Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение концентраций вредных веществ в воздухе рабочей зоны

Сборник методических указаний МУК 4.1.1734—4.1.1754—03

Выпуск 46

ББК 51.21 И37

- ИЗ7 **Измерение** концентраций вредных веществ в воздухе рабочей зоны: Сборник методических указаний.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2008.—167 с.
 - 1. Подготовлены Научно-исследовательским институтом медицины труда РАМН (Л. Г. Макеева, Г. В. Муравьева, Е. М. Малинина, Е. Н. Грицун, Г. Ф. Громова); Российским государственным медицинским университетом (Е. Б. Гугля, А. В. Лиманцев), при участии Департамента госсанэпиднадзора Минздрава России (А. И. Кучеренко).
 - 2. Разработаны сотрудниками Российского государственного медицинского университета Е. Б. Гуглей, А. В. Лиманцевым.
 - 3. Рекомендованы к утверждению на совместном заседании группы Главного эксперта Комиссии по государственному санитарноэпидемиологическому нормированию по проблеме «Лабораторноинструментальное дело и метрологическое обеспечение» и методбюро п/секции «Промышленно-санитарная химия» Проблемной комиссии «Научные основы медицины труда».
 - 4. Рекомендованы к утверждению Комиссией по Государственному санитарно-эпидемиологическому нормированию при Министерстве здравоохранения Российской Федерации.
 - 5. Утверждены и введены в действие Главным государственным санитарным врачом Российской Федерации, Первым заместителем Министра здравоохранения Российской Федерации 29 июня 2003 г.
 - 6. Введены впервые.

ББК 51.21

[©] Роспотребнадзор, 2008

[©] Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2008

Содержание

Введение	5
Измерение массовых концентраций 3-[(4-амино-2-метил-5- пиридил)метил]-4-метил-5-(4,5,6-тригидрокси-3,5-диокса-4,6-дифосфагекс- 1-ил) тиазолия хлорида Р,Р-диоксида (кокарбоксилазы) в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии: МУК 4.1.1734—03	6
Спектрофотометрическое измерение массовых концентраций гепарина натриевой соли в воздухе рабочей зоны: МУК 4.1.1735—03	13
Измерение массовых концентраций 3-[([диметиламино]карбонил)окси)]- N,N,N-триметилбензаммония метилсульфата (прозерина) в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии: MУК 4.1.1736—03	21
Измерение массовых концентраций 2-[(диметиламино)метил]-пиридинил карбамата дигидрохлорида++ (аминостигмина) в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии: МУК 4.1.1737—03	29
Измерение массовых концентраций 8-(3-(диметиламино)пропокси)-3,7- дигидро-1,3,7-триметил-1Н-пурин-2,6-диона (проксифеина) в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии: МУК 4.1.1738—03	37
Измерение массовых концентраций N,N-диметил-N- (2-феноксиэтил)-N- декан-1-ол)аммония бромида (лорасепта) в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии: МУК 4.1.1739—03	45
Измерение массовых концентраций 1,1-диметилэтилгипохлорита ⁺ (трет- бутилгипохлорита) в воздухе рабочей зоны методом газовой хроматографии: МУК 4.1.1740—03	52
Измерение массовых концентраций дихлорбис(трифенилфосфин)палладия (II) (по палладию) в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии: МУК 4.1.1741—03	59
Измерение массовых концентраций диэтилкарбоната (диэтилового эфира угольной кислоты) в воздухе рабочей зоны методом газовой хроматографии: МУК 4.1.1742—03	67
Спектрофотометрическое измерение массовых концентраций мацеробациллина Г3х-СХ в воздухе рабочей зоны: МУК 4.1.1743—03	74
Измерение массовых концентраций 3-метилбензолсульфоновой кислоты (<i>n</i> -толуолсульфокислоты) в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии: МУК 4.1.1744—03	83
Измерение массовых концентраций 2-(6-метоксинафтил)пропионовой кислоты (напроксена) в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии: МУК 4.1.1745—03	90
Измерение массовых концентраций 1-метоксипропан-2-ол-ацетата (1-метокси-2-пропилацетата) в воздухе рабочей зоны методом газовой хроматографии: МУК 4.1.1746—03	97

МУК 4.1.1734—4.1.1754—03

Измерение массовых концентраций $4,4'$ -(2-пиридилметил)-	
бис(гидроксибензол)-диацетата (бисакодила) в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии: МУК 4.1.1747—03	104
Измерение массовых концентраций стрихнидин-10-она нитрата (стрихнина нитрата) в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии: МУК 4.1.1748—03	111
Измерение массовых концентраций 1,2,3,6-тетрагидро-2,6- диоксипиримидин-4-карбоната калия (оротата калия) в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии: МУК 4.1.1749—03	119
Измерение массовых концентраций (трипропилен) гидроксибензола (трипропиленфенола) в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии: МУК 4.1.1750—03	127
Измерение массовых концентраций трифенилфосфина в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии: МУК 4.1.1751—03	135
Измерение массовых концентраций 1-[(4-фторфенил)метил]-N-[1-[2-(4-метоксифенил)этил] пиперидин-4-ил]-1Н-бензимидазол-2-амина (астемизола) в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии: МУК 4.1.1752—03	142
Фотометрические измерения массовых концентраций целловиридина в воздухе рабочей зоны: МУК 4.1.1753—03	150
Измерение массовых концентраций 2-(этилтио)бензимидазола гидробромида моногидрата (бемитила) в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии: МУК 4.1.1754—03	159
Приложение 1. Приведение объема воздуха к стандартным условиям	
Приложение 2. Коэффициенты для приведения объема воздуха к стандартным условиям	166
Приложение 3. Указатель основных синонимов технических, торговых и фирменных названий веществ	168

УТВЕРЖДАЮ

Главный государственный санитарный врач Российской Федерации, Первый заместитель Министра здравоохранения Российской Федерации

Г. Г. Онишенко

29 июня 2003 г. Дата введения: с момента утверждения

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Ввеление

Сборник методических указаний «Измерение концентраций вредных веществ в воздухе рабочей зоны» (выпуск 46) разработан с целью обеспечения контроля соответствия фактических концентраций вредных веществ их предельно допустимым концентрациям (ПДК) и ориентировочным безопасным уровням воздействия (ОБУВ) и являются обязательными при осуществлении санитарного контроля.

Включенные в данный сборник методики контроля вредных веществ в воздухе рабочей зоны разработаны и подготовлены в соответствии с требованиями ГОСТ 12.1.005—88 ССБТ «Воздух рабочей зоны. Общие санитарно-гигиенические требования», ГОСТ Р 8.563—96 «Государственная система обеспечения единства измерений. Методики выполнения измерений», МИ 2335—95 «Внутренний контроль качества результатов количественного химического анализа», МИ 2336—95 «Характеристики погрешности результатов количественного химического анализа. Алгоритмы оценивания».

Методики выполнены с использованием современных методов исследования, метрологически аттестованы и дают возможность контролировать концентрации химических веществ на уровне и ниже их ПДК и ОБУВ в воздухе рабочей зоны, установленных в гигиенических нормативах ГН 2.2.5.1313—03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны», ГН 2.2.5.1314—03 «Ориентировочные безопасные уровни воздействия (ОБУВ) вредных веществ в воздухе рабочей зоны» и дополнениях к ним.

Методические указания по измерению массовых концентраций вредных веществ в воздухе рабочей зоны предназначены для центров госсанэпиднадзора, санитарных лабораторий промышленных предприятий при осуществлении контроля за содержанием вредных веществ в воздухе рабочей зоны, а также научно-исследовательских институтов и других заинтересованных министерств и ведомств.

УТВЕРЖДАЮ

Главный государственный санитарный врач Российской Федерации, Первый заместитель Министра здравоохранения Российской Федерации

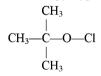
Г. Г. Онишенко

29 июня 2003 г.

Дата введения: с момента утверждения

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение массовых концентраций 1,1-диметилэтилгипохлорита (трет-бутилгипохлорита) в воздухе рабочей зоны методом газовой хроматографии


Методические указания МУК 4.1.1740—03

1. Область применения

Настоящие методические указания устанавливают количественный хроматографический анализ воздуха рабочей зоны на содержание 1,1-диметилэтилгипохлорита⁺ (ДМЭГХ) в диапазоне массовых концентраций от 2,5 до 50,0 мг/м³.

2. Характеристика вещества

2.1. Структурная формула

- 2.2. Эмпирическая формула C_4H_9ClO .
- 2.3. Молекулярная масса 108,6.
- 2.4. Регистрационный номер CAS 3587-58-4.
- 2.5. Физико-химические свойства.

ДМЭГХ — жидкость желтовато-зеленого цвета со специфическим запахом, $T_{\text{кип.}}$ 77—78 °C, плотность 0.91 г/см^3 . Растворим в этиловом спирте и других органических растворителях, нерастворим в воде. В воздухе находится в виде паров.

2.6. Токсикологическая характеристика.

ДМЭГХ обладает раздражающим действием, необходима защита кожи и глаз.

Предельно допустимая концентрация (ПДК) в воздухе рабочей зоны $5.0~{\rm Mr/m}^3$. Класс опасности – третий.

3. Погрешность измерений

Методика обеспечивает выполнение измерений с погрешностью не более $\pm\,21\,\%$ при доверительной вероятности 0.95.

4. Метод измерений

Измерения массовых концентрации ДМЭГХ основаны на использовании газовой хроматографии с применением пламенно-ионизационного детектора.

Отбор проб проводится без концентрирования.

Нижний предел измерения содержания в хроматографируемом объеме 0,0025 мкг.

Нижний предел измерения концентрации в воздухе 2,5 мг/м³.

Определению не мешают 2-метил-1-пропанол (трет-бутиловый спирт).

5. Средства измерений, вспомогательные устройства, материалы, реактивы

5.1. Средства измерений, вспомогательные устройства, материалы

Хроматограф газовый типа 3700 с пламенно-
ионизационным детектором и интегратором
Хроматографическая колонка стеклянная,
длиной 2 м и внутренним диаметром 3 мм
Насадка хроматографической колонки –
5 % SE-30 на Хроматоне AW-DMCS,
фракция 0,20—0,25 мм
Шприцы медицинские стеклянные,
вместимостью 1, 2, 10 и 100 см ³
Бутыль стеклянная, вместимостью 5 дм ³

TV 64-1-868—80

ТУ 25-0585.110-86

5.2. Реактивы

ДМЭГХ, содержание осн	овного вещества	
не менее 95 %		ТУ 2430-008-48158319—00
Газообразные в баллонах	с редукторами	
_	азот	ГОСТ 9293—80
	водород	ГОСТ 3022—80
	воздух	ΓΟCT 1182—74

Допускается применение иных средств измерения, вспомогательных устройств, реактивов и материалов, обеспечивающих показатели точности, установленные для данных методических указаний.

6. Требования безопасности

- 6.1. При работе с реактивами соблюдают требования безопасности, установленные для работы с токсичными, едкими и легковоспламеняющимися веществами по ГОСТ 12.1.005—88.
- 6.2. При проведении анализов горючих и вредных веществ соблюдают меры противопожарной безопасности по ГОСТ 12.1.004—76.
- 6.3. При выполнении измерений с использованием хроматографа соблюдают правила электробезопасности в соответствии с ГОСТ 12.1.019—79 и инструкцией по эксплуатации прибора.
- 6.4. При работе с газами, находящимися в баллонах под давлением до 15 МПа (150 кгс/см²), необходимо соблюдать «Правила устройства и безопасной эксплуатации стационарных компрессорных установок, воздухопроводов и газопроводов под давлением» ПБ-10-115-96, ГОСТ 12.2.085. Запрещается открывать вентиль баллона, не установив на нем понижающий редуктор.

7. Требования к квалификации оператора

К выполнению измерений и обработке результатов допускаются лица с высшим или средним специальным образованием, имеющие навыки работы на газовом хроматографе.

8. Условия измерений

- 8.1. Приготовление смесей и подготовку проб к анализу проводят в нормальных условиях при температуре воздуха (20 ± 5) °C, атмосферном давлении 84—106 кПа и относительной влажности воздуха не более 80 %.
- 8.2. Измерения на газовом хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

9. Подготовка к выполнению измерения

9.1. Приготовление паровоздушных смесей

9.1.1. Стандартную паровоздушную смесь ДМЭГХ готовят путем внесения 1 мм³ вещества шприцем в вакуумированную бутыль объемом 0.005 м^3 . Выравнивают давление внутри бутыли с атмосферным и перемешивают с помощью шариков из фольги, помещенных в бутыль. Концентрацию вещества $B \text{ (мг/м}^3)$ рассчитывают, исходя из плотности анализируемого вещества по формуле:

$$B = V_e \cdot d_r / V_6 = 1 \cdot 0.91 / 0.005 = 182 \text{ мг/м}^3$$
, где

 $V_{\rm g}$ – объем вещества, внесенного в бутыль, мм³;

 d_r – плотность, г/см³;

 V_6 – объем бутыли, м³.

Смесь хранится в течение 8 ч.

9.2. Подготовка прибора

- 9.2.1. Общую подготовку прибора осуществляют согласно инструкции по эксплуатации.
- 9.2.2. Хроматографическую колонку заполняют готовой насадкой с использованием вакуумного насоса. Колонки кондиционируют в токе азота путем прогрева при температурах 100 и 200 °C в течение 4 ч при каждой температуре.

9.3. Установление градуировочной характеристики

Градуировочную характеристику, выражающую зависимость величины хроматографического сигнала от массы анализируемого вещества в хроматографируемом объеме пробы, устанавливают по методу абсолютной градуировки с использованием серии градуировочных смесей, которые готовят соответствующим разбавлением стандартной смеси воздухом в газовом шприце вместимостью 100 см³ согласно табл. 1. Смеси хранят в течение 4 ч.

Таблица 1
Воздушные смеси для установления градуировочной характеристики при определении ДМЭГХ

№ стан- дарта	Стандартная смесь ДМЭГХ, см ³	Воздух, см³	Концентрация вещества, мг/м ³	Содержание вещества в хроматографируемом объеме пробы, мкг
1	0	100	0	0
2	1,38	98,62	2,5	0,0025
3	2,75	97,25	5,0	0,0050
4	5,50	94,50	10,0	0,0100
5	8,25	91,75	12,5	0,0150
6	11,00	89,00	20,0	0,0200
7	27,50	72,50	50,0	0,0500

Для построения градуировочной характеристики по 1 см³ каждой смеси вносят с помощью шприца в хроматограф.

Условия хроматографирования градуировочных смесей и анализируемых проб:

температура термостата колонки 70 °C; температура испарителя 150 °C; температура детектора 100 °C; объем вводимой пробы 1 см³; скорость потока газа-носителя (азот) 20 см³/мин; скорость потока водорода 20 см³/мин; скорость потока воздуха 200 см³/мин; время удерживания ДМЭГХ 2 мин 35 с.

Анализируют 6 смесей разных концентраций и холостую пробу, проводя не менее 5 параллельных определений для каждой смеси. Обрабатывают хроматограммы с помощью интегратора и строят градуировочную зависимость площади пика (в условных единицах) от количества компонента в пробе (мкг). Проверку градуировочной характеристики проводят при изменении условий анализа, но не реже 1 раза в месян.

9.4. Отбор проб воздуха

Для определения массовых концентраций ДМЭГХ воздух отбирают в медицинские шприцы со стеклянным штоком, вместимостью $100~{\rm cm}^3$, предварительно промыв путем десятикратного воздухообмена. По окончании отбора шприцы закрывают стеклянными заглушками. При отборе пробы фиксируется температура воздуха и атмосферное давление.

Пробы можно хранить в течение 3 ч.

10. Выполнение измерения

Пробу воздуха из шприца на 100 см³ отбирают шприцем объемом 1 см³ и вводят в хроматограф через самоуплотняющуюся мембрану испарителя. Анализируют в тех же условиях, что и градуировочные смеси. Количественное определение содержания анализируемого вещества проводят по предварительно построенной градуировочной характеристике.

11. Расчет концентрации

Концентрацию анализируемого вещества $(C, \text{ мг/м}^3)$ в воздухе вычисляют по формуле:

$$C = \frac{a}{V}$$
, где

a – содержание анализируемого вещества, найденное по градуировочной характеристике, мкг;

V – объем воздуха, взятого для анализа и приведенного к стандартным условиям, дм 3 (см. прилож. 1).

12. Оформление результата анализа

Результат количественного анализа представляют в виде $(C \pm \Delta)$ мг/м³, P = 0.95, где Δ – характеристика погрешности, $\Delta = 0.13C + 0.2$.

13. Контроль погрешности методики

Значения полученных метрологических характеристик погрешности, норматива оперативного контроля точности и норматива оперативного контроля воспроизводимости приведены в табл. 2 в виде зависимости от значения массовой концентрации анализируемого компонента в пробе C.

Таблица 2 Результаты метрологической аттестации методики количественного химического анализа

Диапазон	Наименование метрологической характеристики					
определяемых концентраций ДМЭГХ, мг/м ³	характеристика погрешности (Δ), мг/м ³ ; $P = 0.95$	норматив оперативного контроля точности (K), мг/м³; $P = 0.90, m = 2$	норматив оперативного контроля воспроизводимости (D), мт/м ³ ; $P=0.95$, $m=2$			
от 2,5 до 50,0	0,13C + 0,2	0,16C + 0,2	0.08C + 0.5			

13.1. Оперативный контроль воспроизводимости

Оперативный контроль воспроизводимости выполняют в одной серии с анализом рабочих проб. Отбирают реальные пробы воздуха рабочей зоны из одного традиционного места отбора двумя пробоотборниками одновременно. Анализируют в соответствии с прописью методики разными аналитиками, максимально варьируя условия проведения анализа: партии реактивов, наборы мерной посуды и т. д., и получают два результата C_1 и C_2 анализов. Результаты анализа не должны отличаться друг от друга на величину большую, чем норматив оперативного контроля воспроизводимости D:

$$\mid C_1 - C_2 \mid \leq D$$

При превышении расхождения между двумя результатами норматива оперативного контроля воспроизводимости эксперимент повторяют. При повторном превышении указанного норматива выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

Внутренний оперативный контроль воспроизводимости проводят не реже, чем 1 раз в месяц.

13.2. Оперативный контроль точности

Оперативный контроль точности выполняют в одной серии с анализом рабочих проб. Отбирают реальные пробы воздуха рабочей зоны из одного традиционного места отбора двумя пробоотборниками одновременно. Затем к одной пробе, отобранной в газовый шприц, добавляют анализируемое вещество δC из стандартной смеси \mathbb{N} 1. Результаты анализа C_1 без добавки и C_2 с добавкой получают по возможности в одинаковых условиях: одним аналитиком, с одной партией реактивов, с одним набором посуды и т. д. Величина добавки δC должна соответствовать 50—150 % от содержания компонента в пробе, а величина C_2 не должна выходить за верхнюю границу диапазона измерения.

Погрешность процедуры отбора проб контролируют путем поверки используемых пробоотборников. Расчет норматива оперативного контроля погрешности K проводят по характеристике погрешности методики за вычетом характеристики погрешности пробоотборника. Решение об удовлетворительной погрешности принимают при выполнении условия:

$$|C_2 - C_1 - \delta C| \leq K$$

Внутренний оперативный контроль точности проводят не реже, чем 1 раз в месяц.

14. Нормы затрат времени на анализ

Для проведения серии анализов из 6 проб требуется 3 ч.

Методически указания разработаны Российским государственным медицинским университетом (Гугля Е. Б.).

Приложение 1

Приведение объема воздуха к стандартным условиям

Приведение объема воздуха к стандартным условиям (температура $20~^{\circ}$ С и давление 101,33~кПа) проводят по формуле:

$$V_{20} = \frac{V_1 \cdot (273 + 20) \cdot P}{(273 + t) \cdot 101.33}$$
, где

 V_t – объем воздуха, отобранного для анализа, дм³;

P – барометрическое давление, кПа (101,33 кПа = 760 мм рт. ст.);

t – температура воздуха в месте отбора пробы, °C.

Для удобства расчета V_{20} следует пользоваться таблицей коэффициентов (прилож. 2). Для приведения воздуха к стандартным условиям надо умножить V_t на соответствующий коэффициент.

МУК 4.1.1734—4.1.1754—03 Приложение 2

Коэффициенты для приведения объема воздуха к стандартным условиям

Давление Р, кПа/мм рт. ст.										
t°C	97,33/730	97,86/734	98,4/738	98,93/742	99,46/746	100/750	100,53/754	101,06/758	101,33/760	101,86/764
-30	1,1582	1,1646	1,1709	1,1772	1,1836	1,1899	1,1963	1,2026	1,2058	1,2122
-26	1,1393	1,1456	1,1519	1,1581	1,1644	1,1705	1,1768	1,1831	1,1862	1,1925
-22	1,1212	1,1274	1,1336	1,1396	1,1458	1,1519	1,1581	1,1643	1,1673	1,1735
-18	1,1036	1,1097	1,1158	1,1218	1,1278	1,1338	1,1399	1,1460	1,1490	1,1551
-14	1,0866	1,0926	1,0986	1,1045	1,1105	1,1164	1,1224	1,1284	1,1313	1,1373
-10	1,0701	1,0760	1,0819	1,0877	1,0986	1,0994	1,1053	1,1112	1,1141	1,1200
-6	1,0540	1,0599	1,0657	1,0714	1,0772	1,0829	1,0887	1,0945	1,0974	1,1032
-2	1,0385	1,0442	1,0499	1,0556	1,0613	1,0669	1,0726	1,0784	1,0812	1,0869
0	1,0309	1,0366	1,0423	1,0477	1,0535	1,0591	1,0648	1,0705	1,0733	1,0789
+2	1,0234	1,0291	1,0347	1,0402	1,0459	1,0514	1,0571	1,0627	1,0655	1,0712
+6	1,0087	1,0143	1,0198	1,0253	1,0309	1,0363	1,0419	1,0475	1,0502	1,0557
+10	0,9944	0,9999	0,0054	1,0108	1,0162	1,0216	1,0272	1,0326	1,0353	1,0407
+14	0,9806	0,9860	0,9914	0,9967	1,0027	1,0074	1,0128	1,0183	1,0209	1,0263
+18	0,9671	0,9725	0,9778	0,9830	0,9884	0,9936	0,9989	1,0043	1,0069	1,0122
+20	0,9605	0,9658	0,9711	0,9783	0,9816	0,9868	0,9921	0,9974	1,0000	1,0053
+22	0,9539	0,9592	0,9645	0,9696	0,9749	0,9800	0,9853	0,9906	0,9932	0,9985
+24	0,9475	0,9527	0,9579	0,9631	0,9683	0,9735	0,9787	0,9839	0,9865	0,9917
+26	0,9412	0,9464	0,9516	0,9566	0,9618	0,9669	0,9721	0,9773	0,9799	0,9851
+28	0,9349	0,9401	0,9453	0,9503	0,9555	0,9605	0,9657	0,9708	0,9734	0,9785
+30	0,9288	0,9339	0,9391	0,9440	0,9432	0,9542	0,9594	0,9645	0,9670	0,9723
+34	0,9167	0,9218	0,9268	0,9318	0,9368	0,9418	0,9468	0,9519	0,9544	0,9595
+38	0,9049	0,9099	0,9149	0,9199	0,9248	0,9297	0,9347	0,9397	0,9421	0,9471

Приложение 3

Указатель основных синонимов технических, торговых и фирменных названий веществ

№ п/п	Синоним	Стр
1	Аминостигмин	29
2	Астемизол	142
3	Бемитил	158
4	Бисакодил	104
5	Диэтиловый эфир угольной кислоты	67
6	Кокарбоксилаза	6
7	Лорасепт	45
8	1-Метокси-2-пропилацетат	97
9	Напроксен	90
10	Оротат калия	119
11	пара-Толуолсульфокислота	60
12	Прозерин	21
13	Проксифеин	37
14	Стрихнина нитрат	111
15	трет-Бутилгипохлорит	52
16	Трипропиленфенол	127
17	Трифенилфосфин	59