МИНИСТЕРСТВО ГЕОЛОГИИ СССР ВСЕСОЮЗНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МИНЕРАЛЬНОГО СЫРЬЯ (ВИМС)

Научный совет по аналитическим методам

Ядерно-физические методы

Инструкция № 99-ЯФ

ВОЛЬФРАМ

Выписка из приказа ГГК СССР № 229 от 18 мая 1964 года.

- 7. Министерству геологии и охраны недр Казахской ССР, главным управлениям и управлениям геологии и охраны недр при Советах Министров союзных республик, научно-исследовательским институтам, организациям и учреждениям Госгеолкома СССР:
- а) обязать лаборатории при выполнении количественных анализов геологических проб применять методы, рекомсидованные ГОСТами, а также Научным советом, по мере утверждения последних ВИМСом.

При отсутствии ГОСТов и методов, утвержденных ВИМСом, разрешить временно применсние методик, утвержденных в порядке, предусмотренном приказом от I ноября 1954г. 1998;

гыделить лиц, ответственных за выполнение лабора ториями установленных настоящим приказом требований к при менению неиболее прогрессивных методов аналива.

ПРИЛОЖЕНИЕ № 3 § 8. Размножение инструкций на местах вс избежани возможных искажений разрешается только фотографическим или электрографическим путем.

МИНИСТЕРСТВО ГЕОЛОГИИ СССР Научный Совет по аналитическим методам при ВИМСе

Ядерно-физические методы Инструкция № 99-ЯФ

ФЛУОРЕСЦЕНТНОЕ РЕНТГЕНОРАДИОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ВОЛЬФРАМА В ВОЛЬФРАМОВЫХ РУДАХ И ПРОДУКТАХ ИХ ОБОГАЩЕНИЯ

Всесоюзный научно-исследовательский институт минерального сырья (ВИМС)

Москва, 1970

В соответствии с приказом Госгеолкома СССР № 229 от 18 мая 1964 г. инструкция № 99 - ЯФ рассмотрена и рекомен-дована Научным Советом по аналитическим методам к применению для анализа рядовых проб - Ш категория.

(Протокол № 16 от 28 июня 1969 г.).

Председатель НСАМ

В.Г.Сочеванов

Председатель секции ядерно-физических методов Ученый секретарь

А.Л.Якубович Р.С.Фридман Инструкция № 99-ЯФ рассмотрена в соответствии с приказом Государственного геологического комитета СССР № 229 от 18 мая 1964 г. Научным Советом по аналитическим методам (протокол № 16 от 23 июня 1969 г.) и утверждена ВИМСом с введением в действие с 1 марта 1970 г.

ФЛУОРЕСЦЕНТНОЕ РЕНТІЕНОРАЛИОМЕТ РИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ВОЛЬФРАМА В ВОЛЬФРАМОВЫХ РУДАХ И ПРОДУКТАХ ИХ ОВОГАШЕНИЯ X)

Сущность метода

Вольфрам определяют флуоресцентным рентгенорадиометрическим методом 5,6,7 по интенсивности его жарактеристического излучения, возбуждаемого в пробе радиоактивным источником Tu^{170} .

Аналив ведут по K_{∞_1,∞_2} -линиям вольфрама, для выделения которых применяют дифференциальные фильтры из эрбия ($E_{2_2}O_3$) и иттербия ($Y_{2_2}O_3$). Издучение источника предварительно фильтруют через свинцовую пластинку толщиной \sim I г/ом². Этим подавляется излучение Tu^{170} с энергией \sim 53 кав, которое не вовбуждает К-линий вольфрама. Такой при-xВнесена в НСАМ дабораторией ядерно-физических и изотопных методов анализа вимса, 1968 г.

ем улучшает отношение полезного сигнала к фону и этим повышает чувствительность и воспроизводимость определения вольф+ рама.

Так как в полосу пропускания дифференциальных фильтров из эрбия и иттербия попадаю: $K_{\mathcal{L}_1}$ — линия тантала, $K_{\mathcal{L}_1 \mathcal{L}_2}$ — линии рения, $K_{\beta_1\beta_2}$ — линии иттербия и тулия, то эти элементы мещают определению вольфрама. В присутствии этих элементов результаты определения вольфрама завышаются:

1% тантала эквивалентен 0,70% WO₅

I % гулия – " 0,33% $W0_3$ I % иттербия— " 0,44% $W0_3$ I % рения – " I,04% $W0_3$

Метод рекомендуется для определения вольфрама, если мешающие элементы присутствуют в количествах, не вызывающих существенных погрешностей в его определении. Если же мешающие элементы присутствуют в значительных количествах и содержание их известно, то метод может применяться, но из результатов следует вычесть поправку, которую находят, умножая содержание мешающего элемента (в %) на его вольфрамовый эквивалент.

Вольфрам определяют относительным методом, сравнивая интенсивность аналитических линий вольфрама, содержащегося в исследуемой и в эталонной пробах. Вольфрам определяют в промежуточных по поверхностной плотности слоях пробы. При этом интенсивность аналитической линии зависит не только от содержания вольфрама, но и от состава матрицы (наполнителя) пробы — ее абсорбционных свойств $^{1},^{2},^{5},^{7}$. Матричный эффект устраняют, применяя способ "гипотетических эталонов" (способ "подложки") $^{3},^{5},^{7}$.

При несущественном матрячном эффекте вольфрам определяот без учета абсорбционных свойств, применяя селективный фильтр из иттербия.

Методика анализа в промежуточных слоях без учета абсорбционных свойств проще и производительнее, чем по способу "подложки", обеспечивает дучаую воспроизводимость результатов, но имеет ограниченную область применения — рекомендуется для рядовых определений вольфрама в диапазоне содержаний 40-70% $W0_3$ в однородных по составу пробах. Среднее расхождение между результатами повторных определений по опыту работы вимса составляет \pm 0,2-0,5% $W0_3$.

Методика анализа в промежуточных слоях по способу "подложки" рекомендуется для рядовых определений вольфрама, начиная с содержаний 0,0I - 0,02% WO_3 и выше в неизвестном или
изменчивом по составу материале (различные руды и продукты
их обогащения).

Таблица I Допустимые расхождения 4

Содержание вольфрама, %	Допустимые расхождения, % отн.
5 - 9,99	15
2 - 4,99	21
I - I,99	23
0,5- 0,99	26
0,2- 0,499	29
0,1-0,199	34
0,05-0,099	38

Методика опробована в диапазонах содержаний $0,0I-8\% W 0_3$ и $40-70\% W 0_3$. Среднее расхождение между результата-ми основных и повторных определений (коэффициент вариации) по опыту работы ВИМСа составляет:

<u>+</u> I	-2% OT	н. при	содержаниях	вольфрама	40-70% WO ₃
1± 3	б п	_	Ħ	Ħ	I-8% WO ₃
± 8	g 11		n	" 0	,05-1% WO3
± 30	0% "		π	* 0	,01-0,05% WO3

ФЛУОРЕСЦЕНТНОЕ РЕНТГЕНОРАДИОМЕТРЫЧЕСКОЕ ОПРЕДЕЛЕНИЕ ВОЛЪФРАМА В ПРОМЕЖУТОЧНЫХ СЛОЯХ ПО СПОСОБУ "ПОДЛОЖКИ"

Методика флуоресцентного рентгенорадиометрического определения вольфрама в промежуточных слоях по способу "подложки" разработана Г.В.Остроумовым, Д.В.Токаревой, А.А.Архиповым, Е.С.Кудрящовым (ВИМС, 1968 г.).

Реактивы и материалы

- І. Кальций углекислый, х.ч.
- 2. Стронций углекислый или окись стронция, ч.д.а.
- 3. Окись алюминия прокаленная или гидроокись, х.ч.
- 4. Ангидрид вольфрамовый, х.ч.
- 5. Окись железа, х.ч.
- 6. Окись иттербия, Іс.
- 7. Окись эрбия, I с.
- 8. Полистирол суспензионный марки "Б" (Кусковский химический завод, Московская обл.) или марки "ПС-С" (Горловский азотно-туковый завод).
 - 9. Парафин для лабораторных целей, очищ.
- IO.Стандартные или контрольные образцы с надежно установленным содержанием вольфрама порядка 0,00%, 0,0%%, I-3%, $\sim 10\%$, $\sim 40\%$, $\sim 70\%$ WO₃. В этих образцах должны отсутствовать тантал, рений, тулий, иттербий и не должны содержаться в значительных количествах (n. %)элементы с атомными номерами, близкими к атомному номеру вольфрама (Z = 50-83).
- II. "Пустые" пробы (иначе "нулевые", т.е. пробы, не содержащие вольфрама): известняк, кварцевый песок, не содержащие вольфрама, тантала, рения, тупия, иттербия, а также значительных количеств (n%) элементов с атомными номерами 7 = 50-83.
- 12. Искусственные стандартные смеси с содержанием вольфрама $\sim 50\%$, $\sim 10\%$ и $\sim 1\%$ W 0_3 , изготовленные из реактива W 0_3 на основе различных неполнителей (табл.2).

Таблица 2 Стандартные мокусственные смеси

омесец К	Содержание WO3 • %	Состав наполнителя
	5 0	
I	10	3 вес.части Fe ₂ O ₃ + I вес.часть SzO
	I	
	5 0	
2	10	7 вес.частей Fe ₂ O ₃ + I вес.часть 570
	I	_
	5 0	
3	IO	Fe_2O_3
	I	
	50	
4	10	I вес.часть Fe, 0, + I вес.часть CaCO3
	I	2 3
	50	
5	10	CaCO _S
	I	· ·
	50	
6	10	SiO ₂ или Al(OH) ₃
	I	· ·

Сначала готовят наполнители указанного состава, тщательно перемешивая исходные компоненты. Затем отвешивают 5,000 г наполнителя, помещают в ступку, добавляют 5,000 г вольфрамового ангидрида, смачивают спиртом, тщательно истирают и перемешивают. Еще дважды смачивают спиртом и тщательно перемешивают в ступке. Полученная смесь после полного испарения спирта содержит около 50% $W0_3$.

Навеску 2,000 г этой смеси таким же обравом смешивают с 8,00 г того же наполнителя. Получают вторую смесь, содержащую $\sim 10\% \ \text{WO}_5$. Затем навеску 1,000 г второй смеси смешивают таким же образом с 9,00 г того же наполнителя. Получают третью смесь, содержащую $\sim 1\% \ \text{WO}_2$.

Точное содержание $W0_3$ рассчитывают, исходя из количества примесей во взятом вольфрамовом ангидриде (или из содержания в нем вольфрама).

Таким образом приготовляют стандартные смеси на каждом наполнителе с содержанием 50. ІО и 1% $W0_{\infty}$.

Смеси, изготовленные на чистом известняке, как обладающие средними абсорбционными свойствами, используют в качестве эталонов: первую (\sim 50% WO₃) – для определения содержаний 40-70% WO₃, вторую (\sim 10% WO₃) – для определения содержаний > 3% WO₃и третью (\sim 1% WO₃) – для определения содержаний < 3% WO₃.

Правильность состава эталонов (т.е. соответствие фактического содержения WO_3 расчетному) проверяют сопоставлением результатов рентгенорадиометрического анализа стандартных или контрольных образцов с паспортным содержанием в них вольфрама.

Смеси хранят в эксикаторе или в склянках с хорошо притертой пробкой.

13. Подложки — 2 мт. — плоскопараллольные диски— таблетки из смеси вольфрамого ангидрида и полистирола (\sim 250мг WO_3 и \sim 500 мг полистирола — для первой подложки и \sim 800 мг WO_3 и \sim 500 мг полистирола — для второй подложки). Готовят прессованием.

Первую подложку используют при определении содержаний $< 3\% \, \text{WO}_3$, вторую — при определении содержаний $> 3\% \, \text{WO}_3$. Каждую подложку закрепляют в отдельную оправу из плокси-гласа (рис.3,4).

14. Дифференциальные фильтры. Приготовляют из окисных соединений эрбия и иттербия способом, рекомендованным в инструкции к прибору 6 . Поверхностная плотность эрбия в фильтре должна быть ~ 0.30 г/см 2 , иттербия - ~ 0.28 г/см 2 .

Аппаратура и оборудование

А. Выпускаемое промышленностью

- I. Рентгенорадиометрический анализатор "Минерал-2"X) или "Минерал"3"6 в комплектации, выпускаемой заводом.
- 2. Радиоактивный изотоп Ти 170 в виде ампулированного источника, активностыю 0,3-0,5 г экв.радия.
 - В Весы аналитические.
- 4. Пресс гидравлический не менее, чем на 4 тонни. Рекомендуется школьный пресс (рис.І), выпускаемый заводом "Физприбор 2".
 - 5. Ступка яшмовая (Ø I5-20 см) с пестиком.

Б. Специально изготовляемое

- I. Емкости в виде стаканов с плотно вакрывающейся крышкой и с шайбой (рис.2) для перемещивания исследуемого материала с полистиродом — 10 мт.
 - 2. Оправа для подложки (рис.3) 3 мт.
 - 3. Оправа для пробы (рис.3 и 4)- 3 шт.

х) При использовании прибора "Минерал-2" для фильтрования излучения источника Ти -170 в штатив прибора должны оыть внесены конструктивные язменения и дополнения, указанные на рис. 5,6 и в приложении к инструкции.

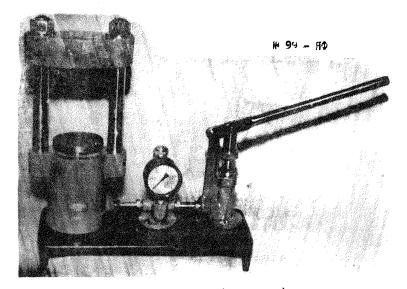


Рис.І. Гидравлический пресс (общий вид).

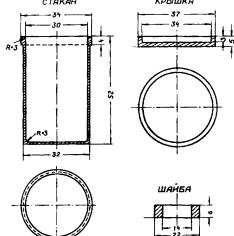


Рис. 2. Стакан для смешивания исследуемого материала с полистиролом. Стакан с кришкой выполнены из нержавеющей стали, шайба — из латуни.

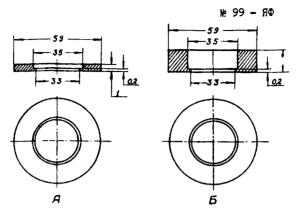


Рис.3. Оправа из плексигласа: A — для подложки, Б — для пробы (масштаб по вертикали увеличен в 5 раз)

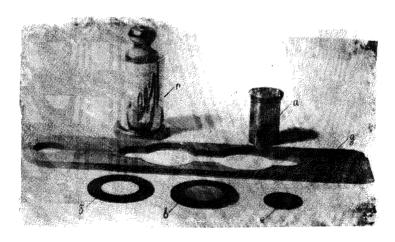


Рис. 4. Принадлежности для определения вольфрама.

а — стакав для смешивания исследуемого материала с полистиролом. б — оправа для подложки, в — оправа для пробы, г — пресоформа, д — кассета для проб (прободержатель), е — образец
пробы-таблетка.

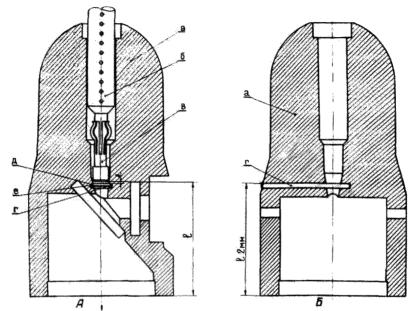


Рис. 5. Схематический разрез свинцовой камеры штатива после внесения конструктивных изменений. А — сечение в плоскооти, проходящей через оси вертикального (для источника) и горизонтального (для датчика) каналов;

Б — сечение в плоскости, проходящей через ось вертикального канала (для источника)и ось, пер— пендикулярную оси горизонтального канала (для датчика);

а — свинцовая камера без силуинового корпуса и без дна; б — держатель источника;

в — поятя: г — конструктивностивное порожать в структивного канала (для датчика);

в — цанте; г — дополнительная прорезь в свинцовой камере; д — дополнительный экран; е — дополнительная кассета; с — расстояние от основания камеры до дна цанги при крайнем опущенным положении держателя источника с цангой (размер для разметки положения прорези).

ПРИМЕЧАНИЕ: На рис. Б цанга, держатель изотопа и кассета вынуты.

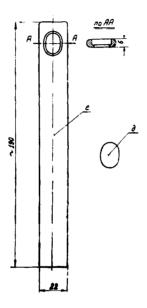


Рис.6. Дополнительная кассета (е) и дополнительный экран (d), Выполнено: е — из дюрамя, d — из овинца.

Ход анализа

І. Подготовка проб к анализу

Анализируемые пробы, ис усственные стандартные смеси, "пустые" пробы и эталоны прессуют в виде плоскопараллельных дисков-таблеток с одинаковой для всех равномерной поверхнос‡-ной плотностью: \sim 0,44 г/см 2 пробы — при определении содержаний < 10% WO $_{\rm S}$ и \sim 0,11 г/см 2 пробы—при определении содержаний 40-70% WO $_{\rm S}$.

В качестве связующего материала используют полистирол. Навеску пробы 4,00 г (при определении содержаний < 10% WO₃) или 1,00 г (при определении содержаний 40-70% WO₃) и навеску полистирола 1,00 г всыпают в стакан (рис.2,4а), опускают в него шайбу, плотно закрывают крышкой и энергично встряхивают в течение \sim I мин, чтобы полистирол равномерно распределился в пробе. Всю полученную смесь, включая остатия, снятые со стенок и дна стакана куском фотопленки, засыпают в прессформу $^{\rm X}$) (рис.4г), разравнивают поворотом поршня прессформы с легким нажимом на его головку и прессуют в течение \sim I мин. под давлением \sim 150 кг/см² (по манометру).

Спрессованный образец — таблетку выталкивают поршнем из цилиндра прессформы и маркируют мягким карандашом.

При изготовлении подложек и эталонных образцов для большей прочности таблеток прессформу со спрессованным материалом нагревают до $\sim 150^{\circ}$ С(на электроплитке до легкого шипения влаги на наружной стенке прессформы) и затем, не вынимая таблетки, повторно прессуют в течение ~ 20 мин (до полного остывания прессформы).

П. Подготовка прибора к работе

Прибор проверяют и настраивают по прилагаемой к нему инструкции 6 .

Для обеспечения максимальной чувотвительности следует установить такую ширину окна дискриминатора и такой коэффициент усиления, чтобы отношение корня квадратного из величины фона к полезному сигналу было наименьшим.

В комплекте к прибору "Минерал-2" прессформа именуется "приспособление для изготовления фильтров".

Затем оценивают максимально возможную счетную загрузку прибора. Для этого при различных положениях источника, начиная с более удаленного, измеряют интенсивность аналитических линий вольфрама от двух проб, содержащих $\sim 1\%\,\mathrm{WO_3}\mathrm{u} \sim 3\%\,\mathrm{WO_3}$ ($\Im\,\mathrm{np_1}$, $\Im\,\mathrm{np_2}$), и для каждого положения источника вычисляют отношение $\frac{\Im\,\mathrm{np_2}}{\Im\,\mathrm{np_3}}$. Максимальную скорость счета с иттербиевым фильтром, при которой отношение $\frac{\Im\,\mathrm{np_3}}{\Im\,\mathrm{np_3}}$ остается постоянным, принимают за предельно допустимую счетную загрузку.

В процессе работы следят, чтобы величина скорости счета не превышала предельно допустимую, регулируя ее перемещением источника или используя диафрагмы. В процессе анализа условия облучения и измерений исследуемой, эталонной и "пустой" проб должны быть одинаковы. Далее юстируют, как указано в инструкции к прибору⁶, дифференциальные фильтры по К-линиям эрбия и свинца и затем проверяют разбаланс фильтров измерением "пустых" проб, приготовленных из СаСО₃, SiO₂, Al(OH)₃, Fe₂O₃.

Ш. Определение содержания фольфрама

- І. В одно из гнезд прободержателя (рис.4д) устанавливают подложку, закрепленную в оправе, в другое - пустую оправу такой же толшины, как и первая.
- 2. Анализируемую пробу, приготовленную в виде таблетки, помещают в третью оправу и устанавливают в гнездо прободер-жателя поверх уже находящейся там пустой оправы.
- 3. Прободержатель вводят в штагив прибора и устанавливают так, чтобы проба понала под поток возбуждающего излучения.
- 4. Измеряют скорость счета от пробы с иттербиевым (\mathcal{N}_{np}^{1}) и эрбиевым (\mathcal{N}_{np}^{2}) фильтрами, делая по два замера с каждым фильтром в последовательности: \mathcal{N}_{np}^{2} ; \mathcal
- 5. Оправу с пробой исмещают в другое гвездо прободержателя поверх оправы с подложкой и измеряют суммарную скорость счета от пробы с подложкой с иттербиевым ($\mathcal{N}_{n+np}^{'}$) и ербиевым ($\mathcal{N}_{n+np}^{'}$) фильтрами.

Затем оправу с пробой поворачивают в гнезде на 180° и измеряют скорость счета с обоими фильтрами в обратном порядке ($\mathcal{N}_{n+np}^{"}$; $\mathcal{N}_{n+np}^{"}$). Подложка остается всегда в одном и том же фиксированном положении.

Продолжительность одного замера пробы с подложкой составляет I мин.

6. Измерение каждой серии проб начинают и заканчивают измерением эталонной и "пустой" проб. При стабильно работающей аппаратуре эталонную и "пустую" пробы измеряют 2-3 раза в день.

В качестве эталона используют искусственную стандартную смесь на основе известняка с соответствующим содержанием вольфрама, в качестве "пустой" пробы - известняк или кварцевый песок.

"Пустур" пробу измеряют только без подложки. Форма записи результатов измерений приведена в табл.З.

ІУ. Вычисление результатов

Содержание вольфрама в исследуемой пробе (С пр) рассчитывают по формуле:

$$C_{np} = \frac{\Im_{np}}{\frac{\Im \pi}{C_{ar}} \cdot i_{np}} , \qquad (I)$$

где C_{9T} — содержание вольфрама в эталонной пробе, % WO_3 : $\Im_{n\rho}$; \Im_{3T} — интенсивность аналитических линий вольфрама (или величин, ей пропорциональных) от исследуемой и от эталонной проб, ими/мин;

inp - коэффициент, учитывающий отличие удельной интенсивности аналитических линий исследуемой пробы от удельной интенсивности эталонной пробы.

Величины, входящие в расчетную формулу, определяют следующим образом:

I. По результатам измерения "пустой" пробы определяют среднюю величину разбаланся фильтров Δ_{o} в имп/мин.

$$\Delta_0 = \frac{1}{+} (\mathcal{N}_0' - \mathcal{N}_0'')_{cp}$$

2. По результатам измерения эталонной и исследуемой проб без подложки определяют среднюю разность скоростей счета Δ с одним и другим фильтрами в имп/мин.

$$\Delta_{ar} = \frac{1}{t} (\mathcal{N}'_{ar} - \mathcal{N}''_{ar})_{cp}; \ \Delta_{np} = \frac{1}{t} (\mathcal{N}'_{np} - \mathcal{N}''_{np})_{cp}$$

З. Определяют Ээти Эпр

$$\mathcal{J}_{ar} = \Delta ar - \Delta o$$
; $\mathcal{J}_{no} = \Delta np - \Delta o$

4. По результатам измерения эталонной и исследуемой проб с подложкой определяют среднюю разность скоростей счета \(\Delta\) с одним и другим фильтрами в имп/мин.

$$\Delta n + 3\tau = (N_n + 3\tau - N_n + 3\tau) cp$$

 $\Delta n + np = (N_n + np - N_n + np) cp$

5. Определяют интенсивность аналитической линии от подложки при перекрытии ее последовательно эталонной ($\Im_{n,ar}$) и исследуемой ($\Im_{n,np}$) пробами в имп/мин.

$$\Im_{n,ar} = \Delta_{n+ar} - \Delta_{ar}$$
; $\Im_{n,np} = \Delta_{n+np} - \Delta_{np}$

6. Вычисляют отношение

$$\frac{\Im n.np}{\Im n.3T} = \Im np \tag{2}$$

7. По предварительно построенному графику зависимости $l_{np} = f(S_{np})$ (рис.7) находят величину l_{np} , соотнатствующую найденному для исследуемой пробы S_{np} .

Пример расчета всех величин приведен в табл. 3.

Построение графика зависимости $i_{np} = f(S_{np})$

Данными для построения графика $i_{np} = f(S_{np})$ являются соответственные значения величин S_{np} и i_{np} .

Их можно получить как экспериментальным, так и ресчет-

Для экспериментального определения зависимости $i_{\text{пр}} = f(s_{\text{пр}})$ измеряют в качестве проб искусственные стандартные смеси с различным составом наполнителя в одинаковым содержанием вольфрама (табл.2), равным содержанию в эталонной пробе (смесь на основе CaCO_3).

Для каждой смеси рассчитывают вначение S_{np} по формуле (2) и коэффициента l_{np} по формуле (I). Определение зависимости $l_{np} = f(S_{np})$ расчетным путем изложено в "методических указаниях по проведению флуоресцентного рентгенорадиомет— рического анализа".

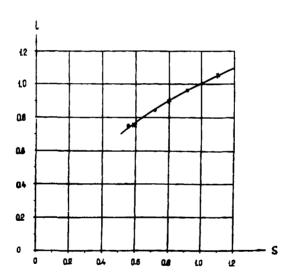


Рис.7. График вависимости $i_{np} = f(S_{np})$ 0 — экспериментальные точки;
X —точки, полученные расчетным путем 5 при $m_{pq} = 0.35$ и $S_{np} = 0.6$; 0.8; I,I;I,3.

% 99 - ЯФ
Таблица З
Форма записи и примеры расчета при режитоворадисметрическом анализе и промежуточных сдоях по
опособу "подложия"

npoo	Изиерев Динтель-	FE EPS TO		(n_+ np) _	ا ـ ـ ـ ـ ا	Жамореящ і Ллитель~	де <u>ў фод</u> л_я бастер⊡	ильтра- почиожка	(4p)	·		-	L-chama-	
	HOOTE HE-			Δ=	Δη+ηρ=	MODEL MO-	Cueros - ME IOS Yt		۵-	Δnp=	Jn.np=	Snp =	і тонима— ется с графака	C _{np} =
	-	OHEST P	DET LED	= (N'n, np =	= 1 (N 1, np-	i i	GETTED	фильтр Фильтр	=(Nnp-	= 1 (N no	= Δղ + որ	Juno	}	Car (Anp-
	t whe.	N'n+np		Ĭ	- N"n+np)cp	Man.	N'np	N″πρ	~ N*пр)	- N "np)cp	- Anp	Jn. 97	ing=f(Sap)	(Δ ₃₇ -Δ ₀)
	8	4	5	6		8	<u>-</u>	10	II	_I <u>S</u>	I3	<u>I</u>)	16
			Приме	р расчето з	прв экопер	na eet eo wa	ом опражаз	IORNE DEDNO	RMOGTE L	np =f(sn)	5)			
Пустая проба (известиях)						4	1168,0 1169,2	1165.5 1167.4	2,5 1,8	0,54				
З известика В известика) ₅ L	583,2 581,6	889.7 364.9	199,5 196,7	198,1	2 2	789,6 788,5	638,0 637,7	151,6 150,8	75,6	122,5			
Cuedi B-I I% WO3	I	440,9 489,0	811,2 810,4	129,7 128,6	129,2	2 2	656,5 655,9	54I,8 548,4	114,7 112,5	56,8	72,4	0,59	0,76	
STERON IS WO	~ I	580,6 581,5	983,3 389,4	1 97, 3 198,1	197,7	2 2	789,9 785,3	639,3 639,4	150,6 145,9	74,I	123,6			
Пустая проба (живеотник)	-					4	1170,3 1168,4	II68,6 II66,4	I.7 2,0	0,46	-			
	ว _{ีก}	.3T = <u>I22.5</u>	+ 128.6 2	123,0		Джя оме	o∎ B-I	Sno Ja	<u>np =</u>	72.4	0,59			
	Δ,	0.54	+ 0.46 <u> </u>	0,50										
	Δ,	6 د 75 = 1	+ 74.I - 7	4,85			inp	Δηρ -Δ ₀ Δэт - Δ o	<u>56.</u> 74,	80 - 0.50 85 - 0.50	<u> </u>	66,80 <u> </u>	0,76	
				Пример вы	ичисления ре	871218103	8882888							
Пустая пробе	1					4	856.3 856,2	849.I 848.7	7,2 7,5	I,84				
W ZI HOKETE	_	370,3	260,8	110,0	110,7		535,3	451,4	83,9	42,28	68,4			

I2			5	6		<u>6</u>		IQ.	_ <u>I</u> I	I <u>2</u>	<u> 1</u> 3	<u></u>		<u> 1</u> 6
Проба 🕨 40	I	360,3	291,8	68,5	69,2	2	516,7	490,0	26,7	13,25	56,0	0,82	0,91	0,31
	I	359,9	290,1	69,6		2	>15,5	489,2	26,3					
Branon IX Wûs	1	369,I	259,2	109,9	IIO,I	2	534,9	450,9	84,0	42,18	67,9			
1.4 1105	I	370,4	260,1	110,3		2	535,7	451,0	84,7					
Зустая проба						4	855,3	848,2	7,1	1,89				
uhnoa						4	854,8	846,8	8,0	·				

$$\mathfrak{I}_{\text{N.3T}} = \frac{68.4 + 67.9}{2} = 68.2$$

$$\Delta_0 = \frac{1.84 + 1.89}{2} = 1.86$$

$$\Delta_{37} = \frac{42.28 + 42.18}{2} = 42,23$$

Из графикь рис.? $i_{np} = f(S_{np})$ находится i_{np} , соответствующее двиному $S_{np} = 0.82$

$$C_{np} = \frac{I.0 (13.25-I.86)}{(42.28-I.86).0.9I} = \frac{II.09}{40.37.0.9I} = 0.31 WO_3$$

ФЛУОРЕСЦЕНТНОЕ РЕНТГЕНОРАДИОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ВОЛЬФРАМА В ПРОМЕЖУТОЧНЫХ СЛОЯХ БЕЗ УЧЕТА АБСОРБЦИ-ОННЫХ СВОИСТВ

Методика флуоресцентного рентгенорадиометрического определения вольфрама в промежуточных слоях без учета абсороционных свойств разработана Г.В.Остроумовым, А.В.Токаревой, А.А.Архиповым, Е.С.Кудряшовым (ВИМС, 1968 г.).

Реактивы и материалы

- І.Кальций углекислый, х.ч.
- 2. Стронций углекислый или окись стронция, ч.д.а.
- 3. Окись алиминия прокаленныя мли гидроокись, х.ч.
- 4. Ангидрид вольфрамовый, х.ч.
- 5. Окись желева, к.ч.
- 6. Окись иттербия, Іс.
- 7. Окись эрбия, І с.
- 8. Полистирол суспензионный марки "Б" (Кусковский химический завод, Московская обл.,) или марки "ПС-С" (Гор довский азстнотуковый завод).
 - 9. Парафин для лабораторных целей, очищ.
- 10. Стандартные или контрольные образцы с содержанием вольфрама от 38-40% до 70% WO, и с тем же составом наполнителя, что и в анализируемых пробах: из них 8-10 образцов (через интервал 4-6% WO,) используются в качестве эталонов. В этих образцах должны отсутствовать тантал, рений, тулий, иттербий.
- II. "Пустые" пробы (вначе "нулевые", т.е. пробы, не содержащие вольфрама): известняк, кварцевый песок, не содержашие вольфрама, тантала, рения, тулия, иттербия, а также зна-

чительных количеств (n %) элементов с атомными номерами Z = 50-83.

12. Дифференциальные фильтры. Приготовляют из окисных соединений эрбия и иттербия способом, рекомендованным в инструкции к прибору 6 . Поверхностная плотность эрбия в фильтре должна быть $\sim 0.30 \text{ г/cm}^2$, иттербия $\sim 0.28 \text{г/cm}^2$.

Аппаратура и оборудование

 Аппаратура и оборудование те же, что для флуоресцентного рентгенерадиометрического определения вольфрама в промежуточних сложи по способу подложки х/

Ход анализа 1. подготовка проб к анализу

Анализиримые пробы, стандартные или контрольные образцы и "пустые" пробы прессуют в виде плоскопараллельных дисков-таблетов с одинаковой для всех равномерной поверхностной плотностью $\sim 0.11 \text{ г/cm}^2$. В качестве связующего материала используют полистирол.

Навеску 1,СС г пробы и 1,00 г полистирола смешивают и прессумт так же, как при определении вольфрама по способу "подложки"/см. выше/.

П. Подготовка прибора к работе

Прибор проверяют и настраивают так же, как при определении вольфрама в промежуточных слоях по способу "подложки" (см. выше).

- Посменение содержания вольфрама
- 1. Анализируемую пробу, приготовленную в виде таблетки, помещают в оправу (рис.3⁶) и устанавливают в гнездо прободержателя (рис.4д).
- х/Для обеспечения хорошей точности анализа поток возбуждающего излучения должен быть раскаллиминован таким образом, чтобы в крайнем нижнем положении источника облучению подвергаласьбы вся проба/таблетка/без захвата оправы Каллимация возбуждающето потока проверяется по световому пятну на пробе-таблетке от источника света, помещаемого на место источника излучения. При этом следует иступировать счетную загрузку прибора, используя диафрагмы ил нечея расстояние от пробы до датчика.

- 2. Прободержатель вводят в штатив прибора и устанавливают та.., чтобы проба попала под поток возбуждающего излучения.
- 3. Измеряют скорость счета от пробы с иттербиевым фильтром (Nop), делая два одноминутных измерения. Второе измерение выполняют, повернув оправу с пробой на 180° вокругоси, перпендикулярной к их плоскости.

Измерение каждой серии анализируемых проб(4-5 шт) начинают и заканчивают измерением эталона, для которого каждый раз делают 4 одноминутых измерения (два из них после поворота оправы с эталоном на 180°).

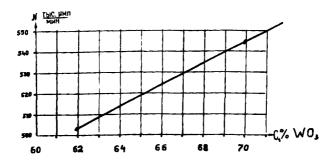
В качестве эталона используют один из стандартных или контрольных образцов с тем же составом наполнителя, что анализируемые пробы.

Форма записи результатов измерений приведена в табл. 4.

ІУ. Вычисление результатов

Содержание вольфрама в исследуемой пробе (Спр) определяют по графику (рис.8), построенному предварительно по результатам измерения стандартных или контрольных проб.

Среднюю скорость счета от исследуемой пробы \overline{N}' пр приводят ко дню построения графика $C_{3T} = f(N_{3T})_{2}$ следующим образом:


I. По результатам двух измерений эталона — до и после измерения исследуемой пробы—(\vec{N}_{3T}), и (\vec{N}_{3T}), определяют среднее значение скорости счета от эталона

$$N_{3T,H}^{'} = \frac{(N_{3T}^{'})_1 + (N_{3T}^{'})_2}{2}$$

2. По величине $N_{3T,H}^1$ и по средней скорости счета от эталона $N_{3T,2}^1$ в день построения графика $C_{3T} = f(N_{3T,2}^1)$ определяют коэффициент К

$$K = \frac{N^{1} \text{3T.2}}{N^{1} \text{aT.H}}$$

х) Индексом ^{иси} обозначен день построения графика, индексом ^{ини} — день измерения проб.

Puc.8. График зависимости $C_{3T} = f(N_{3T,2})$

Таблица 4 Форма записи и пример расчетов при рентгенорадиометрическом анализе в промежуточных слоях без учета абсорбционных свойств

№ Же проб	Длитель- ность из- мерения (мин.)	Счет с фильт- ром 103 имп, N'	Ср.скорости счета 10 имп/мин (N np)	. Коэфф. К= <u>Мэт</u> Nат.н	Nnp.2 = =(Nnp).K 10 ³ имп/ _{мин}	Спр%W03 находят по графику Спр=f(Nпр2)
97 lla	I I	502,9 502,7	502,65	504,5 502,7	1	
	I I	503,0 502,0	3	: I,004		
Проба 525	I	52I,0 52I,2	521,1		52I,I×I,004= = 523,2	65,25
727						

З. Определяют приведенное ко дню построения графика значение скорости счета от исследуемой пробы.

$$N'_{np,2} = K(\overline{N}'_{np})$$

4. Находят по графику содержание вольфрама, соответствующее найденному значению $\mathcal{N}^{1}_{np,2} = K\left(\overline{\mathcal{N}}^{1}_{np}\right)$ Пример расчета приведен в таблице 4.

Построение графика зависимости $C_{3T} = f(N_{3T,2})$

Для построения графика измеряют с иттербиевым фильтром 5-6 стандартных или контрольных образцов с разным надежно установленным содержанием вольфрама (C_{3T}) в пределах 38-72% WO_3 (через интервал 5-6% WO_3) и с тем же составом наполнителя, что и анализируемые пробы. Для обеспечения нужной статистической точности каждый образец измеряют не менее четырех раз по I мин. (два из них после поворота образца на 180°).

В связи с естественным радиоактивным распадом изотопа ${\rm Tu}^{170}$ и возможными небольшими изменениями режима работы электронной схемы прибора график регулярно проверяют через каждые 4-5 дней.

Литература

- I. Блохин М.А. Методы рентгеноспектральных исследований. Изл-во физ.мат.литературы. 1959 г.
- 2. Блохин М.А. Физика рентгеновских лучей. Гостехивдет, 1957г.
- 3. Быков В.П., Сорокин И.В. Способ графического нахождения гипотетических эталонов при рентгеноспектральном флуоресцентном анализе. Т. зав. лаб. № 4. 1966 г.
- 4. Инструкция по внутрилабораторному контролю точноста (воспроизводимости) результатов количественных анадивов рядовых проб полезных ископаемых, выполняемых в дабораториях МГ СССР, НСАМ, 1968 г.
- 5. Методические указания по проведению флуоресцентного рентгенорадиометрического анализа. Методические указания НСАМ № 3. 1968 г.
- 6. Техническое описание и инструкция по эксплуатации рентгенорадиометрического енализатора "Минерал-2",1965 г., или "Минерал-3",1967 г.
- 7. Якубович А.Л., Зайцев Е.И., Пржиялговский С.М. Ядерно-физические методы акализа минерального сырья. Атомиздат, 1969 г.

Приложение

Конструктивные изменения в штативе прибора "Минерал-2"

Конструктивные маменения в приборе заключаются в введежим в него подвижного экрана для фильтрования излучения источника Tu¹⁷⁰.

Экрансы служит свинцовая пластинка толщиной 0,8-I мм, перекрывающая устье каллиматора вертикального канала датчи-ка, в котором находится источнак Tu^{170} .

В штативе прибора со стороны, откуда вводятся кассеты с пробами в финьтрами, делают дополнительную прорезь через литой силуминовый корпус в свинцовую камеру (рис.5), через которую с помощью дополнительной кассеты (рис.6) подводят экран под устье калиматора.

Приблизительные размеры прореви и ее положение в свинцовой камере штатива, а также размеры экрана, дополнительной кассеты и окна в ней для экрана указаны на рис.5 и 6.

Необходимо учитывать следующее:

- 1. Прорезь делают в плоскости, перпендикулярной оси вертикального канала (в котором находится источник) и расположенной на 2 мм ниже дна цанги при крайнем опущенном положении держателя источника, которое фиксируется расстоянием 1 на рис.5. Нельвя делать сквозную прорезь с выходом на противоположную сторону.
- Дополнительную кассету из дюраля изготовляют по размерам прорези.
- 3. Экран и окно в кассете, в которое вставляют экран, по форме должны соответствовать сечению устья каллиматора, а по размерам должны быть шире этого сечения на I мм в каждую сторону. Окно в кассете размечают, вставив кассету в прорезь до упора.
- 4. В литом силуминовом корпусе втатива прорезь делают по месту.

ГЛАССИ: ЛКАЦИЯ

- от от назначению и достигармой точчости

го- ! го- ! гля ! анг-! гляа!	анализа]	допусками внутрилабораторіці	оэ‡4м- иейт≀к опускак
	Особо точный анализ	Арбитражный анализ, анализ эталонов	Срединя ошибка в 5 раза (меньше допусков	0,38
П	Полный анализ	Полные анализы горных пород и минералов	Точность анализа должна обсспечивать полученис сумым элементов в пределах 99,5-100,5%	
	Анализ рядовых проб		-Сшибки анализа должны -укладываться в допуски	I
		Текущий контроль тех- -нологических процес- сов	Ошибки анализа могут укладываться в расширен- ные допуски по особой до- годоренности с заказчи- ком	I-2
	Особо точный анализ геожим- ческих проб	Определение редких и рассеянных элементов и "элементов-спутни-ков" при близких к кларковым содержаниях	Ошибка определения не должна превышать полови- ны допуска; для низких содержаний, для которых допуски отсутствуют, — по договоренности с за- грачиком	ი,5
УI	Анализ рядовых геохимических проб	Алы проб при гео- хими иских и других исся дованиях с повы- шенной чувствительно- стью и высокой произ- водительностью	Омибна определения должна кладываться в удвоенный лопуск; для низких со-держаний, для которых допуски отсутствуют- по дс-говоренности с заказчином	
	Полуколичест- венный анализ:	Качественная характери стика минерального сирья с орментировочным указанием содоржания элементов, применняемая при металломет рической съемке и др. поисковых геологических работах		
	Качественный анализ	Качественное определение присутствия эле- мента в минеральном сирь:	- Точность определения не норыируется	