4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств пропиконазола в семенах, масле и зеленой массе рапса методом капиллярной газожидкостной хроматографии

Методические указания МУК 4.1.2334-08

Издание официальное

Москва • 2009

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

4.1. Методы контроля. Химические факторы

Определение остаточных количеств пропиконазола в семенах, масле и зеленой массе рапса методом капиллярной газожидкостной хроматографии

Методические указания МУК 4.1.2334-08

- О-60 Определение остаточных количеств пропиконазола в семенах, масле и зеленой массе рапса методом капиллярной газожидкостной хроматографии. Методические указания. М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009. 18 с.
 - 1. Разработаны: ГНУ Всероссийским научно-исследовательским институтом фитопатологии (Л.В. Дубовая, А.М. Макеев).
 - 2. Рекомендованы к утверждению Комиссией по санитарноэпидемиологическому нормированию при Федеральной службе по надзору в сфере защиты прав потребителей и благополучия населения (протокол от 6 декабря 2007 г. № 3).
 - 3. Утверждены Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия населения, Главным государственным санитарным врачом Российской Федерации Г.Г. Онищенко 15 февраля 2008 г.
 - 4. Введены в действие с 10 апреля 2008 г.
 - 5. Введены впервые.

ББК 51.21

Формат 60х88/16

Печ. л. 1.25.

Тираж 200 экз.

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека 127994, Москва, Вадковский пер., д. 18/20.

Тиражировано отделом издательского обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское п., 19а. Отделение реализации, тел./факс 952-50-89

> © Роспотребнадзор, 2009 © Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009

УТВЕРЖДАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный Государственный санитарный врач Российской Федерации

Г.Г. Онищенко

15 февраля 2008 г.

Дата введения: 10 апреля 2008 г.

4.1. Методы контроля. Химические факторы

Определение остаточных количеств пропиконазола в семенах, масле и зеленой массе рапса методом капиллярной газожидкостной хроматографии

Методические указания МУК 4.1.2334-08

Настоящие методические указания устанавливают метод капиллярной газожидкостной хроматографии для определения массовой концентрации пропиконазола в семенах, масле и зеленой массе рапса в диапазоне 0,05-0,5 мг/кг.

Название вещества по ИСО: Пропиконазол

Название вещества по ИЮПАК: (\pm)-1-[2-(2,4-дихлорфенил)-4-пропил-1,3-диоксолан-2-илметил]-1H-1,2,4-триазол (смесь 2 стерео-изомеров в непостоянном соотношении)

C₁₅H₁₇Cl₂N₃O₂ **Мо**л. масса: 342,2 Желтоватая вязкая жидкость без запаха. Температура кипения: 120° C (1,9 Па); > 250° C (101 кПа). Давление паров при 20° C: 2,7 х 10^{-2} мПа. Коэффициент распределения н-октанол/вода: $K_{\rm OW}$ log P=3,72 (pH 6,6, 25° C). Растворимость (г/дм³) при 20° C: гексан -47, вода -0,1; полностью смешивается с этанолом, ацетоном, толуолом и н-октанолом.

Вещество устойчиво к высокой температуре и гидролизу.

Пропиконазол медленно разрушается в почве (DT₅₀=40-70 дней) и слабо передвигается по почвенному профилю.

Краткая токсикологическая характеристика

Острая пероральная токсичность (LD₅₀) для крыс и мышей - 1500 мг/кг; острая дермальная токсичность (LD₅₀) для крыс - > 4000 мг/кг; острая ингаляционная токсичность (LC₅₀) для крыс - > 5800 мг/м³ воздуха. LC₅₀ для рыб 5,7 мг/дм³ (96 час.).

Фунгицид нетоксичен для птиц, пчел, дождевых червей и водорослей.

Рекомендуемый норматив для пропиконазола в семенах и масле рапса — 0,1 мг/кг.

Область применения препарата

Пропиконазол — системный фунгицид широкого спектра действия с защитным и искореняющим эффектом. Механизм его действия связан с подавлением биосинтеза эргостерина. Эффективен против возбудителей мучнистой росы, ржавчины, септориоза, церкоспореллеза, ринхоспориоза, гельминтоспориозной пятнистости, ризоктониоза, монилиниоза на зерновых злаках, кукурузе, рисе, арахисе и косточковых плодовых. Используется для обработки вегетирующих растений.

Применяется в России в качестве фунгицида системного действия путем двукратной обработки вегетирующих растений зерновых злаков и сахарной свеклы с нормой расхода до 0,125 кг д.в./га.

1. Метрологические характеристики метода

При соблюдении всех регламентированных условий проведения анализа в точном соответствии с данной методикой погрешность (и ее составляющие) результатов измерений при доверительной вероятности Р=0,95 не превышает значений, приведенных в таблице 1, для соответствующих диапазонов концентраций.

Полнота извлечения вещества, стандартное отклонение, доверительный интервал среднего результата для полного диапазона концентраций (n=20) приведены в таблице 2.

Таблица 1

Анализируе- мый объект	Диапазон определяемых концентраций, мг/кг	Показатель точности (граница относительной погрешности) ±δ, %	Стандарт- ное откло- нение повторяе- мости о _б , %	Предел повторяе- мостн г, %	Предел воспро- изво- димости R, %
Семена	более 0,1 до 0,5	25	2,6	7,3	11,3
	от 0,05 до 0,1 вкл.	50	2,8	7,8	12,1
Масло	более 0,1 до 0,5	25	2,5	7,0	10,8
	от 0,05 до 0,1 вкл.	50	2,7	7,6	11,7
Зеленая масса	более 0,1 до 0,5	25	1,9	5,3	8,2
	от 0,05 до 0,1 вкл.	50	2,5	7,0	10,8

Таблица 2 Полнота извлечения вещества, стандартное отклонение, доверительный интервал среднего результата для n=20, P=0,95

	Метрологические параметры, P = 0,95, n = 20					
Анализи- руемый объект	Предел обнару- жения, мг/кг	Диапазон определя- емых кон- центраций, мукг	Среднее значение опреде- ления, %	Стандарт- ное откло- нение, S, %	Относи- тельное отклоне- ние DS, %	Довери- тельный интервал среднего, %
Семена	0,05	0,05 - 0,5	83,3	2,9	1,3	± 2,7
Масло	0,05	0,05 ~ 0,5	82,7	3,3	1,5	± 3,0
Зеленая масса	0,05	0,05 - 0,5	83,5	2,7	1,2	± 2,6

2. Метод измерений

Методика основана на определении вещества с помощью капиллярной газожидкостной хроматографии (ГЖХ) с электронозахватным детектором (ЭЗД). Контроль пропиконазола в матрицах осуществляется по содержанию вещества после экстракции его из зеленой массы водным ацетоном, из семян и масла ацетонитрилом, очистки экстракта перераспределением в системе несмешивающихся растворителей, а также на колонке с оксидом алюминия и концентрирующем патроне Диапак-диол.

Идентификация проводится по времени удерживания, а количественное определение - методом абсолютной калибровки.

В предлагаемых условиях анализа метод специфичен. Избирательность обеспечивается путем подбора капиллярной колонки и условий программирования температуры.

3. Средства измерений, вспомогательные устройства, реактивы и материалы

3.1. Средства измерений

Газовый хроматограф «Кристалл 2000М» с ЭЗД	Номер Госреестр
(СКБ «Хроматэк», Россия)	№ 14516-95
Весы аналитические ВЛА-200	FOCT 24104
Весы лабораторные общего назначения с наибольшим	ГОСТ 7328
пределом взвешивания до 500 г и пределом допустимой	
погрешности +/- 0,036 г	
Колбы мерные вместимостью 2-100-2, 2-1000-2	ГОСТ 1770
Меры массы	FOCT 7328
Пипетки градуированные 2-го класса точности	FOCT 29227
вместимостью 1,0, 2,0, 5,0; 10 см ³	
Пробирки градуированные с пришлифованной пробкой	FOCT 1770
вместимостью 5 см ³	
Цилиндры мерные 2-го класса точности вместимостью	FOCT 1770
25, 50, 100, 500 и 1000 см ³	

Допускается использование средств измерения с аналогичными или лучшими характеристиками.

3.2. Реактивы

Пропиконазол, аналитический стандарт фирмы Сингента (Швейцария) с содержанием д в 99,5%

Ацетон, чда	ΓΟCT 2603-79
Ацетонитрил, хч	ТУ 6-09-353 4-87
Вода бидистиллированная или деионизованная	FOCT 6702
н-Гексан, хч	ТУ 6-09-33 75
Натрий сернокислый, безводный, хч	FOCT 4166
Натрий хлористый, хч	ГОСТ 4233

Допускается использование реактивов иных производителей с аналогичной или более высокой квалификацией.

3.3. Вспомогательные устройства, материалы

Азот газообразный (баллон), осч	FOCT 9293		
Аппарат для встряхивания типа АВУ-6с	ТУ 64-1-2851 -78		
Ванна ультразвуковая, модель D-50, фирма Branson Instr. Co (США)			
Вата медицинская	ТУ 9393-001-00302238		
Воронка Бюхнера	ΓΟCT 0147		
Воронки делительные вместимостью 100 и 250 см ³	ΓΟCT 25336		
Воронки конусные диаметром 30-37 и 60 мм	ΓΟCT 25336		
Дефлегматор елочный	ГОСТ 9737		
Колба Бунзена	TOCT 5614		
Колбы плоскодонные вместимостью 250 см ³	ГОСТ 973 7		
Колбы круглодонные на шлифе вместимостью 25 и 100 см ³	ΓΟCT 9737		
Колонка кварцевая капиллярная ZB-1, длиной 25 м, внутрег	миня		
диаметром 0,32 мм, толщина пленки 0,5 мкм, неподвижная фаза SE-30,			
фирма Phenomenex (CIIIA) или аналогичная			
Колонка хроматографическая стеклянная, длиной 25 см,	ΓΟCT 9737		
внутренним диаметром 8-10 мм			
Мельница электрическая лабораторная	ТУ 46-22-236		
Насос водоструйный вакуумный	ГОСТ 10696		
Оксид алюминия, нейтральный (Мерк, Германия)			
ІІ степени активности			

Ротационный вакуумный испаритель ИР-1М или

TY 25-11-917

ротационный вакуумный испаритель B-169 фирмы Buchi (Швейцария)

Стаканы химические вместимостью 100 и 500 см3

Стекловата

Установка для перегонки растворителей

Фильтры бумажные «красная лента», обеззоленные

TY 6-09-2678-77

или фильтры из хроматографической бумаги Ватман ЗММ

Шприц для ввода образцов для газового хроматографа

вместимостью 1 - 10 мм³ (Hamilton, CША)

Допускается применение другого оборудования с аналогичными или лучшими характеристиками.

4. Требования безопасности

- 4.1. При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007, требования электробезопасности при работе с электроустановками по ГОСТ 12.1.019, а также требования, изложенные в технической документации на газовый хроматограф.
- 4.2. Помещение должно соответствовать требованиям пожаробезопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009. Содержание вредных веществ в воздухе не должно превышать норм, установленных ГН 2.2.5.1313- 03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны». Организация обучения работников безопасности труда — по ГОСТ 12.0.004.

5. Требования к квалификации операторов

К выполнению измерений допускают специалистов, имеющих квалификацию не ниже лаборанта-исследователя с опытом работы на газовом хроматографе.

К проведению пробоподготовки допускают оператора с квалификацией «лаборант», имеющего опыт работы в химической лаборатории.

6. Условия измерений

При выполнении измерений соблюдают следующие условия:

- процессы приготовления растворов и подготовки проб к анализу проводят при температуре воздуха (20+5) °C и относительной влажности не более 80%.
- выполнение измерений на газовом хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

7. Подготовка к выполнению измерений

Измерениям предшествуют следующие операции: очистка органических растворителей (при необходимости), приготовление растворов, кондиционирование хроматографической колонки, установление градуировочной характеристики, подготовка колонки с оксидом алюминия и концентрирующего патрона Диапак-диол.

7.1. Очистка органических растворителей 7.1.1. Очистка н-гексана

Растворитель последовательно промывают порциями концентрированной серной кислоты до прекращения окрашивания последней в желтый цвет, затем водой до нейтральной реакции промывных вод, перегоняют над поташом.

7.1.2. Очистка ачетона

Ацетон перегоняют над перманганатом калия и поташом (на 1 л ацетона $10 \, \Gamma \, KMnO_4$ и $2 \, \Gamma \, K_2CO_3$).

7.2. Подготовка колонки с оксидом алюминия и концентрирующего патрона Диапак-диол для очистки экстракта

Нижнюю часть стеклянной колонки длиной 25 см и внутренним диаметром 8-10 мм уплотняют тампоном из стекловаты, медленно выливают в колонку (при открытом кране) суспензию 7 г оксида алюминия нейтрального II степени активности в 15 см³ гексана. Дают растворителю стечь до верхнего края сорбента и помещают на него слой безводного сульфата натрия высотой 1 см. Колонку последовательно промывают 20 см³ смеси гексан-ацетон (9:1, по объему) и 15 см³ гексана со скоростью 1-2 капли в сек., после чего она готова к работе.

Концентрирующий патрон Диапак-диол промывают последовательно с помощью медицинского шприца 10 см³ смеси гексан-ацетон (1:1, по объему) и 5 см³ гексана со скоростью 5 см³/мин.

7.3. Проверка хроматографического поведения пропиконазола на колонке с оксидом алюминия

В круглодонную колбу вместимостью 10 см³ помещают 0,1 см³ градуировочного раствора №1 пропиконазола с концентрацией 10 мкг/см³ в гексане (п. 7.5.2). Отдувают растворитель током теплого воздуха, остаток растворяют в 3 см³ гексана, помещая в ультразвуковую ванну на 1 мин. Раствор наносят на колонку с оксидом алюминия, подготовленную по п.7.2. Промывают колонку 50 см³ гексана со скоростью 1-2 капли в сек., элюат отбрасывают. Затем колонку промывают 60 см³ смеси гексан-ацетон (9:1, по объему). Фракционно (по 10 см³) отбирают элюат, упаривают, остатки растворяют в 1 см³ гексана, помещая в ультразвуковую ванну на 1 мин., и анализируют на содержание пропиконазола по п.9.5.

7.4. Подготовка и кондиционирование хроматографической колонки

Капиллярную кварцевую колонку ZB-1 (типа SE-30) устанавливают в термостат хроматографа и, не подсоединяя к детектору, кондиционируют при температуре 280° C и скорости газа-носителя 2 см^3 /мин в течение 8-10 часов.

7.5. Приготовление градуировочных растворов

7.5.1. Исходный раствор пропиконазола для градуировки (концентрация 100 мкг/см³). В мерную колбу вместимостью 100 см³ помещают 0,010 г пропиконазола, растворяют в 40-50 см³ гексана, доводят этим же растворителем до метки, тщательно перемешивают.

Раствор хранят в морозильной камере при температуре не выше -18^{0} С в течение 3-х месяцев.

7.5.2. Раствор пропиконазола №1 для градуировки (концентрация 10 мкг/см 3).

В мерную колбу вместимостью 100 см³ помещают 10 см³ исходного раствора пропиконазола с концентрацией 100 мкг/см³ (п.7.5.1.), разбавляют гексаном до метки. Этот раствор используют для приготовления рабочих градуировочных растворов №№ 2-5.

Для приготовления проб семян и зеленой массы с внесением при оценке полноты извлечения пропиконазола из исследуемых образцов используют ацетоновый раствор пропиконазола с концентрацией 10 мкг/см³, а для приготовления проб масла — раствор пропиконазола в гексане с концентрацией 10 мкг/см³.

Градуировочный раствор № 1, а также ацетоновый и гексановый растворы пропиконазола хранят в морозильной камере при температуре не выше -18^{0} С в течение месяца.

7.5.3. Рабочие растворы №№ 2-5 пропиконазола для градуировки (концентрация 0,05-0,5 мкг/см³).

В 4 мерные колбы вместимостью 100 см³ помещают 0.5, 1.0, 2.5 и 5.0 см³ градуировочного раствора № 1 пропиконазола с концентрацией 10 мкг/см³ (п.7.5.2), доводят до метки гексаном, тщательно перемешивают, получают рабочие растворы №№ 2-5 с концентрацией пропиконазола 0.05, 0.1, 0.25 и 0.5 мкг/см³, соответственно.

Растворы готовят непосредственно перед использованием.

7.6. Установление градуировочной характеристики

Градуировочную характеристику, выражающую зависимость площади пика (мВ*с) от концентрации пропиконазола в растворе (мкг/см 3), устанавливают методом абсолютной калибровки по 4 растворам для градуировки. На график наносят сумму площадей двух характерных пиков.

В инжектор хроматографа вводят по 1 мм³ каждого градуировочного раствора (п.7.5.3) и анализируют в условиях хроматографирования по п. 9.5. Осуществляют не менее 3-х параллельных измерений.

8. Отбор и хранение проб

Отбор проб производится в соответствии с « Унифицированными правилами отбора проб сельскохозяйственной продукции, продуктов питания и объектов окружающей среды для определения микроколичеств пестицидов» (№ 2051-79 от 21.08.79 г.) и правилами, определенными ГОСТом 10852-86 «Семена масличные. Правила приемки и методы отбора проб» и ГОСТом 8988-77 «Масло рапсовое. ТУ».

Пробы зеленой массы хранят в стеклянной или полиэтиленовой таре в холодильнике не более одного дня; для длительного хранения пробы замораживают и хранят при температуре -18° С до анализа. Пробы семян высушивают до стандартной влажности и хранят в бу-

МУК 4.1.2334-08

мажных или тканевых мешочках в сухом, хорошо проветриваемом шкафу. Пробы масла хранят в плотно закрытой стеклянной или полиэтиленовой таре в холодильнике при температуре не выше 4°С. В некоторых случаях масло получают из семян рапса экстракцией органическими неполярными растворителями (петролейный и диэтиловый эфиры) непосредственно перед проведением анализа.

9. Выполнение определения

9.1. Экстракция пропиконазола

- 9.1.1. Зеленая масса. Образец измельченного растительного материала массой 20 г помещают в плоскодонную колбу вместимостью 250 см³, добавляют 100 см³ смеси ацетон-вода (8:2, по объему) и суспензию перемешивают в течение 1 часа на аппарате для встряхивания. Суспензию фильтруют под вакуумом на воронке Бюхнера через бумажный фильтр в колбу вместимостью 250 см³. Осадок на фильтре промывают 50 см³ смеси ацетон-вода (8:2, по объему). Экстракт и промывную жидкость переносят в химический стакан, перемешивают, измеряют объем раствора и 1/10 его часть (эквивалентную 2 г образца) переносят в круглодонную колбу, куда добавляют 10 см³ деионизованной воды. Далее проводят очистку экстракта по п. 9.2.
- 9.1.2. Семена. Образец размолотых семян массой 10 г помещают в плоскодонную колбу вместимостью 250 см³, добавляют 70 см³ ацетонитрила и помещают на аппарат для встряхивания на 1 час. Суспензию фильтруют под вакуумом на воронке Бюхнера через бумажный фильтр в колбу вместимостью 250 см³. Осадок на фильтре промывают 30 см³ ацетонитрила. Экстракт и промывную жидкость переносят в химический стакан, перемешивают, измеряют объем раствора и 1/5 его часть (эквивалентную 2 г образца) переносят в круглодонную колбу, куда добавляют 20 см³ деионизованной воды. Дальнейшую очистку экстракта проводят по п. 9.2.
- 9.1.3. Масло. К образцу масла массой 5 г, помещенного в плоскодонную колбу вместимостью 250 см³, добавляют 50 см³ ацетонитрила и колбу помещают на встряхиватель на 30 мин. Верхний ацетонитрильный слой декантируют в круглодонную колбу вместимостью 100 см³ через слой ваты, помещенной в конусную воронку. К оставшемуся в колбе маслу приливают 20 см³ ацетонитрила и операцию экстракции повторяют. После декантации ацетонитрильного слоя вату промывают 10 см³ ацетонитрила, которые объединяют с фильтратом.

Объединенную ацетонитрильную фазу, пропущенную через вату, переносят в химический стакан, перемешивают, измеряют объем раствора и 2/5 его части (эквивалентные 2 г образца) переносят в плоскодонную колбу вместимостью 100 см³. Раствор помещают в морозильник холодильника на 3 часа и затем фильтруют через бумажный фильтр в круглодонную колбу вместимостью 100 см³. К фильтрату добавляют 20 см³ деионизованной воды. Дальнейшую очистку экстракта проводят по п.9.2.

9.2. Очистка экстракта перераспределением в системе несмешивающихся растворителей

Экстракты, полученные по пп. 9.1.1., 9.1.2. и 9.1.3. и помещенные в круглодонные колбы, упаривают на ротационном вакуумном испарителе до водного остатка (8-10 см³) при температуре не выше 40°С. К водному остатку прибавляют 15 см³ насыщенного раствора хлорида натрия, перемешивают и переносят в делительную воронку вместимостью 100 см³. В воронку вносят 20 см³ гексана, интенсивно встряхивают в течение 2-х мин. После разделения фаз верхний органический слой фильтруют через слой безводного сульфата натрия в круглодонную колбу вместимостью 100 см³. Операцию экстракции водной фазы повторяют еще дважды, используя по 20 см³ гексана. Объединенную органическую фазу, пропущенную через слой сульфата натрия, упаривают досуха на ротационном вакуумном испарителе при температуре 30°С и подвергают дополнительной очистке на колонке по п.9.3.

9.3. Очистка экстракта на колонке с оксидом алюминия

Сухой остаток в круглодонной колбе, полученный по п. 9.2., растворяют в 3 см³ гексана, помещая в ультразвуковую ванну на 1 мин. Раствор наносят на колонку, подготовленную по п. 7.2. Колбу обмывают 3 см³ гексана, которые также наносят на колонку. Промывают колонку 45 см³ гексана со скоростью 1-2 капли в сек., элюат отбрасывают. Пропиконазол элюируют с колонки 50 см³ смеси гексан-ацетон (9:1, по объему), собирая элюат непосредственно в круглодонную колбу вместимостью 100 см³. Раствор упаривают досуха на ротационном вакуумном испарителе при температуре 30°C.

9.4. Очистка экстракта на концентрирующем патроне Диапак-диол

Сухой остаток в круглодонной колбе, полученный по разделу 9.3., растворяют при помощи ультразвуковой ванны в 2 см³ гексана и переносят в подготовленный концентрирующий патрон Диапакдиол (п. 7.2.). Патрон промывают 5 см³ смеси гексан-ацетон (9:1, по объему), элюат отбрасывают. Пропиконазол элюируют 5 см³ смеси гексан-ацетон (8:2, по объему) в круглодонную колбу вместимостью 25 см³. Раствор упаривают досуха на роторном испарителе при температуре 30°C. Остаток в колбе растворяют в 5 см³ гексана, помещая в ультразвуковую ванну на 1 мин., и раствор анализируют на содержание пропиконазола по п. 9.5.

9.5. Условия хроматографирования

Газовый хроматограф «Кристалл 2000М» с электронозахватным детектором с пределом детектирования по линдану не выше $8,2x10^{-15}$ г/см³.

Колонка капиллярная кварцевая ZB-1, длина 25 м, внутренний диаметр 0,32 мм, толщина пленки 0,5 мкм, неподвижная фаза SE-30, фирма Phenomenex (США)

Температура термостата испарителя – 260° С, детектора – 300° С, термостата колонки (программа: от 220° С (2 мин.) со скоростью 2° /мин до 230° С (6 мин.); со скоростью 10° /мин до 260° С (5 мин.).

Расход газов: газа-носителя (азот) — 2,8 см 3 /мин; поддувочного газа через детектор — 4,2 см 3 /мин

Деление потока: 1:1,5

Время удерживания характерных пиков пропиконазола:

Пропиконазола 1 – 7 мин. 30 сек.

Пропиконазола 2-7 мин. 45 сек.

Объем вводимой пробы: 1 мм³.

Линейный диапазон детектирования: 0,02 - 0,5 нг.

Каждую анализируемую пробу вводят 3 раза и вычисляют среднюю сумму площадей характерных пиков пропиконазола.

Образцы, дающие пики большие, чем стандартный раствор с концентрацией $0.2~{\rm mkr/cm^3}$, разбавляют гексаном.

10. Обработка результатов анализа

Для обработки результатов хроматографического анализа используется программа сбора и обработки хроматографической информации «Хроматэк Аналитик», версия 1.20.

Альтернативная обработка результатов.

Содержание пропиконазола рассчитывают методом абсолютной калибровки по формуле:

$$X = \frac{H_1 \times A \times V}{H_0 \times m}$$
, где

Х - содержание пропиконазола в пробе, мг/кг;

Н1 - сумма площадей пиков образца, мВ;

Но - сумма площадей пиков стандарта, мВ;

А - концентрация стандартного раствора пропиконазола, мкг/см³;

V - объем экстракта, подготовленного для хроматографирования, cm^3 ;

m - масса анализируемой части образца (г) / для зеленой массы, семян и масла - 2 г/.

11. Проверка приемлемости результатов параллельных определений

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, расхождение между которыми не превышает предела повторяемости (1):

$$\frac{2 \cdot |X_1 - X_2| \cdot 100}{(X_1 + X_2)} \le r \tag{1}$$

где X_1 , X_2 - результаты параллельных определений, мг/кг;

r - значение предела повторяемости (таблица 1), при этом $r\!=\!2.8\sigma_{\rm s}$

При невыполнении условия (1) выясняют причины превышения предела повторяемости, устраняют их и вновь выполняют анализ.

12. Оформление результатов

Результат анализа представляют в виде:

$$(\overline{X} \pm \Delta)$$
 мг/кг при вероятности P= 0.95,

где \overline{X} - среднее арифметическое результатов определений, признанных приемлемыми, мг/кг;

Δ- граница абсолютной погрешности, мг/кг;

$$\Delta = \delta * X / 100,$$

 δ - граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций, таблица 1), %.

В случае если содержание компонента менее нижней границы диапазона определяемых концентраций, результат анализа представляют в виле:

«содержание вещества в пробе «менее нижней границы определения»

- < 0,05 мг/кг для рапса (семена, масло и зеленая масса)*.
- * -0,05 мг/кг предел обнаружения для рапса.

13. Контроль качества результатов измерений

Оперативный контроль погрешности и воспроизводимости измерений осуществляется в соответствии с ГОСТ Р ИСО 5725-1-6-2002 « Точность (правильность и прецизионность) методов и результатов измерений».

- 13.1. Стабильность результатов измерений контролируют перед проведением измерений, анализируя один из градуировочных растворов.
- **13.2.** Плановый внутрилабораторный оперативный контроль процедуры выполнения анализа проводится с применением метода добавок.

Величина добавки С, должна удовлетворять условию:

$$C_{o} = \Delta_{A,\overline{X}} + \Delta_{A,\overline{X'}}$$

где $\pm \Delta_{s,\overline{s'}} (\pm \Delta_{s,\overline{s'}})$ — характеристика погрешности (абсолютная погрешность) результатов анализа, соответствующая содержанию

компонента в испытуемом образце (расчетному значению содержания компонента в образце с добавкой соответственно) мг/кг, при этом:

$$\Delta_n = \pm 0.84 \Delta$$

где Δ- граница абсолютной погрешности, мг/кг;

$$\Delta = \delta * X / 100,$$

 δ - граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций, таблица 1), %.

Результат контроля процедуры К_х рассчитывают по формуле:

$$K_{K} = \overline{X'} - \overline{X} - C_{A},$$

где \overline{X} , \overline{X} , C_{δ} - среднее арифметическое результатов параллельных определений (признанных приемлемыми по п.11) содержания компонента в образце с добавкой, испытуемом образце, концентрация добавки, соответственно, мг/кг;

Норматив контроля К рассчитывают по формуле

$$K = \sqrt{\Delta_{a,\overline{x}}^2 + \Delta_{a,\overline{x}}^2}$$

Проводят сопоставление результата контроля процедуры (K_{κ}) с нормативом контроля (K).

Если результат контроля процедуры удовлетворяет условию

$$|K_{\kappa}| \le K, \tag{2}$$

процедуру анализа признают удовлетворительной.

При невыполнении условия (2) процедуру контроля повторяют. При повторном невыполнении условия (2) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

13.3. Проверка приемлемости результатов измерений, полученных в условиях воспроизводимости:

Расхождение между результатами измерений, выполненных в двух разных лабораториях, не должно превышать предела воспроизводимости (R)

$$\frac{2 \cdot \left| X_{1} - X_{2} \right| \cdot 100}{\left(X_{1} + X_{2} \right)} \le R \tag{3}$$

МУК 4.1.2334-08

где $X_1,\, X_2$ — результаты измерений в двух разных лабораториях, мг/кг;

R – предел воспроизводимости (в соответствии с диапазоном концентраций, таблица 1), %.