.3.1 Трансформаторы собственных нужд электростанции 6(10)/0.4 кВ (ТСН) сухие (при условии надежной работы в интервале температур охлаждающего воздуха от -55°C до +45°C) или масляные. Схема соединения обмоток Δ / Y_0 .
- 3.3.2 Количество трансформаторов собственных нужд (ТСН) рекомендуется принимать не менее количества секций сборных шин генераторного напряжения 6(10) кВ.
- 3.3.3 Схема собственных нужд каждого турбогенератора должна состоять не менее чем из двух независимых частей (подсистем). Каждая из подсистем должна состоять из понижающего трансформатора 10/0,4 кВ, питающегося от отдельной секции 6(10) кВ, соответствующей секции основного щита (КТП) 0,4 кВ и питающихся от нее вторичных сборок. Подсистемы должны взаимно резервироваться с помощью устройств автоматического включения резервного питания (АРВ) на стороне 0,4 кВ. Электродвигатели взаиморезервирующих технологических механизмов должны быть разделены на две независимые группы, которые подключаются к разным подсистемам. В случае, когда мощность элек-

тродвигателей превышает 50 кВт, они должны подключаться непосредственно к шинам КТП. Электрические нагрузки, не имеющие технологического резервирования, должны подключаться к вторичным сборкам, имеющим APB со стороны питания.

- 3.3.5 Выключатели резервного питания секций собственных нужд 0,4 кВ должны быть оборудованы устройством АВР, действующим по факту отключения выключателя рабочего питания (мгновенно) и исчезновения напряжения (с выдержкой времени) с запретом при к.з. на шинах, с обеспечением однократности действия. Для ускорения действия АВР выключатели рабочего питания 0,4 кВ должны быть сблокированы с выключателями рабочего питания ТСН со стороны 10 кВ (при отключении выключателя ТСН со стороны 10 кВ должен отключаться выключатель ТСН со стороны 0.4 кВ, если переключатель АВР введен).
- 3.3.6 Для аварийного питания ответственных нагрузок 0,4 кВ при потере питания собственных нужд электростанции, а также при ее запуске с "нуля", должен предусматриваться аварийных дизель генератор соответствующей мощности с автоматическим запуском и включением (с предварительным отключением неответственных нагрузок защитой минимального напряжения). Требования к аварийным дизель генераторам см. работу [2].
- 3.3.7 Управление рабочими, резервальни и аварийными выключателями секций 0,4 кВ, а также аварийным дизель генератором должно осуществляться с главного щита электростанции. Для опробования и наладки должно быть предусмотрено управление с местных панелей управления и переключатели выбора режима управления.
- 3.3.8 Сеть 0,4 кВ собственных нужд выполняется с глухозаземленной нейтралью.
- 3.3.9 Распредустройство 0,4 кВ и сборки 0,4 кВ должны быть комплектными, иметь изолированные шины и оборудованы выдвижными автоматическими выключателями или блоками выключатель магнитный пускатель (контактор). Применение плавких предохранителей не допускается.
- 3.3.10 Применяемые выключатели должны быть оборудованы комбинированным расцепителем, а в необходимых случаях полупроводниковым расцепителем с регулируемыми защитными хагактеристиками в зоне перегрузки и

отсечки. Для линий питания сборок 0,4 кВ должны применяться селективные автоматические выключатели.

- 3.3.11 Для защиты от однофазных к.з. линий, отходящих от шин КТП, рекомендуется применять токовые защиты нулевой последовательности, встроенные в расцепители автоматических выключателей, либо выносные токовые релейные защиты нулевой последовательности.
- 3.3.12 По всем линиям питания ответственных электроприемников должна быть обеспечена селективность действия защит.
- 3.3.13 При необходимости установки в ответственных сборках 0,4 кВ нестойкой коммутационной аппаратуры следует устанавливать на вводе в сборку токоограничивающие реакторы 0,4 кВ.
- 3.3.14 В проекте должны быть представлены расчеты токов коротких замыканий и выбора защит в сети 0,4 кВ, а также карты селективности защит. Выбор аппаратуры должен быть выполнен из расчета металлического к.з., проверка чувствительности защит должна быть выполнена с учетом токоограничивающего действия дуги в месте к.з.
- 3.3 15 Должен быть обеспечен поочередный или поочередно групповой самозапуск ответственных электродвигателей собственных нужд 0.4 кВ при кратковременных перерывах питания. Для выполнения поочередного самозапуска следует либо применять индивидуальные реле времени, устанавливаемые в схемах управления электродвигателями, либо закладывать его в алгоритм АСУ. Применение групповых реле времени не допускается. При длительных перерывах питания самозапуск должен запрещаться (кроме особо ответственных механизмов, перечень которых должен быть согласован с заказчиком).

3.4 Постоянный ток

3.4.1 Для питания особо - ответственных потребителей (цепей управления, сигнализации, защиты, автоматики, аварийных маслонасосов смазки, аварийного освещения, АСУ и др.) на электростанции, как правило, должны быть установлены две стационарные эккумуляторные батареи одинаковой емкости напряжением 220 В. Применение одной батареи допустимо для электростанций мощностью до 30 МВт, не имеющих подстанций 110(220) кВ.

- 3.4.2 Щит постоянного тока (ЩПТ) должен состоять из двух секций, соединенных для резервирования через нормально отключенный коммутационный аппарат. Каждая из секций должна быть запитана от своей аккумуляторной батареи. При установке одной батареи она должна подсоединяться к секциям ЩПТ по схеме развилки.
- 3.4.3 Аккумуляторные батареи должны работать в режиме постоянного подзаряда, для чего на каждой секции ЩПТ должно быть подключено свое подзарядное устройство ПЗУ, питающееся от сети переменного тока. Мощность ПЗУ должна обеспечивать возможность заряда одной батареи, а также одновременный подзаряд двух батарей (когда одно из ПЗУ выведено в ремонт).
- 3.4.4 Для предотвращения чрезмерного повышения напряжения на шинах управления в режимах дозаряда батареи должен быть предусмотрен специальный отвод между банками батареи и переключатели, с помощью которых в этом режиме питание минусовой шинки управления переводится на этот отвод.
- 3.4.5 При наличии в схеме электростанции приводов выключателей с потребляемым током включения более 180 А на щитах постоянного тока должны быть образованы три шины: плюс, минус нормального напряжения 220 В, минус повышенного напряжения 258 В. К шинам нормального напряжения должны подключаться сеть аварийного освещения, цепи АСУ, электродвигатели аварийных маслонасосов смазки, цепи управления, защиты и сигнализации. К шинам повышенного напряжения должны подключаться цепи питания приводов выключателей.
- 3.4.6 В схемах ЩПТ с шиной повышенного напряжения для дозарядки концевых элементов аккумуляторных батарей должны быть установлены специальные подзарядные устройства.
- 3.4.7 Питание оперативным током распредустройств ЗРУ 110 кВ, ЗРУ 10 кВ, ЗРУ СП 10 кВ, КТП 0,4 кВ и других объектов должно быть выполнено по кольцевым схемам от обеих секций ЩПТ. При этом схема электрических соединений должна быть такой, чтобы в эксплуатации имелась возможность запитать от любой из батареи цепи управления, защиты и сигнализации.
- 3.4.8 На обеих секциях ЩПТ должны быть установлены устройства контроля изоляции, сигнализации замыканий на землю, контроля уровня напряжения на шинах.

- 3.4.9 На каждой секции шин постоянного тока должны быть предусмотрены устройства защиты от перенапряжений, выполненные с помощью нелинейных ограничителей перенапряжений (ОПН).
- 3.4.10 По всем линиям питания постоянным током должно быть обеспечено селективное действие защит. В проекте должны быть представлены расчеты токов коротких замыканий, проверки чувствительности защит, карты селективности.
- 3.4.11 Компоновка панелей и шкафов ЩПТ должна быть свободной и удобной для эксплуатации и ремонта.
- 3.4.12 Для защиты присоединений постоянного тока должны быть применены селективные автоматические выключатели с комбинированным расцепителем. Применение плавких предохранителей не допускается.

3.5 Требования к вспомогательному оборудованию

- 3.5.1 Должно быть предусмотрено аварийное освещение ГЩУ, распредустройств, проходов и другого оборудования лампами накэливэния, питающееся переменным током 220 В с автоматическим переключением на постоянный при исчезновении переменного тока.
- 3.5.2 Для заземления электрооборудования должны использоваться специальные заземляющие контуры, а также металлические свайные фундаменты зданий и сооружений.
- 3.5.3 На случай отключения водяного отопления должен быть предусмотрен электрообогрев помещений и оборудования с постоянно находящимся в помещении обслуживающим персоналом.
- 3.5.4 Электродвигатели, аппаратура, приборы и кабельная продукция, применяемые во взрывоопасных зонах, должны иметь исполнение в соответствии с международными стандартами, согласованными со стандартами России.
- 3.5.5 Помещения электростанции должны быть оборудованы устройствами телефонной и громкоговорящей связи, устройства связи должны быть обеспечены нэдежными и хорошо слышимыми средствами вызова.
- 3.5.6 Кабели на промплощадке должны быть в негорючей оболочке и прокладываться - в кабельных этажах, шахтах, лотках и по строительным конструкциям. Должна быть обеспечена легкость осмотра и замены кабелей.

- 3.5.7 Кабели во взрывоопасных зонах должны быть медными с отдельной жилой для заземления.
- 3.5.8 Молниезащита и защитные заземления зданий и сооружений, а также заземление электрооборудования проектируются и поставляются по стандартам России.
- 3.5.9 Наружные технологические аппараты, надземные трубопроводы и воздуховоды должны быть оборудованы оцинкованными контактными зажимами для присоединений к очагам заземления, для защиты от статического электричества и вторичных проявлений молнии.
- 3.5.10 Наружное технологическое оборудование, арматура, трубопроводы в необходимых случаях должны быть укомплектованы автоматизированными системами и приборами электрического подогрева с использованием композиционных материалов, обладающих саморегулированием величины тока.

4 Управление и контроль

- 4.1 Система управления, контроля и защиты должна обеспечивать:
 - минимальное количество эксплуатационного и ремонтного персонала;
 - надежность управления, контроля и защиты основного и вспомогательного оборудования;
 - возможность оперативного управления турбинами, генераторами, главной электрической схемой, схемой собственных нужд электростанции, а также ответственными вспомогательными механизмами и устройствами:
 - быструю ориентировку персонала при аварийных режимах;
 - скорейшую ликвидацию последствий аварии.

Кроме того, система управления, контроля и защиты должна быть удобной в эксплуатации и обеспечивать выполнение указанных требований при расширении электростанции и вводе новых энергоблоков.

4.2 Исходя из специфики управляемого оборудования и специализации дежурного (оперативного) персонала должны быть предусмотрены подсистема АСУ теплотехнической части и подсистема АСУ электротехнической части, причем последняя является ведущей. В подсистеме АСУ технической части должны решаться задачи пуска, остановки, защиты и управления газовых турбин и

соответствующего технологического вспомогательного оборудования. В подсистеме АСУ электротехнической части должны решаться задачи синхронизации генераторов, распределения электрических нагрузок между генераторами, регулирование частоты, напряжения, управления работой электрической части электростанции, режимного и противоаварийного управления локальной энергосистемы.

- 4.3 Центральные части обеих подсистем АСУ устанавливаются в помещении, называемом далее главным щитом управления электростанции (ГЩУ).
- 4.4 Обе подсистемы должны работать в реальном масштабе времени. Должен быть предусмотрен единый координирующий центр, обеспечивающий ведение единого времени во всех контроллерах программно - технического комплекса
- 4.5 Контроллеры обеих подсистем рекомендуется выполнять на единой элементной базе. В АСУ теплотехнической части реализуются алгоритмы, разработанные для комплекса управления на базе существующих систем. Для АСУ электротехнической части алгоритмы управления разрабатываются с учетом имеющегося опыта аналогичных разработок в энергетике на базе быстродействующих АСУ.
- 4.6 Интервал дискретизации (период сканирования) ввода аналоговых и дискретных сигналов должен варьироваться в зависимости от вида объекта. Минимальный период сканирования должен составлять не более:
 - для АСУ технологической части 0,5 с;
 - для АСУ электротехнической части 10 мс;
 - для системы регистрации аварийных процессов 1 мс, точность привязки в системе единого времени должна быть не хуже 1 мс.
- 4.7 Программное обеспечение на всех уровнях должно быть совместимым с IBM PC.
- 4.8 Для обмена информацией внутри и вне систем АСУ должны использоваться стандартные протоколы обмена и стандартные технические средства.
- 4.9 Подсистема АСУ теплотехической части должна обеспечивать реализацию следующих функций:

- режим горячего резерва агрегата (включается автоматика электроподогрева масла, валоповорот и др. механизмы, обеспечивающие возможность запуска турбогенератора в течение не более 15 мин.);
- автоматическую проверку готовности агрегата к пуску:
- холодную прокрутку ГТГ:
- автоматический пуск с выводом турбогенератора на номинальную частоту вращения:
- автоматическую нормальную или аварийную остановку турбины;
- технологическую защиту турбины:
- автоматическое регулирование частоты вращения турбогенератора, возможность дистанционного изменения уставки автомата регулирования частоты вращения (мощности) турбогенератора;
- вычисление запаса по помпажу;
- контроль технологических параметров турбины и вспомогательных устройств.
- представление информации (в том числе в виде мнемосхем) о текущем значении контролируемых параметров по вызову оператора;
- непрерывное отображение текущих значений наиболее важных параметров:
- учет расхода топливного газа, времени наработки, числа пусков и остановов;
- управление устройствами жизнеобеспечения (вентиляторы, насосы, калориферы, жалюзи и т.д.) и вспомогательными технологическими системами;
- управление средствами пожаротушения;
- контроль загазованности:
- предупредительную и аварийную (в том числе звуковую) сигнализацию;
- документирование технологического процесса и аварийных ситуаций.
- 4.10 Подсистема АСУ электрической части должна обеспечивать реализацию следующих функций:
 - синхронизация генератора;

- управление всеми выключателями главной электрической схемы электростанции, управление выключателями питания собственных нужд электростанции, в том числе аварийными дизель генераторами;
- управление оперативным постоянным током;
- представление на экране монитора мнемосхем электрической части с указанием текущих параметров;
- аварийную и предупредительную сигнализацию о работе электрической части электростанции на экране монитора;
- звуковую информацию о наиболее важных событиях;
- управление мощностью генераторов (частотой вращения);
- управление возбуждением генераторов (реактивной мощностью, напряжением);
- распределение активных и реактивных нагрузок между генераторами;
- противоаварийную автоматику в объеме "Правил устройства электроустановок" (ПУЭ) [16];
- режимное и противоаварийное управление локальной энергосистемы;
- защиту элементов электрической схемы, в том числе генераторов, в объеме "Правил устройств электроустановок":
- автоматическую регистрацию и анализ аварийных режимов с записью осциллограмм переходных процессов и их расшифровкой;
- регистрацию последовательности срабатывания защит;
- дистанционную смену уставок защит и автоматики (при применении цифровых устройств РЗА);
- определение мест повреждений на линиях электропередач;
- **коммерческий и технический учет электроэнергии**;
- ведение суточных ведомостей и ведомостей событий;
- ведение архива режимов работы и аварийных событий;
- контроль и диагностику генератора и возбудителя;
- контроль и отображение устойчивых тенденций развития режимов электрооборудования.
- 4.11 Между подсистемами АСУ теплотехнической и электротехнической частей должны быть предусмотрены каналы связи для передачи сигналов защиты и управления, в частности:

- сигнала аварийного отключения турбины от технологических защит с действием на отключение генератора:
- сигнала отключения генератора при внутренних повреждениях или зашитой от обратной мошности с действием на отключение турбины;
- сигнала "прибавить" и "убавить" частоту вращения (мощность) силовой турбины с действием управления с ГЩУ, а также для опробования и наладки должно быть предусмотрено местное управление аварийными дизель генераторами, выключателями рабочего и резервного питания секций собственных нужд, отдельными электродвигателями, высоковольтными выключателями и другим оборудованием.
- 4.12 Кроме телефонной связи между местным щитом турбогенератора и ГЩУ на каждом пульте управления турбогенератора должен предусматриваться командоаппарат с запоминанием и общим съемом следующих световых сигналов (в виде световых табло) в обе стороны:
 - внимание;
 - прибавить;
 - убавить;
 - генератор в сети:
 - машина в опасности;
 - управление с ГЩУ;
 - управление с места;
 - телефон.
- 4.13 Для исключения помех в качестве сетевых магистралей распределенной АСУ следует использовать волоконно оптические кабели.
- 4.14 Источники питания АСУ переменный трехфазный ток напряжением 380/220 В (допускаются отклонения от +10 до -25%), частотой 50 Гц (допускаются отклонения ± 1 Гц) и постоянный ток 220 В (допускаются отклонения +10 до -25%). Отключение одного из источников не должно приводить к сбоям в работе АСУ [25].
- 4.15 Устройства управления, контроля и защиты должны удовлетворять следующим требованиям:
 - упаковка и консервация по нормативам для Крайнего Севера;

- транспортировка любым видом транспорта при температуре от -50°C до +50°C и влажности 100%;
- хранение в закрытом помещении при температуре воздуха от 0 до 50°C и относительной влажности 95%:
- работа в условиях температур воздуха от -40°C до +50°C и относительной влажности до 90%;
- устойчивость к воздействию магнитных полей частотой 50 Гц, напряженностью до 400 A/м;
- наработка на отказ типа "ложная аварийная остановка" и "невыполнение функций контроля" - 100000 час;
- наработка на отказ типа "пропуск аварии" 50000 час;
- время восстановления 1 час;
- срок службы не менее 20 лет.
- 4.16 Схемы защиты, автоматики и управления должны быть выполнены так, чтобы исчезновение и последующее восстановление напряжения в оперативных цепях не приводило к ложному их действию или отключениям объектов управления.
 - 4.17 Для повышения надежности АСУ должны применяться:
 - современная К МОП элементная база;
 - резервирование магистралей межмашинного обмена и наиболее ответственных функциональных комплексов;
 - самодиагностика средств вычислительной техники;
 - непрерывный контроль измерительных каналов, цепей датчиков и исполнительных механизмов:
 - конструкции, исключающие принудительную вентиляцию;
 - волоконно оптические линии связи.

5 Оценка надежности ЭСН

5.1 Показатели надежности

5.1.1 Требования к надежности ЭСН задаются в техническом задании на разработку (для одноагрегатных ЭСН) или проектирование (для многоагрегатных). При этом учитываются назначение ЭСН, достигнутый уровень надежно-

сти прототипов, показатели надежности комплектующих элементов, узлов, внешние условия применения [5, 6, 7, 8, 10, 11, 12, 13].

- 5.1.2 Основополагающим понятием при оценке надежности ЭСН является отказ событие, заключающееся в переходе в состояние, при котором производительность (мощность) ЭСН меньше потребности. Для одноагрегатных ЭСН отказом считается полный сброс нагрузки. Для многоагрегатных ЭСН отказы дифференцируются на частичные (приводящие к дефициту мощности) и полные (полный сброс нагрузки всех генераторов ЭСН).
- 5.1.3 В качестве основных показателей надежности для всех ЭСН принимаются [7, 8]:
 - **п** для оценки безотказности средняя наработка на отказ t (для многоагрегатных T), год или обратное значение параметр потока отказов ω (для многоагрегатных Ω), 1/год;
 - для оценки ремонтопригодности среднее время восстановления t_• (для многоагрегатных ЭСН T_•) или обратное значение интенсивность востановления µ=8760/t_• (M=8760/T_•), 1/год.
- 5.1.4 В качестве дополнительных технических показателей надежности принимаются:
 - для одновременной комплексной оценки безотказности и ремонтопригодности ЭСН коэффициент аварийности $\rho = \omega/\mu = t_{\bullet}/8760 \cdot t$ или $\rho = \Omega/\mu = T_{\bullet}/8760 \cdot T$, o.e.
 - для учета планово предупредительных ремонтов ППР среднее время между ППР, t_p , год (или обратное значение интенсивность ППР, ω_p , 1/год) и среднее время проведения ППР, t_{pp} , г (или обратное значение характеристика ремонтоприспособленности $\mu_p = 8760/t_{pp}$, 1/год), а для одновременной комплексной оценки этих свойств коэффициент продолжительности ППР $\rho_p = \omega_p/\mu_p = t_{pp}/8760 \cdot t_p$), о.е.
- 5.1.5 В качестве дополнительных экономических показателей надежности [8, 9] для многоагрегатных ЭСН принимаются:
 - разовые ущербы, оценивающие последствия разовых отказов
 продолжительностью Т_в.

- годовые ущербы, оценивающие последствия за год отказов общей продолжительностью с Т.
- 5.1.6 В случае, когда для многоагрегатных ЭСН показатели ущерба неспособны однозначно оценить характер и тяжесть последствий недостаточной надежности (например, при нарушении жизнеобеспечения в районах Крайнего Севера), в качестве технических и экономических показателей надежности возможно использование натуральных: кратность резерва (резервирования) отношение числа резервных элементов, I, к числу резервируемых, m, в виде несокращаемой дроби, I/m (случай I = m = 1 называется дублированием), объем годовых абсолютных Δ Q(T/T_{\bullet}) или относительных Δ Q($T/T_{\bullet}/Q$) недопоставок газа из за отказов ЭСН.

5.2 Методы нахождения показателей надежности

- 5.2.1 Эксплуатационные показатели надежности одноагрегатных ЭСН и отдельных элементов многоагрегатных ЭСН необходимо находить статистическим методом, с использованием аппарата классической математической статистики [10, 11] или малой выборки [12].
- 5.2.2 Показатели надежности многоагрегатных ЭСН необходимо находить расчетным методом [13], в частности, технические показатели надежности логико вероятностным методом [5]. а экономические показатели надежности на основе анализа последствий отказов, например, [6] приложение 3.
- 5.2.3 При оценке надежности ЭСН, работающих в системе электроснабжения объектов, рекомендуется учитывать только те отказы, последствия от которых являются наиболее тяжелыми (в частности, устраняемые с помощью ремонтов).

5.3Оптимизация показателей надежности

- 5.3.1 Оптимизация показателей надежности одноагрегатных ЭСН и элементов многоагрегатных ЭСН должна выполняться по методикам [5, 9].
- 5.3.2 Оптимальными являются также значения показателей ω и Тв, которые экономически невыгодно как улучшать (из за чрезмерно больших капитальных вложений), так и ухудшать (из за резкого увеличения ущерба при недостаточной надежности) [7, 8].

- 5.3.3 Технико экономические расчеты показывают, что повышение надежности ЭСН наиболее выгодно достигать следующими способами:
 - для одноагрегатных ЭСН повышением ремонтопригодности и уменьшением времени восстановления:
 - для многоагрегатных ЭСН уменьшением чувствительности системы к последствиям отказов элементов, в первую очередь - с помощью схемных решений, резервирования и автоматизации.
- 5.3.4 При использовании ЭСН для систем с экономическими оцениваемыми последствиями недостаточной надежности (ущербом), универсальным критерием оптимальности является минимум приведенных затрат с учетом этого ущерба: допустимым критерием оптимальности является минимум приведенных затрат без учета ущерба (при этом рассматривают варианты, надежность которых экспертно считается достаточной [1]); вынужденным критерием оптимальности считается обеспечение максимального повышения надежности на выделенные для этого дополнительные капитальные вложения.
- 5.3.5 При использовании ЭСН в системах с неоцениваемыми последствиями недостаточной надежности (например, в условиях Крайнего Севера) для оптимизации рекомендуется критерий минимума приведенных затрат без учета ущерба для вариантов схем, надежность которых экспертно считается достаточной.

6 Экологические требования

- 6.1 Уровень шума, создаваемый ЭСН в зоне обслуживания не должен превышать 80 дБ. Система шумоглушения должна обеспечивать снижение уровня шума, в районе воздухозабора и выхлопа до санитарных норм.
- 6.2 Октавные уровни вибрации, замеренные на рабочем месте в отсеке управления ЭСН, не должны превышать норм, установленных ГОСТ 12.1.012, категория 3а [38].
- 6.3 Октавные уровни звукового давления в отсеке управления не должны превышать норм, установленных в ГОСТ 12.1.003 [39].
- 6.4 Выбросы вредных веществ с отработанными газами не должны превышать норм, установленных ГОСТ 29328 и ГОСТ 24585 [18.31].

- 6.5 Предельно допустимые концентрации вредных веществ на рабочем месте в отсеке управления не должны превышать норм, установленных ГОСТ 13822 [40].
- 6.6 Для определения концентрации вредных веществ в приземном слое в точках на разных расстояниях (г) от источника загрязнения и высоте от земли (Z) необходимо пользоваться формулой

$$C = \frac{M}{4\Pi^4} \cdot \left[\frac{1}{\sqrt{(Z-H)^2 + r^2}} + \frac{1}{\sqrt{(Z+H)^2 + r^2}} \right]$$

где: М - количество выделяющихся вредных веществ, мг/с

А - коэффициент турбулентного обмена, м²/с

Н - высота источника выброса над уровнем земли, м.

Для расчетов рекомендуется принимать минимальное значение коэффициента турбулентного объема $A = 0.05 \text{ m}^2/\text{c}$, ниже которого в атмосфере этот коэффициент может быть только в очень редких случаях. Концентрацию на поверхности земли (Z = 0) можно определить по формуле

$$C = \frac{M}{2\Pi^4 \sqrt{H^2 + r^2}}$$

6.7 При анализе экологической обстановки, прилегающих к ЭСН площадок жилой застройки и населенных пунктов и расчете концентраций оксидов азота в атмосфере необходимо пользоваться приведенной в п. 6.6 формулой.

Нормативные ссылки

		Пункты
1	РД 51 - 00158623 - 08 - 95. Руководящий нормативный	1.1.1
	документ. Категорийность электроприемников	1.1.8
	промышленных объектов газовой промышленности. М.,	5.3.4
	ВНИИГАЗ, 1995 г.	
2	РД 51 - 0158623 - 06 - 95. Руководящий нормативный	1.1.1
	документ. Применению аварийных источников	1.1.3
	электроэнергии на КС МГ, УКПГ и других объектах газовой	1.1.8
	промышленности. М., ВНИИГАЗ, 1995 г.	3.3.6
3	Указания по построению электрических схем компрессорных	1.1.6
	станций магистральных газопроводов. Часть 1. Инструкция	
	по построению электрических схем. РТМ - 1275 - 1, редакция	
	2, ПО "Союзоргэнергогаз" - ВНИПИтрансгаз, Ленинград -	
	Киев, 1984 г.	
4	РД 51 - 0158623 - 3 - 91. Руководящий нормативный	1.1.6
	документ. Расчет количества агрегатов электростанций,	
	локальных систем электроснабжения в районах Крайнего	
	Севера. М., ВНИИГАЗ, 1991 г.	
5	Методика оценки надежности электрических схем	1.1.6
	компрессорных станций магистральных газопроводов. Л - М,	5.1.1
	Оргэнергогаз - ВНИИЭгазпром, 1989 г.	5.2 .2
		5.3.1
6	Методика оценки показателей надежности, применяемая в	1.1.6
	США.	5.1.1
		5.2.2
7	ГОСТ 27.002. Надежность в технике.	5.1.1
	Основные понятия. Термины и определения.	5.1.3
		5.3.2

8	ГОСТ 27.003 Надежность в технике. Состав и общие	5.1.1
	правила задания требований по надежности.	5.1.3
		5.1.5
		5.3.2
9	ГОСТ 20.39.312 Комплексная система общих технических	5.1.5
	требований. Изделия электротехнические. Требования по	5.3.1
	надежности.	
10	РД 50 - 204 - 87. Методические указания. Сбор и обработка	5.1.5
	информации о надежности изделий в эксплуатации.	5.2.1
	Основные положения.	
11	ГОСТ 27.503. Надежность в технике. Системы сбора и	5.1.1
	обработки информации. Методы оценки показателей	5.2.1
	надежности.	
12	ГОСТ 27.201. Надежность в технике. Оценка показателей	5.1.1
	надежности при малом числе наблюдений с использованием	5.2.1
	дополнительной информации.	
13	РД 50 - 476 - 84. Методические указания. Надежность в	5.1.1
	технике. Материальная оценка надежности технического	5 2.2
	объекта по результатам испытания составных частей.	
	Общие положения.	
14	Правила безопасности при эксплуатации	1.2.4
	газоперерабатывающих заводов. М., 1988 г.	2.1.2
15	Правила безопасности в нефтяной и газовой	1.2.4
	промышленности. М., 1993 г.	2.1.2
16	Правила устройства электроустановок (ПУЭ) 6-е изд. М.,	1.2.4
	Энергоатомиздат, 1985 г. с.640.	3.2.30
		4.10
17	ГОСТ 17516.1 Изделия электротехнические. Условия	3.2.25
	эксплуатации в части воздействия механических факторов и	
	внешней среды.	

18	ГОСТ 29328 Установки газотурбинные для привода	2.1.1
	турбогенераторов. Общие технические условия.	2.5.16
		6.4
19	ГОСТ 23377. Электроагрегаты и передвижные	1.1.3
	электростанции с двигателями внутреннего сгорания. Общие	
	технические требования.	
20	ГОСТ 20440. Установки газотурбинные. Методы испытаний.	1.1.7
		2.5.1
21	ГОСТ 26658. Электроагрегаты и передвижные	1.1.3
	электростанции с двигателями внутреннего сгорания.	2.5.1
	Методы испытаний.	
22	ГОСТ 14965. Генераторы трехфазные синхронные	1.2.4
	мощностью свыше 100 кВт. Общие технические условия.	
23	ГОСТ 15543.1 Изделия электротехнические. Исполнения для	1.2.4
	различных климатических районов. Общие технические	
	требования в части воздействия климатических факторов	
	внешней среды.	
24	ГОСТ 15150 Машины, приборы и другие технические	1.2.4
	изделия. Исполнения для различных климатических	
	районов. Категории, условия эксплуатации, хранения и	
	транспортирования в части воздействия климатических	
	факторов внешней среды.	
25	ГОСТ 13109. Электрическая энергия. Требования к качеству	1.2.4
	электрической энергии в электрических сетях общего	2.5.1
	назначения.	3.2.1
		4.14
26	ГОСТ 12.1.038. Система стандартов безопасности труда.	1.2.4
	Электробезопасность. Предельно допустимые значения	
	напряжений и прикосновения и токов	

27	ГОСТ 12.1.019. Система стандартов безопасности труда.	1.2.4
	Электробезопасность. Общие требования и номенклатура	
	видов защиты.	
28	ГОСТ 12.1.030. Система стандартов безопасности труда.	1.2.4
	Электробезопасность. Защитное заземление, зануление.	
29	НПБ-105-95 Определение категорий помещений и зданий по	1.2.4
	взрывопожарной и пожарной опасности.	1.2.7
		2.1.3
30	ГОСТ 12.1.004. Пожарная безопасность. Общие требования	1.2.4
		1.2.7
		2.1.3
31	ГОСТ 24585. Дизели судовые, тепловозные и промышлен-	1.2.4
	ные. Выбросы вредных веществ с отработавшими газами.	1.2.7
	Нормы и методы определения.	6.4
32	ГОСТ 5542. Газы горючие природные для промышленного и	2.1.1
	коммунально - бытового назначения. Технические условия.	2.1.3
33	РД 34.20.5 Руководящие указания по проектированию	1.2.4
	систем газоснабжения с давлением природного газа до 5,0	2.1.3
	МПа для ГТУ и ПГУ.	
34	Трегубов И.А., Савенко Н.И., Фомин В.П., Овчаров В.П.	2.2.1
	Руководство по эксплуатации электростанций собственных	3.1.1
	нужд. М., ВНИИГАЗ, 1989 г.	
35	Правила безопасности в газовом хозяйстве. М., 1994 г.	2.1.6
36	Нормы технологического проектирования дизельных	1.2.4
	электростанций. М., 1989 г.	
37	РД 34.20.501-95. Правила технической эксплуатации	1.2.4
	электрических станций и сетей Российской Федерации.	
	М.,1996 г.	
38	ГОСТ 12.1.012 ССБТ Вибрационная безопасность. Общие	6.2
	требования.	

РД 51 - 015 86 23 - 07 95

39	ГОСТ 12.1.003 ССБТ Шум. Общие требования безопасности.	6.3
40	ГОСТ 13822 Электроагрегаты и передвижные	6.5
	электростанции дизельные. Общие технические условия.	

Приложение 1

Термины и определения

Термин	Источник	Определение
	FOCT 20375-83	Электроустановка, состоящая из электроагрегата (электроагрегатов) или двигатель-генератора (двигатель-генераторов), устройств управления и распределения электрической энергии и оборудования, необходимых для обеспечения автономной работы и для электроснабжения потребителей в зависимости от назначения электростанции. Электроагрегат с ДВС: электроустановка,
onexipodiperar	20375-83	состоящая из двигатель-генератора, устройства управления и оборудования, необходимых для обеспечения автономной работы.
Двигатель-г е н е ратор	FOCT 2037 5 -83	Электроустановка, состоящая из ДВС и приводимого ими во вращение генератора, соединенных устройством передачи механической энергии от вала двигателя к валу генератора.
Электроагрегат (электростанция) контейнерного исполнения	FOCT 20375-83	Передвижной электроагрегат (передвижная электростанция), оборудование которого (которой) смонтировано в контейнере (контейнерах).
Электростанция капотного исполнения	20375-83	Передвижная электростанция, в состав которой входит электроагрегат капотного исполнения.
Газотурбинная установ- ка (ГТУ)	23290-78	Конструктивно - объединенная совокуп- ность газовой турбины, газовоздушного тракта, системы управления и вспомога- тельных устройств.
Блочно-транспорта- бельная электростан- ция	POCT 20375-83	Передвижная электростанция, конструкция которой предусматривает ее перемещение и транспортирование отдельными функциональными и (или) конструктивными блоками, сочленяемыми при развертывании.
Дизель (дизельный двигатель) Газовый ДВС		Двигатель внутреннего сгорания с самовоспламенением жидкого топлива. Двигатель внутреннего сгорания на газовом топливе с воспламенением электрической искрой.

Термин	Источник	Определение						
Газодизель		Двигатель внутреннего сгорания на газо-						
		вом топливе с воспламенением от впры-						
		ска порции запального жидкого топлива.						
Дизель-генератор	ГОСТ	Двигатель-генератор с дизельным первич-						
	20375-83	ным двигателем.						
Капот	ГОСТ	Оболочка из листового металла или спе-						
	20375-83	циальной ткани, предназначенная для за-						
		щиты электроагрегата (электростанции)						
		от воздействия внешней среды.						
Основной электроагре-		Электроагрегат (электростанция) от кото-						
гат (основная электро-	20375-83	рого (которой) осуществляется электро-						
станция)		снабжение приемников электрической						
		энергии в нормальном режиме работы.						
Резервный электроагре-		Электроагрегат (электростанция), вклю-						
гат (Резервная электро-	20375-83	чаемый (ая) на нагрузку при отключении.						
станция)		перегрузке или выходе из строя основного						
		источника электрической энергии.						

Приложение 2

1 Наиболее распространённые электроагрегаты с ДВС отечественного и зарубежного производства

Таблица 1

Наименование	Тип двигателя	Мощ-	Частота	U	к.п.д.	Топливо	Пуск	L,	B,	Н,	Macca,	1 7	Изготовитель
электровирегата		ность, кВт	вращ. об/мин	ном., кВ				ММ	MM	ММ	1	K.P.	
TM3-104	6415/18	100	1500	0 4	33 8	диз.	Электро	2885	1190	1820	3 5		TM3
ЭД-2000	12415/18	200	1500	0 4	33 5	диз	Электро	6280	3200	3074	10	16000	TM3
1A 224/750	641A23/30	224	750	0 4	34.6	ДИЗ	Пневмо	4520	1460	2180	12 65	40000	РУМО
1A 300/1000	642A23/30	300	1000	04	33 6	диз	Пневмо	4550	1460	2180	13 97	30000	РУМО
2A 400/1000	8423/30	400	1000	0 4	37.9	диз.	Пневмо	5200	1500	2240	15	50000	РУМО
ГДГ 500:1500	6ГЧН 2A21/21	500	1500	0 4	30	rab	Электро	4100	1750	1850	10	40000	Волгодизельмаш
KAC-500 A	124H18/20	500	1500	0.4	34 5	диз	Пневмо	4420	1550	1900	58	7000	Звезда
ДГР 500/1500	64H21/21	500	1500	04	34.3	диз	Электро	4225	1515	2100	10	32000	Волгодизельмаш
АСГД-500	124H18/20	500	1500	0 4	33.1	газ+диз	Пневмо	4420	1550	1900	6	7000	Звезда
3508 TA	84H17/19	508	1500	0 4		Диз		12190	2340	2590	18 22		Caterpillar
SEG 825	124H14,5/16	530	1500	04	34 2	ДИЗ	Электро	3810	1600	2020	6 27		Mitsubishi
6L20/27	64H20/27	550	1000	0 4	37 8	ДИЗ	Пневмо	4500	1600		104		MAN B&W
3512 TA	12 4H 17/19	600	1000	04		ДИЗ		12190	2340	2590	21 3		Caterpillar
4R22HF	44H22/24	600	1000	10 5	40 5	ДИЗ	Пневмо	4610	1490	2365	13 7		Wartsila
SEG-1025	12416/18	610	1500	0.4	33 2	ДИЗ	Электро	4390	1820	2490	9 54		Mitsubishi
T-98 - 0 4 rB	6ГЧН 1A 36/45	800	500	04	33 4	เลว	Пневмо	7228	2110	3403	37.5	70000	РУМО
T-98 - 6 3/B	614H 1A 36/45	008	500	63	33.4	ras	Пневмо	7038	2060	3403	37.5	70000	PYMO
VHP7106GSI	124H23.8/21,6	840	1000	04	35	ras	Электро	6050	2900	3500	18 03		Waukesha
IPA-5L	44H 25,5/27	900	1000	04		диз	Пневмо	5235	1300	2805	136		Niigata
3512 TA	12 YH 17/19	920	1500	04		диз.		12190	2340	2590	213		Caterpillar
R22HF	64H22/24	940	1000	10 5	40.7	диз.	Пневмо	5500	1490	2590	16		Wartsila
G3516	16ГЧН 17/19	965	1500	04		ras		12190	2340	2590	24		Caterpillar
ЭД-1000C	84H21/21	1000	1500	10 5	34 7	ДИЗ	Электро	12000	3225	4000	36	9000	TM3
SEG1500	16416/18	1000	1500	04	34 3	ДИЗ	Электро	5560	1820	2475	11 83		Mitsubishi

Наименование	Тип двигателя	Мощ-	Частота	U	кпд	Топливо	Пуск	L,	B,	Н,	Macca,	До	Изготовитель
электроагрегата		ность,	вращ,	ном,			1	ММ	мм	мм	T	K.P.	
		кВт	об/мин	кB		l		ļ		<u></u>			
ДГ99 - 0,4 кВ	64H36/45	1000	500	0 4	40 2	диз	Пневмо	7228	2110	3403	37	60000	РУМО
ДГ99 - 6,3 кВ	64H36/45	1000	500	6.3	40 2	ДИЗ	Пневмо	7038	2060	3403	37	60000	РУМО
6R25SG	64H25/30	1050	1000	10,5	39	ras	Пневмо	6600	1730	2950	20	40000	Wartsıla
ЭВД-1	124H 1A 26/26	1100	1000	63	39 1	диз	Электро	18160	3182	5224	76	60000	Брянский завод
12V20/27	124H20/27	1100	1000	0 4	40	диз	Пневмо	5900	2000		18 8		MAN B&W
6 VDS 29/24 AL-1	64H24/29	1100	1000	04	42 6	Диз	Пневмо	6145	1320	2410			SKL DIESEL
КАЭСГД-1500	18 4H20/27	1500	1000	6.3	40	газ+диз	Пневмо	14200	2500	4200	36	60000	Русский дизель
ДГ-4000	16ДПН2A23/2x30	3500	1000	63	35 5	диз	Пневмо	11905	2500	3320	60	60000	Русский дизель
MT 3500	16ДПН2А23/2х30	3500	1000	63	33 3	ras	Пневмо	11705	2500	3300	59	60000	Русский дизель
АСДА 5600	18ДПH23/2x30	5600	1000	63	35 4	ДИЗ	Пневмо	11600	2600	3200	75	50000	Русский дизель
18V32/40DG	18V32/40DG	6600	750		40 3	газ+диз	Пневмо	12400	3360	4200	114 5		MAN B&W

2 Наиболее распространенные энергетические газовые турбины отечественного и зарубежного производства

Турбина	Мониі.	Год	кпд.	tena	Į°.	Hacı.,	M,	дина,	ampana,	BLROIA.	Hena,	1/31 01 0BH 1 C.H.	Примечание
	кВт	1914-	%	влоде	вып.	об/м	TOIII	ММ	MM	भ्रम	mac. S		
		пуска		в гурб.	1'83.						L		
S1A-02	200	1978	15.6	930	520	1500	0.4	1100	1000	960	<u> </u>	Kawasaki Heavy Ind.	
Astazou	300	1972	18		490	1,500	3.7	3300	1300	1500		Turbonicca	
S11-02	394	1978	15.4	930	520	1,500	0.7	1200	1200	1300		Kawasaki Heavy Ind.	
1M831-800	520	1972	21.1	963	499	1500	0.8	1219	914	914		AlliedSignal	
PW-63E	570	1990	21.1	996	590	1500	7	4500	1500	2600		Ebara	
S2A-01	663	1979	20.8	930	520	1,500	0.7	1200	1200	1300		Kawasaki Heavy Ind.	
PW-71:	700	1990	22 2	990	566	1500	7.5	4500	1500	2600		Ebara	
Bastan VII	800	1972	21.4		232	1500	4.5	4000	1500	1950		Turbomeca	
Makila T1	1050	1988	26.6		505	1500	()	6000	1800	2100		Turbonicca	
A11-23 CT	1100		17		465	1000	1.5	3500	750	950		Турбогаз	
M1A-01	1111	1978	19.9	900	515	1500	3	2100	1400	1600		Kawasaki Heavy Ind.	
IM150	1125	1988	26.4	686	488	22678	0.4	1700	600	650		Ishikawajima-Harima	
PW-12E	1160	1990	21.5	996	590	1500	13.5	5500	2300	2200		Ebara	
TB7-117	1200		26	1087	500	1500	2	3200	1600	1690		Климова им. з-д	
Saturn 20	1205	1985	24.5		486	22516	10	5761	1676	2164		Solar	
MIA-II	1235	1989	23.3	910	459	1500	3.4	2400	1500	1600		Kawasaki Heavy Ind.	
MIA-I3CC	1302	1989	21.1	1010	575	1500	3.6	2600	1700	1600		Kawasaki Heavy Ind.	
M1A-03	1392	1982	20.7	960	545	1500	3	2100	1400	1660		Kawasala Heavy Ind.	
PW-14E	1420	1990	22.5	990	556	1500	14	5500	2300	2200		Ebara	
MIA-13	1473	1989	24.2			1500	3 1	2400	1500	1660		Kawasaki Heavy Ind.	
ГДГ-1500-2Г	1500	1996	20.8		470	1500		6300	2340	2790		Продетарский з-д (АО)	
KA-1334	1550	1990	22.5	990	517	22000	20	6000	2400	2800		Deutz MWM-Gastechnic	
Hurrican	1630	1991	24.5	1134	602	27245	13.2	5791	2012	2377	1150	Europian Gas Turbines	
KG2-3E	1850	1989	16.5	829	550	18800	109	4572	1676	2134	1175	Dresser-Rand	
STIN	1881	1992	29.5		553	20000	0.4	1829	671	853		Pratt & Whitney	
PGT2	2000	1992	2.5		550	1500	12	5500	2300	2500	1080	Nuovo Pignone	1
IM270	2043	1996	26.2	1121	543	1500	0.5	2500	1500	1500		Ishikawajima-Harima	
M1T-01	2148	1979	19.4	900	510	1,500	5.7	2300	2200	1500		Kawasaki Heavy Ind.	li

Τνρόιμα	Мощи.	Гол	кпд,	te na	10	Jact.,	M.	zumna.	umpuna.	BLICOIA,	цена,	Изготовитель	Примечание
	кВт	1111-	1%	BYORG	вын.	об/м	101111	MM	MM	MM	11.1C. \$		
		пуска		в гурб.	1'83.								
KA-2334	2150	1992	23.7	1440	575	22000	25	7000	2600	2800		Deutz MWM-Gastechnic	
M1A-13CC Steam	2299	1989	31.9	1010	590	1500	3.6	2600	1700	1600		Kawasaki Heavy Ind.	
OL25001-110500-3BH	2500	1997	27		442	3000	40	12000	3000	3200		КБ "Эпергия"	Эл. станция
Д-30 ЭУ-1	2500	1995	21.8	650	350	5500	3	4700	1800	1300	288	Пермские моторы (АО)	
OGT2500	2500	1995	28.5	951	435	3000	45.4	12192	3048	3048	1150	Orenda	Эл. станция
GT 5	2650	1994	27.2	950	445	3000	2.5	3100	2000	1800		ABB	
MTT-03	2680	1982	20.3	960	540	1500	5.7	2300	2200	1500		Kawasaki Heavy Ind	
LT 500	28.50	1992	28.5	951	435	3000	1.5	3000	1200	2000		Заря (Манпроскт)	
M1T-13	2902	1989	23.9	990	518	1500	6.2	2400	2200	1600		Kawasala Heavy Ind	
KT-1334	3055	1990	22.5	99()	517	22000	28	7000	2800	2400		Deutz MWM-Gastechnic	
Centaur 40	3515	1970	27.9		437	14951	18.2	ห77ห	2438	29.57	1,570	Solar	
TB5000	3809	1977	25.8	910	488	7950	13.6	5791	2438	2438		Europian Gas Turbines	
CX501-KB5	3830	1992	27.9		570	14250	30	8400	2700	2900		Centrax Gas turbine	
501-K B5	3926	1982	28.7		549	14200	0.6	2286	823	914	1700	Allison Egine Company	
MIT-23	3981	1991	24.7	1130	568	1500	6.3	2600	2400	1900		Kawasaki Heavy Ind	
Д-30 ЭУ-1	4000	1996	24.7	755	395	5500	-1	5000	2200	2000		Пермские моторы (АО)	
CiT10-5	4096	1982	28.8	1057	577	14200	0.6	2286	914	1067		Hitachi Zosen	
501-KB5 S	4103	1990	29.5		579	14200	0.6	2286	823	914		Allison Egine Company	
Typhoon	4214	1989	29.9	1049	510	16500	30.4	8016	2438	3200		Europian Gas Turbines	
501-KB4	4325	1994	29 2		623	14200	0.6	2286	823	914		Allison Egine Company	
Centaur 50	4350	1985	29 2		501	14951	27 2	X77X	2438	2957	1830	Solar	
DR 990	4420	1978	29.3	682	491	7200	9.1	8534	2743	3353		Dresser-Rand	
1M400 50Hz	4540	1982	29.8	1057	577	14357	0,6	2300	900	800		Ishikawajima-Harima	
501-KB7	4610	1992	28.2	1057	536	14600	27.2	8748	2438	2652	1985	Stewart & Stevenson	
RA 151	4700	1992	32.5	1100	515	17400	30	9200	2600	3100		Deutz MWM-Gastechnic	
TG-Typhoon	4907	1981	30.6	1100	549	17384	33.6	7925	2438	3200	1925	Stewart & Stevenson	
CX501-KB7	49.50	1993	29.2		535	14571	32	8400	2700	2900	1985	Centrax Gas turbine	
Tautus 60S	5000	1993	30.3		481	14951	193	8778	2438	2957		Solar	
MS1002	5070	1993	26.3	955	525	10290	17.3	5800	2500	3400		Bharat Heavy Electricals	
PGT5	5220	1972	26.9		523	1500	28	8500	2500	3500	2150	Nuovo Pignone	
501-KB7	5222	1992	31.5		538	14600	0.6	2743	823	914	1985	Allison Egine Company	
THM 1203	5260	1979	22 6	905	498	7800	67	15000	2700	4000		MAN GHH	
181400 50117	5382	1992	29.7	10.57	542	14357	0.6	2700	700	1200		Ishikawajima-Harima	
CX571	5410	1986	30.6		573	14437	35	8400	2700	2900		Centrax Gas turbine	
SB30C	5410	1973	26		508	9410	10	4100	2100	3700		Mitsui Engineering	

Турбаны	TM		7						7				
	Мощи кВт		кпд,	tena	10	Jaci.,	M,	zenna,	mapana	1	цена,	Изготовитель	Примечание
	V _D 1	Bbi-	26	влоде	1 a 3	00/м	101111	ММ	ММ	ММ	тыс. \$		
GTW 7	5720	1995	29.3	в гурб. 1175	555	1500	4.5	3600	1100				<u> </u>
M = %-01	5720	1993	29.3	1175	57.5	1500	4.5	1100	1100	1100	1 2520	ABB	·
GT/K	5909	1988	33.8	803	533	11500	0.8		1100	3600	2530	Kawasaki Heavy Ind.	.
MF-61	5925	1989	28.7	003	496	13800	9.8	1829 3800	823	792	 	Hitachi Zosen	<u> </u>
LL.?-0	6000	1 1 7 8 7	30.5		410	8200	40	9350	2300 3200	2900 3790	<u> </u>	Mitsubishi	ļ
R.5.165	6150	1992	32.5	1000	180	11085	50	11800	2800	3600	2250	TM3	ļ
TG-Tornado	6250	1981	30.3	1000	471	11085	54.9	7925	2438	3200	2250 2650	Deutz MWM-Gastechnic	F
OGT 4000	6300	1995	31.5	1015	120	3000	72.6	15240	3048	5486	2580	Stewart & Stevenson	Турбоблок
Tausers 70S	6300	1994	31.3	11712	488	10800	49.9	11613	2743	3322	2520	Orenda Solar	
R3	6360	1976	32.5	970	464	10600	27 2	7315	3048	2743	2.320	Sulzer Turbo	
IM+(*) III-FLESC	6450	1996	37.9	1016	497	14540	0.6	2300	900	800	 	Ishikawajima-Harima	
3	6560	1976	28.3	970	464	10600	27.2	7315	3048	2743		Sulzer Turbo	ļ
ДВ 11Л	6700		31.5	1015	420	3000	3.5	3200	1600	1800	 -	Заря (Манироскі)	
SB3-)1:	7330	1995	28		502	11380	18.3	4900	2300	3700		Mitsui Engineering	
TG/ empest	7490	1996	31.4	1100	536	13907	549	9754	2438	3353	<u></u>	Stewart & Stevenson	Τνρόοθησκ
PGT 40	7900	1986	30.9		1X1		27	8100	2500	4000		Nuovo Pignone	TYPOON
N-334.8	8000		32.5		432	8200	3.5	5500	1300	1400		Моторостроитель	<u> </u>
THS: 1304D	8870	1992	26.9	975	515	8000	87	16000	2800	5100		MAN GIIH	
Marx 90S	9290	1992	31.7		101	8568	68	14539	2774	3322		Solar	
HK-J4')	9500	1996	32	1027	477	3000	3.1	4700	1500	1500		Николай Кулисцов	
Д-336-10	10000		34		122	4800	3.6	5700	1500	1600		Моторостроитель	
PC/F : 0	10140	1986	29.3		484	7900	27 2	K230	2438	3962	4440	GE Power Systems	
G3142(J) R7	10450	1952	25.6	943	526	6500	1198	23470	5791	3810		Europian Gas Turbines	Эл. стапция
	10600	1970	31.6	925	342	6400	62.6	11582	3658	3962		Sulzer Turbo	
Mars 100S	10695	1994	32.5		488	8568	68	14539	2774	3322		Solar	
6:5:4:0	11000	1970	24 8	925	493	6400	62.6	11.582	3658	3962		Sulzer Turbo	
L.LA-15	12000		3.5	1033	426	6500	4					Пермские моторы (АО)	
SB60-2	12490	1981	29.6		465	5680	54.7	7400	3300	4500		Mitsur Engineering	
MF-111A	12610	1985	30.3		547	9660	22	5600	2300	2500		Mitsubishi	
RLV(1600	13350	1989	35.4	751	488	6414	63.5	1463	3810	36.58		Europian Gas Turbines	·
PGT16	13390	1989	35.2		493	7000	18	8100	2500	3800		Nuovo Pignone	
DROG	13420	1990	35.7	756	487	7000	21 8	9449	3,505	3200		Dresser-Rand	
FW1000-bV	13425	1989	35.7	743	487	7000	3.4	4572	2138	2134	6640	GE Marine & Industrial	
TG-1600	13449	1989	35.8	743	487	7000	81.6	19812	1267	1267		Stewart & Stevenson	
LM1600 - PA	13490	1989	359	763	487	7000	3.4	4572	2438	2134		MTU GmbH	

Typóma	Мощи.,	Год	КПД,	toma	19	Част.,	N1,	Junna,	ишрина,	иысота	Hella.	Ия отовитель	Примечание
	кВт	864-	%	входе	вын.	υύ/Μ	TOTH	ММ	MM	MM	Thic. S	THE OTOMITE.III	11/1/3/2-141111
		liveka		втурб	183.						1.110. 3		
LM1600-PA	13520	1988	35.9	740	487	7000	90	18100	3700	3700		Thomassen S&S Int.	
SB60-1	13570	1988	29.7		492	6780	520	6900	.2300	1500		Mitsur Engineering	
H-15(i)	13800	1990	30.9		550	9710	1946	24994	5791	10973	 	Hitachi	
ME-111B	14570	1985	31		530	9660	22	5600	2700	2500	5900	Mitsubishi	
Coberra 2000	14580	1964	28.2		115	5500	22.7	6401	3048	3048	117	Cooper Rolls	
Avon	14580	1964	28.2		442	5500	164.2	15240	4115	4115	5000	Rolls-Royse	
GT151	14760		29.7	1057	57.5		20.4	7315	3353	3048	.,,,,,,	Hitachi Zosen	
ZW 59.113	15800	1989	30	870	363	3000	.30	9500	3400	3820		Заря (Манироскі)	·
AJI-31 CTO	16000		33.7	1167	540	5200	6.8	5100	2200	2200		Люзька-Сатури (АО)	
HK-39	16000	1995	38	1203	443	3000	7 2	5700	2100	2000		Николай Кулиецов	
ГТУ-16	16000		37	1127	458	5500	5,4					Пермские моторы (АО)	
177-16	16800		31		420	5100	66.2	11160	3200	3600		TM3	Турбоблок
TB-1600 STIG 20	16900	1991	39.7	735	470	7000	90.7	19507	4267	4267	7600	GE Marine & Industrial	137030.108
FG-1600 S FIG 20	16900	1991	39.7	735	470	7000	90.7	19507	4267	4267		Stewart & Stevenson	
OGT15000	17116	1995	35	1075	433	3000	122.5	19812	3658	7315	5900	Orenda	
ДБ-90	17500		35.5	1100	420	3000	25	9500	3400	3450		Заря (Манироскі)	Τγροσούιοκ
PG5271(RA)	20260	1958	26.6	957	521	5100	170	24400	3400	3800		Thomassen Int.	1
LM 2500	21870	1979	35.6		528	3000	3.9	4400	2200	2100		Frat Avio	
PGT25	21910	1981	35.5	810	473	6500	27	8000	3000	3500		Nuovo Pienone	
.M2500PE	21923	1973	35.6	810	473	3000	47	6401	2134	2134		MTU GmbH	
rG-2560	21930	1973	35 7	827	542	3000	108.9	21336	4267	4267		Stewart & Stevenson	
.M2500PE	21960	1973	35.7	810	542	3000	140	16500	4100	4100		Thomassen S&S Int.	
)R61	22190	1986	36	818	536	5500	23.6	9144	3505	3200		Dresser-Rand	t
SB120	23000	1985	30.5		475	5070	90	9400	4400	6000		Mitsui Engineering	<u> </u>
GT 10 SAJEV	24630	1981	34.2	1112	534	7700	55	11000	5400	5300	9350	ABB	
1K-37	25000		36.4	1147	425	3000	9.9	6100	2200	2200		Никозан Кузпецов	
FT8	25420	1990	38.1		443	3000	204	24400	12100	9100	9200	MAN GHH	
DR61G PLUS	25980	1996	34.7	799	512	3000	22.7	9144	3505	3200		Dresser-Rand	
`G-250u+	26000	1996	34.7	799	511	3000	176.9	21641	4145	4115		Stewart & Stevenson	
M2500+	26020	1994	34.8	799	511	3000	140	17000	4100	4400		Thomassen S&S Int.	
PG5371(PA)	26300	1988	28.9	957	487	5100	84	11600	3300	3800	7250	Bharat Heavy Electricals	
PG5371(PA)	26300	1987	2× 5	963	487	5094	258.6	35052	5791	10363		GE Power Systems	Di ciamus
d\$5001	26300	1987	28.5		487	5094	85	11600	3200	3700		Nuovo Pignone	
M2500-PH STIG	26720	1986	39.6	807	500	3000	4.8	6401	2134	2134		GE Marine & Industrial	
1-25	26770	1988	32.6		550	7280	254.5	35052	5791	10973		Hitachi	

ש
Ď
Ś
0
S
00
Ø
N
ũ
0
7
ø
ũ,

Typossis	Мощи.,	Год	кпд.	tena	1.	Jact.,	M,	Junna.	mapana,	Black to a.			Примечание
.,,,	κBi ′	вы-	0.0	влоде	86.871-	0б/м	roini	Witt.	MM	MEN	Hena,	Mai o robitic.ii.	Harretanne
		пуска		в гурб,	1 a3.	l					1 mc. 3		
MFT-X	26780	1994	38.7		464	5000	6.7	71581	2400	2466	 	Mitsubishi	
OGT25000	26850	1995	36.5	1227	47.5	3000	136.1	22860	4572	7315	8600	Orenda	
TG-2500 STIG 50	27020	1986	39,6	802	505	3000	117.9	21336	4267	42/7	1	Stewart & Stevenson	
SB15	27205	1986	25.6		491	13070	64	3000	1500	3660	 	Mitsur Engineering	
RB211	27210	1974	35.9		500	4800	183.3	21441	4115	4115	11050	Rolls-Royse	
DR61G PLUS	27330	1998	35.4	818	526	3000	22.7	9144	3505	3250	1	Dresser-Rand	
TG-2599+	27330	1998	35.4	818	526	3000	176.9	21641	4145	4115	 	Stewart & Stevenson	
DR61 PLUS	27350	1996	36.7	798	516	6200	21 X	9754	3505	32.0	 	Dresser-Rand	
FT250%0	27500	1993	36	1227	475		14	1000.0	3900	3470	 	Заря (Манироскі)	
DR61 PLUS	28780	1998	36.9	817	521	6200	21.8	9754	3505	3277	 	Dresser-Rand	
LM25(M)+(PV)	28950	1998	37.5	806	486	6100	15	6975	3048	3658		GE Marine & Industrial	
MF-221	30000	1994	32		533	7200	50	751.11	3600	3570	 	Mitsubishi	
IM5000	32280	1978	36.2	770	444	3000	40	87:70	3500	35/11	 	Ishikawapma-Harima	
RLM5000-PC	34276	1984	36.5	1170	433	3000	110.2	19812	3810	3962	 	Europian Gas Turbines	
LM5066-PC	34450	1984	36,6	686	432	3000	11.1	8839	2743	3048	12950	GE Marine & Industrial	
TG-SIMMI PC	34500	1987	36.7	774	433	3000	172.4	24334	1267	126.7	· · · · · ·	Stewart & Stevenson	
MW-251	36860	1964	29.6		517	7857	65	124%	3700	3700		Mitsubishi	
PG6541B	38340	1978	31.4	1104	539	5094	317.5	37490	7315	10343	10500	Europian Gas Turbines	Эл. станиня
PG6551(B)	39160	1978	31.8	1104	541	5094	190.5	23165	3353	3658		John Brown Engineering	
MS6001	39160	1978	31.8		539	5094	123	15960	3200	3869		Nuovo Pignone	
TG20 B7/8	39360	1971	29.9	1044	520	4918	61	95/1	3000	3400		Fiat Avio	
TG-60880PA	40270	1991	39.3	832	460	3000	217.7	20726	4267	4267		Stewart & Stevenson	
LM6000PA 50Hz	40400	1992	39.2	846	477	3000	160	17299	4100	4400		Thomassen S&S Int.	
LM6069	40477	1992	39.1		460	3000	6	4803	2200	2300		Fiat Avio	
TG-666PC	43200	1997	41.2	8.32	448	3000	217.7	20726	4267	4267		Stewart & Stevenson	
TG-50% STIG80	46360	1986	40.9	766	408	3000	181.4	24384	4267	4267		Stewart & Stevenson	
TG20 B11/12	47800	1990	33.5	1130	507	5425	125	11170	3400	3500		Frat Avio	
251B11	49200	1982	32 7		520	5125	1252	15149	3658	1115		Rolls-Royse	
TG5000 S11G120	49600	1986	42.1	788	400	3000	181.1	24 /4	4267	1267		Stewart & Stevenson	
FT8 twin	51100	1990	38.3		443	3000	289	39655	12100	9100		MAN GIII	
Trent	51190	1996	41.6		127	3000	231.3	2527%	4115	4115		Rolls-Royse	
GT8C Sho EV	52800	1994	34.4	1100	517	6210	9.5	7865	3200	3990		ABB	
V64.3	61280	1996	35.1	1130	512	5400	45	5690	2300	23/11		Bharat Heavy Electricals	
V64.3	62500	1990 -	35.3		531	3000	100	8560	11000	4990		Siemens (KWU)	
√64.3 V	70000	1996	36 %		565	3000	53	5560	3000	27(/)		Siemens (K.WU)	

Турбина	Монш.,	Γο;ι	КПД,	tº 11a	t _{''}	Част.,	M,	"Liiiia,	иприна,	Bertota,	Herra,	Изготовитель	Примечание
	кВг	nu-	0/4	вуоде	вын.	об/м	101111	MW	MM	ММ	тыс. \$		
		пуска		в гурб.	1/13								<u> </u>
PG6101(FA)	70140	1993	34.2		597	5247	499	36576	14326	15240	18300	GE Power Systems	
GT 13 D Sho EV	97900	1993	32.3	990	490	3000	260	10500	4600	9800	24500	ABB	
V84.2	106000	1985	33.7		549	3000	17.5	12000	10000	7000		Ansaldo Energia	
PG9171(E)	123400	1991	33.8	1124	538	3000	294.8	32004	4572	6096		John Brown Engineering	
PG9171(E)	123400	1987	33.8	1124	543	3000	860	35000	23500	11900		Nuovo Pignone	
MW-701	130550	1981	33.9		513	3000	200	12500	5200	5200		Mitsubislu	
701D	132220	1975	34.1		511	3000	140.6	12497	5182	5182		Westinhouse Electric	
MW-701 DA	136900	1992	34		536	3000	200	12500	5200	5200		Mitsubishi	
701DA	138300	1992	34.2		533	3000	170 1	12497	5182	5182	26600	Rolls-Royse	
TG50 D5S	147745	1991	34.5		535	3000	170	12500	5200	5700		Fiat Avio	
V94.2	159000	1881	34.5		540	3000	280	1,5000	11500	7500	28900	Siemens (KWU)	
GT 13 E2 SA-EV	165100	1993	35.7	1100	524	3000	330	10800	6400	5400	34500	ABB	
PG9231(EC)	169200	1994	34.9		5.58	3000	77111	41148	16154	13716	31000	GE Power Systems	
PG9311(FA)	226500	1991	35.7		589	3000	1088.6	36576	24384	21336	42600	GE Power Systems	
701F	236700	1992	36.8		548	3000	340.2	17374	5791	5791	44300	Rolls-Royse	
V94.3A	240000	1995	38		562	3000	310	10000	5500	5000	47500	Siemens (KWU)	
GT 26 SA-V/SEV	241000	1994	37.8	1235	610	3000	335	12300	5000	5500		ABB	
701F2	253700	1998	37.1		579	3000	340	17300	5800	5800		Mitsubishi	
701G1	255000	1997	38.5		560	3000	340	17300	5800	5800		Mitsubishi	
PG9391(G)	282000	1995	39.5		583	3000	1433.4	40538	27737	21336		GE Power Systems	
701G2	308000	1998	39		574		420	18200	6200	6200		Mitsubishi	

Приложение 3

Методика оценки показателей надежности, применяемая в США

Определения

Надежность: Вероятность исправной работы установки, включая длительность простоев (FON) в часах при эксплуатации, при нахождении в резерве и при попытках пуска, разделенную на длительность периода в часах (PH) - выражается в процентах:

Надежность=(1-(FOH/PH))x100%

FOH - общая длительность вынужденных простоев в часах;

РН - длительность периода в часах.

Готовность: Вероятность нахождения в готовом к работе состоянии, вне зависимости от того, необходима работа в данный момент или нет, включает все часы неготовности к работе (UH), разделенные на длительность периода в часах (PH), выражается в процентах:

Готовность=(1-(UH/PH))x100%

UH - всего часов неготовности к работе (вынужденные простои, отказы при пуске, незапланированные остановы для технического обслуживания)

РН - длительность периода в часах

Эквивалентная надежность: Вероятность того, что многовальная парогазовая энергетическая установка не выйдет полностью из строя при необходимости использования вырабатываемой ею энергии (включающая долю выработки электроэнергии в газотурбинном и паросиловом циклах в суммарной выработке электроэнергии на установке) выражена в %;

Эквивалентная надежность =
$$\left(1 - \left[\frac{GTFOH}{GTPH} + B\left(\frac{HRGFOH}{BPH} + \frac{STFOH}{STPH}\right)\right]\right) \cdot 100\%$$

GTFOH - длительность вынужденных простоев газовой турбины, час;

GTPH - длительность периода для газовой турбины, час:

HRSGFOH - длительность вынужденных простоев котла-утилизатора;

BPH - длительность периода для котла-утилизатора HRSG;

STFOH - длительность вынужденных простоев паровой турбины, час;

STPH - длительность периода для паровой турбины, час;

В - доля парового цикла в выработке электроэнергии (обычно 0,30).

Эквивалентная готовность: Вероятность готовности многовальной комбинированной парогазовой установки к выработке электроэнергии вне зависимости от того, потребуется ли она в действительности, с учетом всех часов неготовности - учитывает долю выработки электроэнергии газотурбинным и паросиловым циклами в суммарной выработке электроэнергии на установке - выражена в %:

Эквивалентная готовность =
$$\left(1 - \left[\frac{GIUH}{GIPH} + B\left(\frac{HRSGUH}{GIPH} + \frac{SIUH}{SIPH}\right)\right]\right) \cdot 100\%$$

GTUH - длительность периода неготовности газовой турбины, час:

GTPH - длительность периода для газовой турбины, час;

HRSGUH - длительность периода неготовности котла-утилизатора, час:

STUH - длительность периода неготовности паровой турбины;

STPH - длительность периода для паровой турбины, час:

В - доля паросилового цикла в выработке электроэнергии (обычно 0,30).

MTBF - Средняя длительность периода между отказами: показатель вероятности завершения текущего цикла. Случаи отказов ограничиваются вынужденными простоями в процессе работы - показатель выражен в часах:

MTBF = SH/FO

SH ≈ количество часов в работе:

FO ≈ случаи вынужденных остановок во время работы.

Коэффициент использования: Показатель интенсивности использования, обычно в расчете на год, выражается в %:

 $SF = SH/PH \times 100\%$

SH = количество часов исправной работы за год;

РН = длительность периода, час (8760 часов в году).

Показатели для различных режимов работы:

Режим	Коэффициент	Количество рабочих		
	использования	часов на пуск		
В резерве	<1%	от 1 до 4		
Пиковые нагрузки	1% - 17%	от 3 до 10		
Циклические нагрузки	17% - 50%	от 10 до 150		
Непрерывный	>90%	>>150		