МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT ISO/IEC 15438— 2018

Информационные технологии

ТЕХНОЛОГИИ АВТОМАТИЧЕСКОЙ ИДЕНТИФИКАЦИИ И СБОРА ДАННЫХ

Спецификация символики штрихового кода PDF417

(ISO/IEC 15438:2015, IDT)

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0—2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

- 1 ПОДГОТОВЛЕН Обществом с ограниченной ответственностью «Научно-производственный центр «Интелком» (ООО «НПЦ «Интелком») при участии Ассоциации автоматической идентификации «ЮНИСКАН/ГС1 РУС» (ГС1 РУС) на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 5
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 января 2018 г. № 105-П)

За принятие проголо	совали	ı.
---------------------	--------	----

MK (ISO 3166) 004—97	Сокращенное наименование национального органа по стандартизации
AZ AM BY GE KZ KG MD RU TJ TM UZ	Азстандарт Минэкономики Республики Армения Госстандарт Республики Беларусь Грузстандарт Госстандарт Республики Казахстан Кыргызстандарт Институт стандартизации Молдовы Росстандарт Таджикстандарт Главгосслужба «Туркменстандартлары» Узстандарт
	AZ AM BY GE KZ KG MD RU TJ TM

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 25 апреля 2018 г. № 212-ст межгосударственный стандарт ГОСТ ISO/IEC 15438—2018 введен в действие в качестве национального стандарта Российской Федерации с 1 мая 2019 г.
- 5 Настоящий стандарт идентичен международному стандарту ISO/IEC 15438:2015 «Информационные технологии. Технологии автоматической идентификации и сбора данных. Спецификация символики штрихового кода PDF417» («Information technology Automatic identification and data capture techniques PDF417 bar code symbology specification», IDT).

Международный стандарт разработан подкомитетом ISO/IEC JTC 1/SC 31 «Технологии автоматической идентификации и сбора данных» Совместного технического комитета по стандартизации ISO/IEC JTC 1 «Информационные технологии» Международной организации по стандартизации (ISO) и Международной электротехнической комиссии (IEC).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДВ

- 6 B3AMEH ГОСТ 31016—2003 (ИСО/МЭК 15438:2001)
- 7 Некоторые положения международного стандарта могут быть объектами патентных прав. Международная организация по стандартизации (ISO) и Международная электротехническая комиссия (IEC) не несут ответственности за идентификацию подобных патентных прав

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

© ISO/IEC, 2015 — Все права сохраняются © Стандартинформ, оформление, 2018

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

FOCT ISO/IEC 15438—2018

Содержание

1	Область применения	1
2	Нормативные ссылки	1
3	Термины и определения	2
4	Символы, операции и сокращения	3
	4.1 Символы	3
	4.2 Математические операции	3
	4.3 Сокращения	4
5	Требования к символике PDF417	4
	5.1 Показатели символики	4
	5.2 Структура символа	
	5.3 Основное кодирование	
	5.4 Высокоуровневое кодирование данных	8
	5.5 Интерпретация в расширенном канале	. 19
	5.6 Определение последовательности кодовых слов	.22
	5.7 Обнаружение и коррекция ошибок	.23
	5.8 Размеры	
	5.9 Определение формата символа	. 25
	5.10 Формирование кодовых слов коррекции ошибок	. 26
	5.11 Низкоуровневое кодирование	.27
	5.12 Компакт PDF417 (Compact PDF417)	
	5.13 Макро PDF417 (Macro PDF417)	. 28
	5.14 Рекомендации для пользователя	
	5.15 Рекомендуемый алгоритм декодирования	
	5.16 Процедура обнаружения и коррекции ошибок	
	5.17 Передаваемые данные	. 30
П	оиложение А (обязательное) Кодирование/декодирование последовательностей штрихов и пробелов знаков символа PDF417	.33
П	риложение В (обязательное) <mark>Набор знаков по умолчанию для режима байтового уплотнения</mark>	. 49
П	оиложение С (обязательное) Алг <mark>оритм кодирования в режиме байтового уплотнения</mark>	. 50
П	оиложение D (обязательное) Алгоритм кодирования в режиме цифрового уплотнения	. 51
П	оиложение Е (обязательное) Выбор п <mark>ользователем уровня коррекции ошибок</mark>	. 52
П	оиложение F (обязательное) Таблицы коэффициентов для вычисления кодовых слов коррекции	
	ошибок PDF417	. 53
	риложение G (обязательное) Компакт PDF417	
П	риложение Н (обязательное) Макро PDF417	.61
П	риложение Т (обязательное) Испытание качества символа PDF417	.67
П	риложение Ј (обязательное) Рекомендуемый алгоритм декодирования для PDF417	.68
П	риложение К (обязательное) Процедуры коррекции ошибок	.71
П	риложение L (обязательное) Идентификатор символики	.72
П	оиложение М (обязательное) Протокол передачи для декодеров, соответствующий исходным спецификациям PDF417	.73
П	риложение N (справочное) Алгоритм минимизации числа кодовых слов	
	риложение О (справочное) Рекомендации по определению матрицы символа PDF417	
-	риложение Р (справочное) Пример вычисления коэффициентов для генерации кодовых слов	
	коррекции ошибок	. 82

FOCT ISO/IEC 15438—2018

Приложение	Q	(справочное) Пример генерации кодовых слов коррекции ошибок	83
Приложени е		(справочное) Процедура схемы деления для генерации кодовых слов коррекции ошибок	85
Приложение	S	(справочное) Дополнительные правила использования символики PDF417 8	86
Приложение	ДА	(справочное) Соответствие международных и русских терминов и обозначений, встречающихся в тексте настоящего стандарта	88
Приложение	ДБ	(справочное) Набор знаков ASCII (версия КОИ-7) по ISO/IEC 646, графические знаки расширенного набора знаков ASCII (версия КОИ-8) по ISO/IEC 8859-1 и набор 8-битовых графических знаков (версия КОИ-8) по ISO/IEC 8859-5	91
Приложение	ДВ	(справочное) Сведения о соответствии ссылочных международных стандартов межгосударственным стандартам	04
Библиографи	ΙЯ .		

Введение

Технология штрихового кодирования основана на распознавании комбинаций штрихов и пробелов определенных размеров. Существует множество методов кодирования информации в формате штрихового кода, именуемых символиками, и множество правил перевода знаков в комбинации штрихов и пробелов и других важных параметров, именуемых спецификациями символики.

Производителям оборудования для штрихового кодирования и пользователям технологии штрихового кодирования необходим общедоступный стандарт спецификаций символик, к которому можно обращаться при разработке оборудования или стандартов применений. Символика, представленная в данном стандарте, является общественным достоянием и не подлежит лицензированию, взиманию налогов и ограничениям для использования.

В дополнительном приложении ДА приведены сведения о соответствии международных и русских терминов и обозначений, встречающихся в тексте настоящего стандарта, а в дополнительном приложении ДБ набор знаков ASCII (версия КОИ-7) по ISO/IEC 646, графические знаки расширенного набор знаков ASCII (версия КОИ-8) по ISO/IEC 8859-1 и набор 8-битовых графических знаков (версия КОИ-8) по ISO/IEC 8859-5.

Дополнительные сноски в тексте стандарта, выделенные курсивом, приведены для пояснения текста оригинала.

Информационные технологии

ТЕХНОЛОГИИ АВТОМАТИЧЕСКОЙ ИДЕНТИФИКАЦИИ И СБОРА ДАННЫХ

Спецификация символики штрихового кода PDF417

Information technology. Automatic identification and data capture techniques. PDF417 bar code symbology specification

Дата введения — 2019—05—01

1 Область применения

Настоящий стандарт устанавливает:

- требования к символике штрихового кода PDF417¹);
- показатели символики PDF417, кодирование знаков данных, форматы символов, размеры, правила коррекции ошибки, рекомендуемый алгоритм декодирования и совокупность параметров применения.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты. Для датированных ссылок следует применять только указанное издание ссылочного стандарта, для недатированных — последнее издание. включая любые поправки и изменения к ним:

ISO/IEC 646, Information technology — ISO 7-bit coded character set for information interchange (Информационные технологии. 7-битовый набор кодированных символов ISO для обмена информацией)

ISO/IEC 15415, Information technology — Automatic identification and data capture techniques — Bar code print quality test specification — Two-dimensional symbols (Информационные технологии. Технологии автоматической идентификации и сбора данных. Спецификация испытаний символов штрихового кода для оценки качества печати. Двумерные символы)

ISO/IEC 15424, Information technology — Automatic identification and data capture techniques — Data Carrier Identifiers (including Symbology Identifiers) [Информационные технологии. Технологии автоматической идентификации и сбора данных. Идентификаторы носителя данных (включая идентификаторы символики)]

ISO/IEC 19762-1, Information technology — Automatic identification and data capture (AIDC) techniques — Harmonized vocabulary — Part 1: General terms relating to AIDC (Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 1. Общие термины в области АИСД)

ISO/IEC 19762-2, Information technology — Automatic identification and data capture (AIDC) techniques — Part 2: Optically readable media (ORM) [Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 2. Оптические носители данных (ОНД)]

ISO/IEC 24723, Information technology — Automatic identification and data capture techniques — GS1 Composite bar code symbology specification (Информационные технологии. Технологии автоматической идентификации и сбора данных. Спецификация символики композитного штрихового кода GS1)

¹⁾ Наименование символики на русском языке рекомендуется писать ПДФ417.

3 Термины и определения

В настоящем стандарте применены термины и определения по ISO/IEC 19762-1 и ISO/IEC 19762-2¹⁾, а также следующие термины с соответствующими определениями:

3.1 модель базового канала (basic channel model): Стандартная система кодирования и передачи данных штрихового кода, в которой с выхода декодера поступают байты данных сообщения, но не передается никакой управляющей информации о сообщении.

Примечание — В соответствии с данной моделью декодер работает в режиме базового канала.

- 3.2 последовательность штрихов и пробелов (bar-space sequence): Последовательность, представляющая ширину элементов знака символа в модулях.
 - 3.3 кластер (cluster): Одно из трех непересекающихся подмножеств знаков символа PDF417.

Примечание — Знаки символа в кластере соответствуют особым структурным правилам, которые используются при декодировании символики.

- 3.4 режим уплотнения (compaction mode): Наименование каждого из трех алгоритмов уплотнения данных PDF417: режим текстового уплотнения (Text Compaction mode), режим цифрового уплотнения (Numeric Compaction mode) и режим байтового уплотнения (Byte Compaction mode), эффективно преобразующих 8-битовые байты данных в кодовые слова PDF417.
- 3.5 **е-расстояние** (e-distance): Расстояние от ведущего края одного элемента до ведущего края следующего подобного элемента или от завершающего края одного элемента до завершающего края следующего элемента.
- 3.6 кодовое слово коррекции ошибок (error correction codeword): Кодовое слово, которое кодирует значение, получаемое из алгоритма исправления ошибок кодовых слов для декодирования обнаруженных ошибок и их исправления в зависимости от уровня коррекции ошибок.
- 3.7 **интерпретация в расширенном канале** (Extended Channel Interpretation, ECI): Процедура, применяемая в некоторых символиках, включая PDF417, для точной замены интерпретации по умолчанию иной интерпретацией.

П р и м е ч а н и е — Интерпретация, изначально предназначенная для формирования символа, может быть восстановлена после декодирования сканированного символа для воссоздания сообщения данных в его исходном формате.

3.8 модель расширенного канала (Extended Channel Model): Система кодирования и передачи байтов данных сообщения и управляющей информации о сообщении, в которой управляющая информация передается с использованием управляющей последовательности интерпретации в расширенном канале (ECI).

Примечание — Декодер, соответствующий данной модели, работает в режиме расширенного канала.

3.9 функциональное кодовое слово (function codeword): Кодовое слово, которое инициирует определенную операцию в символике.

Пример — Функциональное кодовое слово используется, например, для перехода между кодированными наборами данных, вызова схемы уплотнения, программирования считывающего устройства или вызова интерпретаций в расширенном канале.

3.10 **идентификатор глобальной метки** (Global Label Identifier, GLI): Процедура в рамках символики PDF417, назначение которой идентично назначению интерпретации в расширенном канале.

Примечание — Связанная с символикой PDF417 система идентификаторов глобальных меток предшествовала независимой от символики системе интерпретации в расширенном канале.

3.11 **Макро PDF417** (Macro PDF417): Процедура в символике PDF417 по логической передаче данных из компьютерного файла в комплект связанных символов PDF417.

Примечания

- 1 Эта процедура значительно расширяет емкость данных по сравнению с емкостью единичного символа.
- 2 Настоящая процедура подобна параметру структурированного соединения, применяемому в других символиках.

¹⁾ На момент публикации настоящего стандарта ISO/IEC 19762-1:2008 и ISO/IEC 19762-2:2008 заменены на ISO/IEC 19762:2016, который включает русскую версию.

- 3.12 кодовое слово фиксации режима (Mode Latch codeword): Кодовое слово, используемое для перехода из одного режима в другой, который будет действовать до применения другого кодового слова фиксации режима или регистра режима, либо до окончания символа.
- 3.13 кодовое слово регистра режима (Mode Shift codeword): Кодовое слово, которое используется для перехода из одного режима в другой только для одного кодового слова, после чего режим кодирования возвращается к исходному.
- 3.14 кодовое слово индикатора строки (Row Indicator codeword): Кодовое слово PDF417, примыкающее к знаку СТАРТ или знаку СТОП в строке, которое кодирует информацию о структуре символа PDF417: идентификацию строки, общее количество строк и столбцов и уровень коррекции ошибки.
- 3.15 кодовое слово дескриптора длины символа (Symbol Length Descriptor): Первое кодовое слово в символе PDF417, кодирующее общее количество кодовых слов данных в символе.

4 Символы, операции и сокращения

4.1 Символы

В настоящем стандарте использованы следующие математические символы. В некоторых случаях эти символы имеют другие значения в уравнении с целью соответствия общепринятому использованию данных символов, что всегда ясно следует из текста.

- A коэффициент сжатия символа PDF417 (отношение высоты к ширине);
- b ширина элемента в знаке символа;
- c количество столбцов в символе в области данных (за исключением знаков СТАРТ, СТОП и кодовых слов индикаторов строк);
 - d кодовое слово данных, включая все функциональные кодовые слова;
 - Е кодовое слово коррекции ошибок;
 - е расстояние между подобными краями в знаке символа;
 - F номер строки;
 - f количество ошибок подстановки;
 - H высота символа, включая свободную зону;
 - K номер кластера;
 - k количество кодовых слов коррекции ошибок;
 - L левый индикатор строки;
 - I количество стираний;
- *т* количество первоначальных кодовых слов данных, предшествующих дополнению дескриптора длины символа и любых кодовых слов-заполнителей:
- n общее количество кодовых слов данных, включая дескриптор длины символа и все кодовые слова-заполнители:
 - р шаг или ширина знака символа;
 - Q_H горизонтальная свободная зона;
 - \mathbf{Q}_V вертикальная свободная зона;
 - R правый индикатор строки;
 - r число строк в символе;
 - s уровень коррекции ошибок;
 - W ширина символа, включая свободную зону:
 - X размер X или ширина модуля;
 - У высота модуля (также именуется высотой строки).

4.2 Математические операции

В настоящем стандарте используются следующие обозначения для математических операций:

- div оператор целочисленного деления с округлением в меньшую сторону;
- INT целое число, полученное в результате округления в меньшую сторону до целого значения с отбрасыванием десятых долей;

mod — положительный остаток целого числа после деления. Если остаток окажется отрицательным, для получения положительного результата к нему прибавляют значение делителя. Например, остаток от деления минус 29160 на 929 равен минус 361. При прибавлении к остатку минус 361 делителя 929 получают положительное значение 568.

4.3 Сокращения

В настоящем стандарте применены следующие сокращения.

ЕСІ — интерпретация в расширенном канале;

GLI — идентификатор глобальной метки.

5 Требования к символике PDF417

5.1 Показатели символики

5.1.1 Основные показатели

Символика штрихового ASCII (версия КОИ-7) кода PDF417 (русское обозначение ПДФ417) имеет следующие основные показатели:

- а) кодируемый набор знаков:
- 1) в режиме текстового уплотнения (5.4.2¹⁾) позволяет кодировать все графические знаки ASCII (версия КОИ-7), т.е. знаки с десятичными значениями от 32 до 126 включительно в соответствии с ISO/IEC 646²⁾, а также некоторые управляющие знаки;
- 2) в режиме байтового уплотнения (5.4.3) позволяет кодировать все 256 значений 8-битовых байтов. Этот режим включает все знаки ASCII (версия КОИ-7) с десятичными значениями от 0 до 127 включительно и предусматривает поддержку международных наборов знаков³⁾;
- 3) в режиме цифрового уплотнения (5.4.4) позволяет эффективно кодировать цифровые последовательности данных;
 - 4) позволяет кодировать до 811 800 различных наборов знаков или интерпретаций данных;
 - 5) позволяет кодировать различные функциональные кодовые слова для управления;
- b) структуру знаков символа: знаки (*n, k, m*), представленные 17 модулями (*n*), элементами четырьмя штрихами и четырьмя пробелами (*k*), с самым крупным элементом шириной в шесть модулей (*m*):
- с) при максимально возможном количестве знаков данных в символе (при нулевом уровне коррекции ошибок) 925 кодовых слов данных, позволяющих закодировать:
 - 1) в режиме текстового уплотнения 1850 знаков (2,0 знака данных на одно кодовое слово);
 - 2) в режиме байтового уплотнения 1108 знаков (1,2 знака данных на одно кодовое слово);
 - 3) в режиме цифрового уплотнения 2710 знаков (2,93 знака данных одно на кодовое слово).

При минимальном рекомендуемом уровне коррекции ошибок — 863 кодовых слов данных, позволяющих закодировать:

- 4) в режиме текстового уплотнения 1726 знаков (2,0 знака данных на одно кодовое слово);
- 5) в режиме байтового уплотнения 1033 знаков (1,2 знака данных на одно кодовое слово);
- 6) в режиме цифрового уплотнения 2528 знаков (2,93 знака данных одно на кодовое слово);
- d) размер символа:
 - 1) количество строк от 3 до 90;
 - 2) количество столбцов от 1 до 30;
 - 3) ширина в модулях от 90Х до 583Х, включая свободные зоны;
 - 4) максимальное количество кодовых слов 928;
 - 5) максимальное количество кодовых слов данных 925.

Так как может быть задано как число строк, так и число столбцов, то при печати может быть изменен коэффициент сжатия символа PDF417 для выполнения требований по размещению;

- е) задаваемая коррекция ошибок от 2 до 512 кодовых слов на один символ (5.7).
- f) знаки, не относящиеся к знакам данных:
 - 1) на одну строку 73 модуля, включая свободные зоны;
 - 2) на один символ не менее трех кодовых слов, представленных в виде знаков символа;
- g) тип кода непрерывный, многострочный, двумерный;

¹⁾ В ISO/IEC 15438 ошибочно приведена ссылка на 5.4.1.5.

²⁾ Версия 7—битового кодированного набора знаков для обмена и обработки информации ASCII (версия КОИ-7) по ISO/IEC 646 приведена в приложении ДБ (ДБ.1).

³⁾ Одним из возможных наборов знаков является набор 8-битовых графических знаков (версия КОИ-8) по ISO/IEC 8859-5, представляющий знаки кирилловского алфавита. Графические знаки указанного набора приведены в приложении ДБ (ДБ.3).

- h) самоконтроль знака присутствует;
- і) двунаправленное декодирование присутствует.

5.1.2 Дополнительные свойства

В символике PDF417 к дополнительным свойствам (обязательным или необязательным) относят:

а) уплотнение данных (обязательное свойство).

Установлены три схемы уплотнения совокупности знаков данных в кодовые слова. Обычно данные не представляются на основе «один знак — одно кодовое слово» (5.4.2¹⁾ — 5.4.4);

b) интерпретацию в расширенном канале (необязательное свойство).

Данный механизм позволяет кодировать до 811800 различных наборов знаков данных или интерпретаций (5.5);

с) Макро PDF417 (необязательное свойство).

Данный механизм предоставляет логическое и последовательное представление файлов данных в ряде символов PDF417, которые, вплоть до 99 999 символов PDF417, могут быть связаны или соединены и отсканированы в любом порядке для правильного восстановления исходного файла данных (5.13);

d) декодируемость от края до края (обязательное свойство).

PDF417 может декодироваться измерением размеров от края одного элемента знака символа до соответствующего края другого элемента знака символа (5.3.1);

е) перекрестное сканирование строк (обязательное свойство).

Для перекрестного сканирования строк в PDF417 используют сочетание трех следующих показателей:

- 1) синхронизацию по горизонтали или синхронизацию по времени;
- 2) идентификацию строки;
- 3) синхронизацию по вертикали с использованием значений кластеров для обеспечения локального распознавания строк.

При использовании данного сочетания одиночное линейное сканирование при пересечении ряда строк позволяет получить неполное декодирование данных, если хотя бы один полный знак символа в строке был декодирован и получено значение его кодового слова. В дальнейшем с помощью алгоритма декодирования отдельные кодовые слова могут быть соединены в значащую матрицу;

f) коррекцию ошибок (обязательное свойство).

Пользователь может задать один из девяти уровней коррекции ошибок. На всех уровнях, кроме нулевого, возможно не только обнаружение ошибок, но и исправление ошибочно закодированных или недостающих кодовых слов (5.7).

- g) Компакт PDF417 (необязательное свойство).
- В относительно «чистой» среде 2) для повышения плотности символа возможно сокращение некоторой части строки 3), не содержащей данные (5.12).

П р и м е ч а н и е — В предыдущих спецификациях символики PDF417 данное свойство называлось «Сокращенный PDF417» («Truncated PDF417»). Использование термина «Компакт PDF417» («Compact PDF417») является предпочтительнее во избежание путаницы с общепринятым использованием термина «сокращенный».

5.2 Структура символа

5.2.1 Параметры символа PDF417

Каждый символ PDF417, состоящий из множества выровненных по вертикали строк, должен содержать не менее трех строк (но не более 90). Каждая строка должна содержать не менее одного знака символа (но не более 30 знаков символа) без учета столбцов знаков СТАРТ, СТОП и столбцов индикатора строк. Символ должен включать свободные зоны со всех четырех сторон. На рисунке 1 приведен символ PDF417 с закодированными данными: PDF417 Symbology Standard.

¹⁾ В ISO/IEC 15438-2015 ошибочно приведена ссылка на 5.4.1.5.

²⁾ Например в условиях офиса, где повреждение символа маловероятно.

³⁾ В пределах всех строк символа указанные части строк можно рассматривать как столбцы, которые могут быть сокращены.

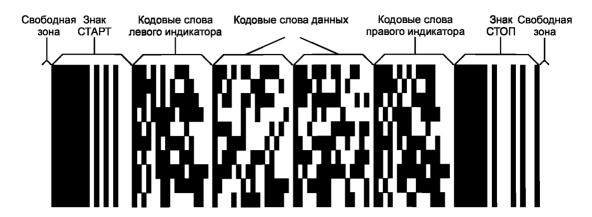


Рисунок 1 — Структура символа PDF417

5.2.2 Параметры строки

Каждая строка PDF417 должна содержать:

- а) начальную свободную зону;
- b) знак CTAPT;
- с) знак символа левого индикатора строки;
- d) от 1 до 30 знаков символа;
- е) знак символа правого индикатора строки;
- f) знак СТОП;
- g) конечную свободную зону.

П р и м е ч а н и е — Число знаков символа (или кодовых слов), приведенных в перечислении d), соответствует числу столбцов в символе PDF417.

5.2.3 Последовательность кодовых слов

Символ PDF417 может содержать до 928 знаков символа или кодовых слов. Термин «знак символа» рекомендуют использовать для обозначения напечатанной комбинации штрихов и пробелов; термин «кодовое слово» — для числового значения знака символа. Кодовые слова должны быть приведены в следующей последовательности:

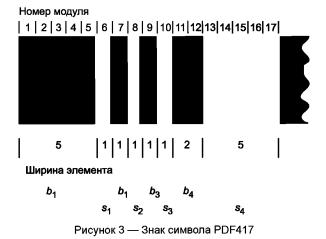
- а) первое кодовое слово, соответствующее дескриптору длины символа, всегда должно кодировать общее количество кодовых слов данных в символе, включая сам дескриптор длины символа, кодовые слова данных и кодовые слова-заполнители, за исключением числа кодовых слов коррекции ошибок;
- b) далее должны следовать кодовые слова данных, начиная со старшего закодированного знака. Могут быть вставлены функциональные кодовые слова для уплотнения данных;
- с) далее располагаются кодовые слова-заполнители, помогающие представить последовательность кодовых слов в виде прямоугольной матрицы. Кодовые слова-заполнители можно также использовать для формирования дополнительных полных конечных строк с целью получения желаемого коэффициента сжатия или установленного в спецификации по применению;
 - d) далее может располагаться необязательный управляющий блок Макро PDF417;
- е) затем располагаются кодовые слова коррекции ошибок для обнаружения и исправления ошибок.

Кодовые слова должны быть расположены таким образом, чтобы кодовое слово позиции старшего разряда примыкало к дескриптору длины символа, а остальные кодовые слова кодировались слева направо от верхнего ряда к нижнему. На рисунке 2 в виде схемы представлена последовательность кодовых слов для символа, подобного представленному на рисунке 1. На рисунке 2 используется уровень коррекции ошибок 1 и требуется одно кодовое слово-заполнитель для полного заполнения матрицы символа.

	L ₁	d ₁₅	d ₁₄	R ₁	
	L2	d ₁₃	d ₁₂	R2	
	L ₃	d ₁₁	d ₁₀	R ₃	
	L ₄	d ₉	d ₈	R_4	
CTAPT	L ₅	d ₇	d ₆	R ₅	стоп
CIAPI	L ₆	d ₅	d ₄	R ₆	CIOII
	L ₇	d ₃	d ₂	R ₇	
	L ₈	d ₁	d ₀	R ₈	
	L ₉	E ₃	E ₂	R ₉	
	L ₁₀	E ₁	E ₀	R ₁₀	

L, R, d и E определены в разделе 4; d_{15} — дескриптор длины символа (в этом примере — 16); d_{14} — d_1 — закодированное представление данных; d_0 — кодовое слово-заполнитель

Рисунок 2 — Пример схемы размещения символа PDF417


Правила и рекомендации по определению структуры матрицы приведены в 5.9.

5.3 Основное кодирование

5.3.1 Структура знака символа

Каждый знак символа PDF417 должен состоять из следующих элементов: четырех штрихов и четырех пробелов, ширина каждого их которых может быть от одного до шести модулей. Совокупная ширина четырех штрихов и четырех пробелов должна составлять 17 модулей. Знаки символа PDF417 могут быть декодированы путем измерения расстояний е внутри знака.

Каждый знак символа задается последовательностью штрихов и пробелов из восьми цифр, которые представляют ширину в модулях каждого из восьми элементов этого знака символа. На рисунке 3 представлен знак символа с последовательностью штрихов и пробелов 51111125.

В PDF417 имеется 929 установленных значений знаков символа (кодовых слов), пронумерованных от 0 до 928.

Кодовые слова представлены в виде трех взаимно исключающих наборов знаков символа или кластеров. Каждый кластер кодирует 929 допустимых кодовых слов PDF417 в виде различных комбинаций штрихов и пробелов так, что один кластер отличается от другого. Кластеры обозначают номерами 0, 3, 6. Определение кластера распространяется на все знаки символа PDF417, за исключением знаков СТАРТ и СТОП.

Номер кластера К определяют по следующей формуле

$$K = (b_1 - b_2 + b_3 - b_4 + 9) \mod 9$$
,

где b_1, b_2, b_3 и b_4 — ширина в модулях соответственно четырех штрихов.

Номер кластера K для знака символа, представленного на рисунке 3, составляет:

$$K = (5 - 1 + 1 - 2 + 9) \mod 9 = 3$$

Значения кодовых слов и последовательности штрихов и пробелов для каждого кластера знаков символа приведены в приложении A.

5.3.2 Знаки СТАРТ и СТОП

Знаки СТАРТ и СТОП должны быть представлены в соответствии с таблицей 1 и рисунком 4.

Таблица 1 — Последовательность штрихов и пробелов для знаков СТАРТ и СТОП

2000	Последовательность штрихов и пробелов								
Знак	В	S	В	S	В	S	В	S	В
CTAPT	8	1	1	1	1	1	1	3	
СТОП	7	1	1	3	1	1	1	2	1

Примечание 1 — Знаки PDF417 СТАРТ и СТОП уникальны тем, что в них присутствуют элементы шириной более шести модулей.

Примечание 2 — Знак СТОП имеет один дополнительный элемент — штрих шириной в один модуль.

Последовательность штрихов и пробелов в знаках СТАРТ и СТОП должна быть одинаковой для всех строк.

Знак СТАРТ Знак СТОП

Рисунок 4 — Знаки PDF417 СТАРТ и СТОП

5.4 Высокоуровневое кодирование данных

Высокоуровневое кодирование преобразовывает знаки данных в соответствующие им значения кодовых слов.

При высокоуровневом кодировании используют схемы уплотнения данных. Соответствие заданных пользователем данных и последовательностей кодовых слов в PDF417 устанавливают три режима уплотнения данных:

- текстовое уплотнение (5.4.2¹⁾);
- байтовое уплотнение (5.4.3);
- цифровое уплотнение (5.4.4).

Данная цепочка байтов может быть представлена различными последовательностями кодовых слов, в зависимости от кодирования переходов между режимами и подрежимами уплотнения. В символике PDF417 нет специального способа кодирования данных.

В каждом режиме предусмотрены 900 кодовых слов (со значениями от 0 до 899) для кодирования данных и иных функций в рамках этого режима. Оставшиеся 29 кодовых слов предназначены для специальных функций (5.4.1), независимых от текущего режима уплотнения.

Символика PDF417 также поддерживает систему интерпретации в расширенном канале, позволяющую точно кодировать разные интерпретации данных в символе (5.5).

5.4.1 Функциональные кодовые слова

Кодовые слова со значениями от 900 до 928 (далее — кодовые слова от 900 до 928) используются в качестве функциональных кодовых слов:

- для переключения между режимами (5.4.1.1);
- для усовершенствованных приложений, использующих интерпретации в расширенном канале (5.4.1.2);
 - для других усовершенствованных приложений (5.4.1.3 и 5.4.1.4).

¹⁾ В ISO/IEC 15438 ошибочно приведена ссылка на 5.4.1.5.

В настоящее время кодовые слова от 903 до 912, от 914 до 917 и 919 зарезервированы. В таблице 2 приведен полный список назначенных и зарезервированных функциональных кодовых слов, функции которых установлены в 5.4.1.1—5.4.1.5. Зарезервированные кодовые слова представлены в 5.4.6.

Таблица 2 — Назначение функциональных кодовых слов PDF417

Значение кодового слова	Функция	Пункт настоящего стандарта
900	Фиксация режима текстового уплотнения	5.4.1.1
901	Фиксация режима байтового уплотнения	5.4.1.1, 5.4.3.1
902	Фиксация режима цифрового уплотнения	5.4.1.1
903—912	Зарезервированы	
913	Переключение регистра в режим байтового уплотнения	5.4.1.1
914—917, 919	Зарезервированы	_
918	Признак наличия связанного линейного компонента в композитном символе (отличном от композитного символа GS1 ¹⁾)	5.4.1.5
920	Признак наличия связанного линейного компонента в композитном символе GS1 ¹⁾	5.4.1.5
921	Инициализация считывающего устройства	5.4.1.4
922	Конечное кодовое слово для управляющего блока Макро PDF417	5.13.13
923	Метка последовательности для идентификации необязательных полей в управляющем блоке Макро PDF417	5.13
924	Фиксация режима байтового уплотнения (используется отлично от функции с кодовым словом 901)	5.4.1.1, 5.4.3.1
925—927	Идентификатор для интерпретации в расширенном канале	5.5
928	Кодовое слово — макро-метка для указания начала управляющего блока Макро PDF	5.13

5.4.1.1 Функциональные кодовые слова для переключения режимов уплотнения

В одном символе PDF417 предусмотрена возможность двухстороннего переключения режимов с требуемой частотой. Рекомендации по выбору режимов приведены в 5.4.5.

Для переключения из текущего режима в требуемый режим (который будет оставаться в действии до тех пор, пока он не будет изменен на другой) должно использоваться кодовое слово фиксации режима. Для этой функции предназначены кодовые слова 900—902 и 924 (таблица 3).

Кодовое слово 913 регистра байтового уплотнения вызывает временный переход из режима текстового уплотнения в режим байтового уплотнения. Этот переход действует только для следующего кодового слова, после чего происходит возврат в прежний подрежим режима текстового уплотнения. Кодовое слово 913 может применяться только в режиме текстового уплотнения; его использование установлено в 5.4.2.4.

Таблица 3 — Кодовые слова установления режима и перехода между режимами

Требуемый режим	Фиксация режима	Регистр режима
Текстовое уплотнение	900	_
Байтовое уплотнение	901/924	913
Цифровое уплотнение	902	_

Примечание — В таблице 3 указаны кодовые слова, используемые для перехода в требуемый режим.

¹⁾ B ISO/IEC 15438 указано устаревшее наименование EAN.UCC.

Порядок перехода между тремя режимами установлен в таблице 4 и приведен в рисунке 5.

Таблица 4	4 — Таблиі	ца переходов межд	цу режимами	представляющая	кодовые слова	и их функции
-----------	------------	-------------------	-------------	----------------	---------------	--------------

Исходный	Кодовое слово, используемое для перехода в требуемый режим							
исходныи режим	Текстового уплотнения	Байтового уплотнения	Цифрового уплотнения					
Текстовое уплотнение	900 (фиксация режима текстового уплотнения)	913 (регистр режима байтового уплотнения) 901 (фиксация режима байтового уплотнения) 924 (фиксация режима байтового уплотнения)	902 (фиксация режима цифрового уплотне- ния)					
Байтовое уплотнение	900 (фиксация режима текстового уплотнения)	901 (фиксация режима байтового уплотнения) 924 (фиксация режима байтового уплотнения)	902 (фиксация режима цифрового уплотне- ния)					
Цифровое уплотнение	900 (фиксация режима текстового уплотнения)	901 (фиксация режима байтового уплотнения) 924 (фиксация режима байтового уплотнения)	902 (фиксация режима цифрового уплотне- ния)					

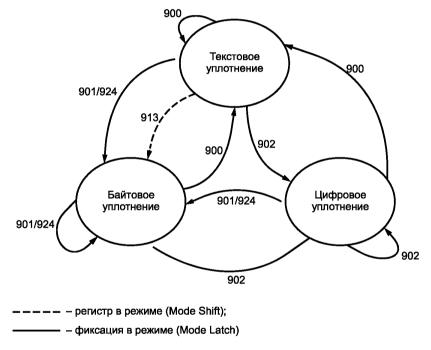


Рисунок 5 — Возможные переходы между режимами

Правила перехода в режим байтового уплотнения более подробно приведены в 5.4.3.1.

5.4.1.2 Функциональные кодовые слова для перехода к интерпретациям в расширенном канале Кодовое слово интерпретации в расширенном канале (кодовое слово ECI) может быть использовано для перехода к особой интерпретации, которая будет действовать до другого кодового слова ECI или до окончания данных. Для этой функции назначены кодовые слова от 925 до 927 (5.5).

5.4.1.3 Функциональные кодовые слова для Макро PDF417

Символы Макро PDF417 (в соответствии с 5.13) должны использовать кодовое слово 928 в начале управляющего блока Макро PDF417. Кодовые слова 922 и 923 используют для особых функций в Макро PDF417.

5.4.1.4 Функциональное кодовое слово для инициализации считывающего устройства

Кодовое слово используют для указания считывающему устройству, что данные, заключенные внутри символа, являются программным кодом для инициализации считывающего устройства. Кодовое слово 921 должно быть первым кодовым словом после дескриптора длины символа. В случае примене-

ния последовательности инициализации Макро PDF417 в каждом символе должно появляться кодовое слово 921.

Считывающее устройство не должно передавать данные, содержащиеся в символе инициализации или в последовательности таких символов.

5.4.1.5 Функциональные кодовые слова для признака связи в композитном символе

Кодовое слово 920 должно использоваться как признак наличия связанного линейного компонента в символике штрихового кода GS1 Composite¹⁾ в соответствии с ISO/IEC 24723.

Кодовое слово 918 должно использоваться как признак наличия связанного линейного компонента в любой другой композитной символике.

Кодовые слова 918 или 920 могут присутствовать в любом месте символа. В конкретной спецификации по применению композитной символики может быть явно указана позиция признака наличия связанного компонента.

Считывающие устройства, поддерживающие индикацию композитного символа, должны декодировать и передавать данные от всех компонентов, как указано в спецификации соответствующей композитной символики. Считывающие устройства, не поддерживающие индикацию композитного символа, могут обрабатывать кодовые слова 918 или 920 как зарезервированные (5.4.6). Считывающие устройства, не поддерживающие индикацию композитного символа, опционально могут игнорировать двумерный компонент композитного символа и передавать данные только из связанного линейного компонента.

5.4.2 Режим текстового уплотнения

Режим текстового уплотнения включает все графические знаки набора ASCII (версии КОИ-7) (т.е. знаки с десятичными значениями от 32 до 126) и три управляющих знака набора ASCII (версии КОИ-7): НТ (ГТ или ГОРИЗОНТАЛЬНОЕ ТАБУЛИРОВАНИЕ) (десятичное значение знака 9), LF (ПС или ПЕРЕВОД СТРОКИ) (десятичное значение знака 10), и СR (ВК или ВОЗВРАТ КАРЕТКИ) (десятичное значение знака 13).

Режим текстового уплотнения предусматривает также различные знаки с функциями фиксации и переключения регистра, которые используют исключительно в рамках режима текстового уплотнения.

В режиме текстового уплотнения осуществляется кодирование до двух знаков в кодовом слове. Правила уплотнения для преобразования данных в кодовые слова PDF417 приведены в 5.4.2.2. Переключения подрежимов приведены в 5.4.2.3.

5.4.2.1 Подрежимы режима текстового уплотнения

Режим текстового уплотнения предусматривает четыре подрежима:

- прописных букв (Alpha) (прописные буквы латинского алфавита);
- строчных букв (Lower) (строчные буквы латинского алфавита);
- смешанных знаков (Mixed) (числа и некоторые знаки пунктуации);
- знаков пунктуации (Punctuation).

В каждом подрежиме содержится 30 знаков, в том числе знаки фиксации подрежима (sub-mode latch) и регистра подрежима (sub-mode shift).

Режимом уплотнения по умолчанию для PDF417 должен быть режим текстового уплотнения в подрежиме прописных букв. При переходе из другого режима кодовое слово фиксации режима текстового уплотнения должно всегда переключать в подрежим прописных букв режима текстового уплотнения.

Все знаки и их значения приведены в таблице 5.

Таблица 5 — Определения подрежимов режима текстового уплотнения

	Подрежимы режима текстового уплотнения									
30 базовых значений	Прописные буквы (Alpha)		Строчные буквы (Lower)		Специальные знаки (Mixed)		Знаки пунктуации (Punctuation)			
	Знак	ASCII	Знак	ASCII	Знак	ASCII	Знак	ASCII		
0	Α	65	а	97	0	48		59		
1	В	66	b	98	1	49	<	60		
2	С	67	С	99	2	50	>	62		

¹⁾ В ISO/IEC 15438 указано устаревшее наименование EAN.UCC.

FOCT ISO/IEC 15438—2018

Окончание таблицы 5

	Подрежимы режима текстового уплотнения										
30 базовых значений	Прописные б	буквы (Alpha)	Строчные буквы (Lower)		Специальные знаки (Mixed)		Знаки пунктуации (Punctuation)				
	Знак	ASCII	Знак	ASCII	Знак	ASCII	Знак	ASCII			
3	D	68	d	100	3	51	@	64			
4	E	69	е	101	4	52	[91			
5	F	70	f	102	5	53	\	92			
6	G	71	g	103	6	54	1	93			
7	Н	72	h	104	7	55	_	95			
8	I	73	i	105	8	56		96			
9	J	74	j	106	9	57	~	126			
10	К	75	k	107	&	38	<u>!</u>	33			
11	L	76	I	108	CR	13	CR	13			
12	М	77	m	109	HT	9	HT	9			
13	N	78	n	110	,	44	,	44			
14	0	79	o	111	:	58	:	58			
15	Р	80	р	112	#	35	LF	10			
16	Q	81	q	113	-	45	-	45			
17	R	82	r	114		46		46			
18	S	83	s	115	\$	36	\$	36			
19	Т	84	t	116	1	47	1	47			
20	U	85	u	117	+	43	"	34			
21	V	86	٧	118	%	37		124			
22	W	87	w	119	*	42	*	42			
23	Х	88	х	120	=	61	(40			
24	Y	89	У	121	۸	94)	41			
25	Z	90	z	122		pl	?	63			
26	space	32	space	32	space	32	{	123			
27	II		as		II		}	125			
28	ml		ml		al		t	39			
29	р	s		os		os	- 6	al			

al — знак фиксации подрежима прописных букв (latch to Alpha);

as — знак регистра подрежима прописных букв (shift to Alpha);

II — знак фиксации подрежима строчных букв (latch to Lower);

ml — знак фиксации подрежима смешанных знаков (latch to Mixed); pl — знак фиксации подрежима знаков пунктуации (latch to Punctuation);

ps — знак регистра подрежима знаков пунктуации (shift to Punctuation).

Примечани в расширенном канале ECI 000003 для значений байтов, представленных в соседних графах «ASCII». Каждая величина, указанная в таблице, представляет собой половину кодового слова, т.е. значения от 0 до 29 (см. 5.4.2.2).

5.4.2.2 Правила уплотнения для кодирования в режиме текстового уплотнения

В режиме текстового уплотнения пары знаков данных должны быть представлены одним кодовым словом. Значения знаков данных находятся в диапазоне от 0 до 29 (т.е. 30 базовых значений) и указаны в таблице 5. В каждой паре из 30 базовых значений первое или находящееся слева значение пары должно обозначать значение h более высокого порядка, следующее значение пары — значение более низкого порядка l.

Значение закодированного кодового слова в PDF417 определяется по формуле

$$d = h \cdot 30 + 1$$

где *d* установлено в разделе 4.

Эта формула также распространяется на 30 базовых значений для функций фиксации подрежима (sub-mode latch) и регистра подрежима (sub-mode shift) в рамках режима текстового уплотнения. Для переключения между подрежимами следует использовать соответствующие значения знаков фиксации подрежима (sub-mode latch) и регистра подрежима (sub-mode shift). Если в результате кодирования последовательности знаков не получено четное число 30 базовых значений, следует использовать специальную методику, приведенную в 5.4.2.4.

Приведенный пример кодирования представляет, каким образом достигается уплотнение в режиме текстового уплотнения.

Пример — Подлежащие кодированию данные: PDF417.

Таблица 6 — Пример кодирования в режиме текстового уплотнения

Пары знаков	h	1	h · 30 + l	Кодовое слово
P D	15	3	15 × 30 + 3	453
F ml	5	28	5 × 30 + 28	178
4 1	4	1	4 × 30 + 1	121
7 ps	7	29	7 × 30 + 29	239

П р и м е ч а н и е 1 — ml — знак фиксации подрежима смешанных знаков используется для переключения с целью кодирования цифровых знаков.

П р и м е ч а н и е 2 — Знак рѕ используется в этом примере как значение-заполнитель, могут использоваться и другие значения знаков регистра подрежима и фиксации подрежима (см. 5.4.2.4).

Данные PDF417 представлены кодовыми словами 453, 178, 121, 239.

5.4.2.3 Переключение подрежимов режима текстового уплотнения (функции фиксации подрежима и регистра подрежима)

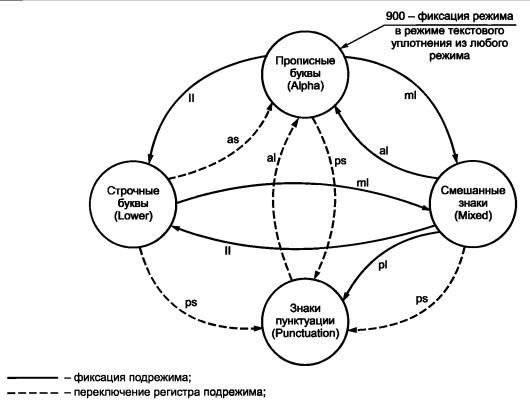
Переключение из одного подрежима в другой в пределах режима текстового уплотнения должно выполняться с помощью значений знаков фиксации подрежима и регистра подрежима, заданных для подрежима и действующих до переключения.

Знак регистра подрежима должен использоваться для переключения из одного подрежима режима текстового уплотнения в другой только для одного знака данных. Последующие кодовые слова возвращаются в подрежим, который использовался непосредственно до знака регистра подрежима (кроме случая, когда знак рѕ используется в качестве знака-заполнителя, в соответствии с 5.4.2.4). Функции знака регистра подрежима:

- ps переключение регистра в подрежим знаков пунктуации (shift to punctuation sub-mode);
- as переключение регистра в подрежим прописных букв (shift to uppercase alphabetic sub-mode).

Знак фиксации подрежима должен использоваться для переключения из одного подрежима режима текстового уплотнения в другой, который будет действовать до тех пор, пока не будет явно задействован другой знак регистра подрежима или знак фиксации подрежима. Функции знака фиксации подрежима:

- al фиксация подрежима прописных букв (latch to uppercase alphabetic sub-mode);
- II фиксация подрежима строчных букв (latch to lowercase alphabetic sub-mode);
- ml фиксация подрежима смешанных знаков [цифровые или другие знаки пунктуации (latch to mixed sub-mode)];
 - pl фиксация подрежима знаков пунктуации (latch to punctuation sub-mode).


FOCT ISO/IEC 15438—2018

Внутри каждого подрежима режима текстового уплотнения допускается ограниченный набор функций фиксации подрежима и переключения регистра подрежима (таблица 5). В таблице 7 представлены переключения подрежимов режима текстового уплотнения; на рисунке 6 приведена схема данного процесса.

Примечание — После знака фиксации подрежима может следовать другой знак фиксации подрежима или знак регистра подрежима; но после знака регистра подрежима не может следовать ни знак фиксации подрежима, ни знак регистра подрежима.

Табли	іца 7-	— Пер	еключения	подрежи	иов в г	режиме	текстового	уплотнения

Mayo and Was a promote	Знаки для перек лючения в требуемый подрежим						
Исходный подрежим	Прописные буквы	Строчные буквы	Смешанные знаки	Знаки пунктуации			
Прописные буквы		II	ml	ps			
Строчные буквы	as		ml	ps			
Смешанные знаки	al	II		ps pl			
Знаки пунктуации	al						

II — знак фиксации подрежима строчных букв;

Рисунок 6 — Переключения подрежимов в режиме текстового уплотнения

5.4.2.4 Методика применения знака-заполнителя в режиме текстового уплотнения

Если последовательность знаков из 30 базовых значений в режиме текстового уплотнения не является четным числом, то к окончанию последовательности знаков добавляют знак-заполнитель (см.

рь — знак регистра подрежима знаков пунктуации;

ml — знак фиксации подрежима смешанных знаков;

аз — знак регистра подрежима прописных букв;

а — знак фиксации подрежима прописных букв;

рі — знак фиксации подрежима знаков пунктуации

таблицу 6). Поскольку в режиме текстового уплотнения нет специальных нулевых функций, знаки фиксации подрежима и регистра подрежима должны использоваться в соответствии с приведенной ниже методикой:

- а) если последовательность знаков представляет собой окончание данных или за последовательностью знаков в режиме текстового уплотнения следует фиксация другого режима уплотнения, то знаком-заполнителем может быть любой знак регистра подрежима или фиксации подрежима;
- b) если за последовательностью знаков в режиме текстового уплотнения следует функция переключения регистра в режим байтового уплотнения (кодовое слово 913) для кодирования одного знака в режиме байтового уплотнения, то можно применять два способа в зависимости от подрежима режима текстового уплотнения, использованного до переключения регистра в режим байтового уплотнения:
 - 1) если подрежим режима текстового уплотнения не является подрежимом знаков пунктуации, то должен использоваться знак со значением 29 (ps) из 30 базовых значений, при условии, что кодирование вернется к тому же подрежиму режима текстового уплотнения. Декодер должен игнорировать знак ps, который непосредственно предшествует кодовому слову 913;
 - 2) если подрежимом режима текстового уплотнения является подрежим знаков пунктуации, то используют знак со значением 29 (al) из 30 базовых значений. Декодер не должен игнорировать знак (al) и таким образом должен осуществится возврат в подрежим прописных букв. Переключение из режима текстового уплотнения.

Режим текстового уплотнения может завершиться с окончанием символа или любым из нижеперечисленных кодовых слов:

- 900 (фиксация режима текстового уплотнения);
- 901 (фиксация режима байтового уплотнения);
- 902 (фиксация режима цифрового уплотнения);
- 924 (фиксация режима байтового уплотнения);
- 928 (начало управляющего блока Макро PDF417);
- 923 (начало необязательного поля Макро PDF417);
- 922 (ограничитель Макро PDF417).

Последние три кодовых слова могут встречаться только внутри управляющего блока Макро PDF417 символа Макро PDF417 (5.13.1). На режим текстового уплотнения также влияет присутствие зарезервированного кодового слова (5.4.6).

Если декодер находится в режиме текстового уплотнения и встречается кодовое слово 913 (регистр режима байтового уплотнения), он декодирует кодовое слово, которое следует за кодовым словом 913, как отдельный двоичный байт, и затем возвращается к режиму текстового уплотнения. Подрежим, в который возвращается декодер, является самым последним фиксированным подрежимом, который действовал до кодового слова 913; знак регистра подрежима ps, непосредственно предшествующий кодовому слову 913, игнорируют.

Если декодер находится в режиме текстового уплотнения и встречает кодовое слово 900 (фиксация режима текстового уплотнения), то декодер вернется в подрежим прописных букв.

5.4.3 Режим байтового уплотнения

Режим байтового уплотнения позволяет кодировать последовательность 8-битового набора байтов в последовательность кодовых слов преобразованием базы 256 в базу 900, при этом достигается коэффициент уплотнения, равный шести байтам на пять кодовых слов (1,2:1).

Набор знаков и их значения (от 0 до 255) приведены в приложении В. Они должны рассматриваться как заданная по умолчанию интерпретация графических и управляющих знаков. При вызове интерпретаций в расширенном канале (ECI) (см. 5.5) эта интерпретация задана как ECI 000003 (см. 5.5.2).

Примечание — В исходной версии спецификации символики PDF417([3] и [4]), набор знаков по умолчанию соответствовал ECI 000002 (кодовая страница операционной системы MS-DOS). Интерпретация байтов со значениями меньше 128 не изменилась и оборудование для операций печати и сканирования PDF417 не требует доработки. Новые приложения, которые обрабатывают байты со значениями больше 127, должны подразумевать ECI 000003 как интерпретацию по умолчанию для совместимости с большинством существующих систем. Существующие приложения, использующие байты со значениями более 127, могут продолжать кодировать и обрабатывать данные как прежде. Приложения, которые полагаются на предшествующую заданную по умолчанию интерпретацию значений больше 127, могут явно кодировать ECI 000002, если они желают сообщить об этой интерпретации.

5.4.3.1 Переход в режим байтового уплотнения

Для режимов текстового или цифрового уплотнения при переходе в режим байтового уплотнения необходимо использовать одно из следующих кодовых слов:

- 924 (фиксация режима байтового уплотнения) при общем числе знаков в режиме байтового уплотнение, подлежащих кодированию, кратном шести;
- 901 (фиксация режима байтового уплотнения) при общем числе знаков в режиме байтового уплотнения, подлежащих кодированию, не кратном шести;
- 913 (регистр режима байтового уплотнения), которое может использоваться вместо кодового слова 901, когда в режиме байтового уплотнения подлежит кодированию одиночный знак.
- 5.4.3.2 Правила уплотнения для кодирования одиночного знака в режиме байтового уплотнения (с использованием кодового слова регистра режима байтового уплотнения 913)

Для кодирования одиночного знака в режиме байтового уплотнения значение кодового слова должно соответствовать десятичному значению (от 0 до 255) знака из расширенного набора ASCII (версия КОИ-8) в соответствии с приложением В.

5.4.3.3 Правила уплотнения для кодирования протяженных цепочек знаков в режиме байтового уплотнения (с использованием кодовых слов фиксации режима байтового уплотнения 924 или 901)

Для кодирования знака данных в режиме байтового уплотнения используют следующую процедуру:

- а) устанавливают общее число знаков режима байтового уплотнения;
- b) при наличии числа, кратного шести, используют кодовое слово 924 (фиксация режима байтового уплотнения), в противном случае используют кодовое слово 901 (фиксация режима байтового уплотнения);
- с) количество знаков в режиме байтового уплотнения разбивают на последовательности из шести знаков слева направо (от позиций старших разрядов к младшим). Если количество знаков менее шести, следует перейти к этапу g);
- d) десятичные значения шести байтов данных, подлежащих кодированию в режиме байтового уплотнения, обозначают как ряд от b_5 до b_0 (где b_5 является первым байтом данных);
- е) преобразуют базу 256 в базу 900 для получения последовательности из пяти кодовых слов (в приложении С определен алгоритм и приведен пример);
 - f) при необходимости повторяют операцию на этапе c):
- д) для оставшихся знаков режима байтового уплотнения при использовании кодового слова фиксации режима байтового уплотнения 901 (т.е. когда количество знаков режима байтового уплотнения в последней группе менее шести) значением (значениями) кодового слова (слов) должно быть десятичное значение (десятичные значения) (от 0 до 255) знака (знаков) в соответствии с примером кодирования, приведенным в приложении В, от позиций старших разрядов к младшим.

Примечание — Режим байтового уплотнения, следующий за кодовым словом 901 (фиксация режима байтового уплотнения), предполагает, что общее число байтов, подлежащих кодированию, не является кратным шести. Если число байтов, подлежащих кодированию в режиме байтового уплотнения, кратно шести, для соответствия настоящим правилам кодирования можно разместить в любой точке символа кодовое слово фиксации режима 901 или 924. Например, кодовое слово 924 представленное в качестве первого или второго кодового слова, будет идентифицировать следующую за ним последовательность кодовых слов режима байтового уплотнения как кодируемое число байтов, кратное шести. В качестве альтернативы кодовое слово 901 может быть вставлено в любую позицию в пределах последовательности кодовых слов режима байтового уплотнения, что разделит эту последовательность на две части, из которых ни одна не кодирует число байтов, кратное шести.

Если в режимах текстового или цифрового уплотнения требуется дополнительное кодирование, следует использовать соответствующие знаки фиксации режима (5.4.1.1).

5.4.3.4 Переход из режима байтового уплотнения

Режим байтового уплотнения может быть завершен с окончанием символа или любым из указанных кодовых слов:

- 900 (фиксация режима текстового уплотнения);
- 901 (фиксация режима байтового уплотнения);
- 902 (фиксация режима цифрового уплотнения);
- 924 (фиксация режима байтового уплотнения);
- 928 (начало управляющего блока Макро PDF417);
- 923 (начало необязательного поля Макро PDF417);
- 922 (ограничитель Макро PDF417).

Три последних кодовых слова могут встречаться только внутри управляющего блока Макро PDF417 символа Макро PDF417 (5.13.1). На режим байтового уплотнения также влияет присутствие зарезервированного кодового слова (5.4.6).

Повторный вызов режима байтового уплотнения (посредством использования кодового слова 901 или 924 во время действия режима байтового уплотнения) служит для завершения предыдущего режима байтового уплотнения группирования в шести знаках режима байтового уплотнения, как указано в 5.4.3.3, и, затем, для начала нового группирования. Эта процедура может быть необходима при кодировании номера назначения интерпретации в расширенном канале (ECI assignment number) в соответствии с 5.5.3.2.

В ходе процесса декодирования в режиме байтового уплотнения обработка последней группы кодовых слов различается в зависимости от того, каким кодовым словом (901 или 924) был вызван режим байтового уплотнения:

Если режим байтового уплотнения вызван кодовым словом 924, то общее число кодовых слов в пределах режима уплотнения должно быть кратным пяти. В противном случае символ является дефектным. Все группы из пяти кодовых слов декодируют в виде групп из 6 байтов.

Если режим байтового уплотнения вызван кодовым словом 901, то последнюю группу кодовых слов строго интерпретируют как один байт на кодовое слово, без уплотнения. Следовательно, если последняя группа состоит из пяти кодовых слов, группу интерпретируют как 5 байтов, а не 6 байтов.

5.4.4 Режим цифрового уплотнения

Режим цифрового уплотнения является методом уплотнения данных с базы 10 в базу 900 и должен использоваться для кодирования протяженных цепочек последовательных цифровых разрядов. Режим цифрового уплотнения позволяет кодировать до 2,93 цифровых разрядов на кодовое слово.

5.4.4.1 Переключение в режим цифрового уплотнения

Вызов режима цифрового уплотнения может быть осуществлен из режимов байтового или текстового уплотнения с использованием кодового слова фиксации режима цифрового уплотнения 902.

5.4.4.2 Правила уплотнения для кодирования протяженных цепочек последовательных цифровых разрядов

Для уплотнения цифровых данных используют следующую процедуру:

- а) следует разделить цепочку цифр на группы из 44 цифр, за исключением последней группы, которая может содержать меньшее количество цифр;
- b) в каждой группе к позиции старшего разряда должна быть добавлена цифра 1 для исключения потери начальных нулей.

Пример — Исходные данные: 00246812345678 После выполнения этапа b): 1 00246812345678

Примечание — Начальная цифра 1 исключается в алгоритме декодирования.

- с) следует провести преобразование базы 10 в базу 900. В приложении D установлен алгоритм преобразования и приведен пояснительный пример;
 - d) при необходимости повторяют операцию на этапе b).

Для определения точного числа кодовых слов в режиме цифрового уплотнения могут использоваться следующие правила:

- группы из 44 цифровых разрядов уплотнены в 15 кодовых слов;
- для групп более коротких цифровых последовательностей число кодовых слов можно вычислить следующим образом:

кодовые слова = INT (количество цифр / 3) +1

Пример — Для последовательности из 28 разрядов

INT (28 / 3) + 1 = 9 + 1 = 10 кодовых слов

5.4.4.3 Переключение из режима цифрового уплотнения

Режим цифрового уплотнения может быть завершен с окончанием символа или с помощью любого из указанных кодовых слов:

- 900 (фиксация режима текстового уплотнения);
- 901 (фиксация режима байтового уплотнения);
- 902 (фиксация режима цифрового уплотнения);
- 924 (фиксация режима байтового уплотнения);

- 928 (начало управляющего блока Макро PDF417);
- 923 (начало необязательного поля Макро PDF417);
- 922 (ограничитель Макро PDF417).

Последние три кодовых слова могут встречаться только внутри управляющего блока Макро PDF417 символа Макро PDF417 (5.13.1). На режим цифрового уплотнения также влияет присутствие зарезервированного кодового слова (5.4.6).

Повторный вызов режима цифрового уплотнения (путем использования кодового слова 902, не выходя из режима цифрового уплотнения) служит для завершения группирования текущего режима цифрового уплотнения, как указано в 5.4.4.2, и для начала новой группировки. Эта процедура может быть необходима при кодировании номера назначения интерпретации в расширенном канале (в соответствии с 5.5.3.4).

В ходе процесса декодирования для режима цифрового уплотнения результат преобразования базы 900 в базу 10 должен привести к числу, в котором разрядом старшего порядка является 1. Если при преобразовании базы 900 в базу 10 в результате получится число, начинающееся не с 1, символ должен рассматриваться как дефектный. Начальная 1 исключается при получении исходного числа.

5.4.5 Рекомендации по выбору подходящего режима уплотнения

Все базовые разработки при печати и сканировании символов PDF417 должны предусматривать три режима: текстовое уплотнение, байтовое уплотнение, цифровое уплотнение. Набор знаков по умолчанию для режима текстового уплотнения должен соответствовать приведенному в таблице 5, а для режима байтового уплотнения — установленному в приложении В. Режим текстового уплотнения обычно эффективнее режима байтового уплотнения для кодирования текстовых файлов типового набора ASCII (версии КОИ-7) в связи с большим уплотнением знаков ASCII с десятичными значениями 9, 10, 13 и от 32 до 126.

Режим цифрового уплотнения должен использоваться для протяженных цепочек цифр.

Рекомендации по переключению между режимами для получения наименьшего числа кодовых слов приведены в виде алгоритма в приложении N.

5.4.6 Обработка зарезервированных кодовых слов PDF417

5.4.6.1 Краткий обзор

Символы PDF417, предназначенные для использования в открытых системах, не должны использовать кодовые слова, которые обозначены как зарезервированные (5.4.1) в настоящем стандарте. Однако декодирующее оборудование должно поддерживать передачу зарезервированных кодовых слов, используя управляющие последовательности в соответствии с 5.17.4. Декодирующее оборудование также может поддерживать опцию обработки таких символов как дефектных, что может произойти при работе в режиме базового канала.

Системы приема должны отбрасывать данные, содержащие любые управляющие последовательности, использующие зарезервированные кодовые слова до тех пор, пока в систему не внесут новое определение для ранее зарезервированного кодового слова.

5.4.6.2 Расширение перечня зарезервированных кодовых слов для будущих версий

Любые новые кодовые слова, подлежащие определению в будущих редакциях настоящего стандарта, должны иметь свои правила кодирования, направленные на обеспечение обратной совместимости с ранее установленным оборудованием, в частности:

- а) если закодировано новое сигнальное кодовое слово (отличное от кодового слова нового режима уплотнения), непосредственно за ним должна следовать соответствующая функция фиксации режима уплотнения, чтобы последующие кодовые слова интерпретировались и передавались в качестве набора байтов, а не в качестве серий управляющих неинтерпретируемых кодовых слов. При использовании данного подхода будут достигнуты желаемые результаты при согласовании декодирующего оборудования, соответствующего исходному и настоящему стандарту PDF417, вне зависимости от использования данным оборудованием исходного или нового протокола передачи;
- b) в системе приема декодер интерпретаций в расширенном канале будет обрабатывать управляющие интерпретации в расширенном канале (т.е. управляющие блоки Макро PDF417 и управляющие неинтерпретируемые кодовые слова) до интерпретируемых интерпретаций в расширенном канале (таких, как схемы шифрования и наборы знаков). Поэтому схема декодирования должна учесть следующий порядок операций:
 - 1) если присутствуют интерпретации в расширенном канале ECI управляющего блока Макро PDF417 (Macro PDF417 Control Block), то они будут использоваться для компоновки полного набора байтов в соответствующем порядке;

- 2) кодовые слова управления данными будут преобразованы декодером ECI в соответствии с правилами нового режима уплотнения или сигнальной ECI. Полученные в результате байты данных будут вставлены в соответствующие места внутри потока байтов;
- 3) к полученному в результате потоку байтов будет применяться набор знаков или другие интерпретируемые ECI.

5.5 Интерпретация в расширенном канале

Протокол интерпретации в расширенном канале (далее — протокол ECI) позволяет выходному потоку данных иметь интерпретации, отличные от интерпретаций набора знаков по умолчанию. Протокол ECI полностью определяется в ряде символик, включая PDF417. Интерпретации в расширенном канале устанавливаются AIM Global, Inc.

Примечание — Первоначально для PDF417 была установлена особая схема символики, именуемая идентификаторами глобальной метки (Global Label Identifiers) (далее GLI). Процессы кодирования и декодирования интерпретации в расширенном канале (далее ECI) идентичны ранее опубликованным спецификациям GLIs PDF417. Однако протокол передачи для декодированных сообщений в соответствии с ранее опубликованными спецификациями PDF417 в части GLI отличается от протокола передачи для ECI. Также имеются различия относительно использования интерпретации ECI с Макро PDF417. Настоящий стандарт позволяет использовать ранние и современные протоколы таким способом, чтобы устаревшее и новое оборудование были совместимыми.

В PDF417 поддерживаются пять основных типов интерпретаций:

- а) наборы знаков (или кодовые страницы);
- b) интерпретации общего назначения, например, шифрование данных и уплотнение данных (в отличие от режимов уплотнения символики);
 - с) задаваемые пользователем интерпретации для замкнутых систем;
 - d) передача управляющей информации для Макро PDF417;
 - е) передача неинтерпретируемых кодовых слов PDF417.

Передача протокола ECI представлена в полном объеме в стандарте [1]. Протокол обеспечивает согласованный метод точного определения отдельных интерпретаций или значений байтов перед печатью и после декодирования.

ЕСІ идентифицируется 6-разрядным номером, который закодирован в символе PDF417 с помощью одного из трех специальных кодовых слов, за которым следует одно или два кодовых слова (5.5.1). Особая ЕСІ может быть вызвана в любой точке закодированного сообщения в соответствии с правилами режимов уплотнения (в соответствии с 5.5.3).

Использование протокола ECI возможно только с декодерами, имеющими возможность передачи идентификатора символики (5.17.5). Декодеры, которые не имеют возможности передачи идентификатора символики, не могут точно передать управляющие последовательности из любого символа, в котором содержится интерпретация в расширенном канале.

5.5.1 Кодирование номера назначения интерпретации в расширенном канале

ECI можно вызвать в любом месте потока данных при соблюдении условий, установленных в 5.5.3. После совершения вызова ECI возможно переключение между любыми режимами уплотнения. Используемый режим уплотнения строго определяют закодированные 8-битовые значения данных, не зависящие от действующей ECI. Например, кодирование последовательности со значениями от 48 до 57 (десятичные значения) будет иметь наибольшую эффективность в режиме цифрового уплотнения, даже если последовательность не будет интерпретироваться как цифры.

Номер назначения интерпретации в расширенном канале (далее — номер назначения ECI) закодирован в одной из трех последовательностей кодовых слов ECI, которые начинаются с кодовых слов 927, 926 или 925. Для кодирования номера назначения ECI используется одно или два дополнительных кодовых слова. В таблице 8 представлены правила кодирования ECI.

Таблица 8 — Кодирование номера назначения ЕСІ

Номер назначения ЕСІ	Последовательность кодовых слов	Кодовые слова	Область значений
От 000000 до 000899	C ₀ C ₁	927 Номер ЕСІ	С ₁ = (от 0 до 899)

Окончание таблицы 8

Номер назначения ЕСІ	Последовательность кодовых слов	Кодовые слова	Область значений
От 000900 до 810899	C ₀ C ₁ C ₂	926 Номер ЕСІ div 900 - 1 Номер ЕСІ mod 900	С ₁ = (от 0 до 899) С ₂ = (от 0 до 899)
От 810900 до 811799	C ₀ C ₁	925 Номер ЕСІ - 810 900	С ₁ = (от 0 до 899)

В PDF417 доступно 811800 возможных номеров назначения ECI¹).

Примечание — Метод кодирования идентичен схеме GLI, поддерживаемой в фирменных исходных спецификациях PDF417 и включенной в спецификации [3] и [4].

Пример — ECI = 013579 Кодовые слова: [926] [(13 579 div 900) – 1] [13 579 mod 900] = [926] [15 – 1] [79] = [926] [14] [79]

5.5.2 Заранее назначенные интерпретации и интерпретации по умолчанию в расширенном канале

Для обеспечения обратной совместимости с действующими спецификациями символик, включая PDF417, заранее назначены следующие интерпретации в расширенном канале:

- ECI 000000 (приравниваемая к исходному GLI 0) схема кодирования по умолчанию кодирующего устройства, соответствующая исходным стандартам PDF417. Набор знаков представлен в приложении A:
- ECI 000001 (приравниваемая к исходному GLI 1) схема кодирования GLI ряда символик, где знаки с десятичными значениями от 0 до 127 идентичны знакам ISO/IEC 646²⁾ (или [1]); и знаки с десятичными значениями от 128 до 255 идентичны знакам ISO 8859-1³⁾;

Примечание — Для ЕСІ 000000 (эквивалентной GLI 0) и ЕСІ 000001 (эквивалентной GLI 1) требуется логическая схема с возвратом к GLI 0 в начале каждого закодированного символа комплекта символов Макро PDF417. Этот протокол не принят для других интерпретаций в расширенном канале;

- ECI 000002 соответствует кодовой таблице (приложение B), эквивалентной ECI 000000, без логической схемы с возвратом к GLI 0;
- ECI 000003 соответствует кодовой таблице, эквивалентной ECI 000001, без логической схемы с возвратом к GLI 0. ECI 000003 является схемой кодирования по умолчанию для кодирующих устройств, полностью соответствующей настоящему стандарту.

ECI 000000 и ECI 000001 не допускается кодировать в одном и том же символе PDF417 или наборе символов Макро PDF417, за исключением интерпретаций в расширенном канале, заданных пользователем. ECI 000002 и ECI 000003 обеспечивают совместимые альтернативы ECI 000000 и ECI 000001 соответственно и являются предпочтительными для использования в новых применениях. ECI 000000 и ECI 000001 не должны использоваться в новых приложениях.

5.5.3 Кодирование последовательностей интерпретаций в расширенном канале в рамках режимов уплотнения

Основной принцип кодирования заключается в том, что интерпретации в расширенном канале используют в исходном потоке байтов данных (для обозначения разных интерпретаций) путем формирования модифицированного потока данных, который кодируется в символах PDF417 с использованием

¹⁾ ЕСІ 000007 позволяет кодировать 8-битовые графические знаки по ISO/IEC 8859-5, содержащие буквы кирилловского алфавита. В приложении ДБ (ДБ.3) приведен набор знаков кирилловского алфавита по ISO/IEC 8859-5.

^{2) 7-}битовый кодированный набор знаков по ISO/IEC 646 соответствует набору ссылочной версии КОИ-7НО по ГОСТ 27463, за исключением двух знаков: в позиции 02/04 в ISO/IEC 646 используют знак \$ (ДЕНЕЖНЫЙ ЗНАК ДОЛЛАРА) (целочисленное значение 37) и в позиции 7/14 знак ~ (ТИЛЬДА) (целочисленное значение 111). Набор 7-битовых знаков ASCII (версия КОИ-7) по ISO/IEC 646 приведен в приложении ДБ (ДБ.1).

³⁾ Графические знаки расширенного набора 8-битовых знаков ASCII (версия КОИ-8) по ISO/IEC 8859-1 приведены в приложении ДБ (ДБ.2).

для большей эффективности режимов уплотнения символики. Кодирование ECI и специальное уплотнение символики формируют два независимых логических слоя в этом процессе.

Несмотря на то, что назначения ECI и режимы уплотнения могут перемежаться, некоторые их комбинации могут формировать нелогическую или неоднозначную ситуацию. В 5.5.3.1—5.5.3.5 определено, каким образом ECI могут быть встроены без появления неоднозначности путем установления надлежащего расположения управляющих последовательностей ECI.

5.5.3.1 Интерпретации в расширенном канале и режим текстового уплотнения

Управляющая последовательность ECI может быть размещена в любом месте в рамках режима текстового уплотнения. Подрежим, вызванный непосредственно перед управляющей последовательностью ECI, сохраняется для кодирования сразу после этой последовательности. Поэтому функции фиксации подрежима и регистра подрежима сохраняются параллельно управляющей последовательности ECI и функция регистра подрежима непосредственно перед управляющей последовательностью кода ECI не игнорируется.

5.5.3.2 Интерпретации в расширенном канале и режим байтового уплотнения, использующий кодовые слова 924 и 901 (фиксации режима байтового уплотнения)

При кодировании в режиме байтового уплотнения, использующего кодовое слово 924 (фиксации режима байтового уплотнения, управляющая последовательность ECI может быть размещена кодирующим устройством непосредственно после кодового слова 924 или соответственно на любой границе, отделяющей группы из пяти кодовых слов. Это необходимо для обеспечения однозначного расположения в декодированном потоке байтов для декодера, чтобы разместить управляющую последовательность.

Если декодер находится в версии 924 режима байтового уплотнения и обнаруживает управляющую последовательность ECI, которая следует за группой из пяти кодовых слов, он должен вывести шесть байтов данных, связанных с кодовыми словами данных перед управляющей последовательностью, вывести управляющую последовательность и затем продолжать сбор кодовых слов для декодирования в режиме байтового уплотнения. Если декодер обнаруживает управляющую последовательность ECI иных, отличных от данных установленных местоположений, он должен рассматривать символ как дефектный.

При кодировании в режиме байтового уплотнения с использованием кодового слова 901 (фиксация режима байтового уплотнения), управляющая последовательность ECI может размещаться непосредственно:

- после кодового слова 901;
- после любого набора из пяти кодовых слов, кодирующих шесть байтов;
- после любых замыкающих однобайтовых кодовых слов в конце последовательности.

П р и м е ч а н и е — Декодер не может допустить, чтобы из-за того, что управляющая последовательность ECI следует за набором из пяти кодовых слов, эти пять кодовых слов кодируют шесть байтов, а затем поток на входе длиной 6N + 5 (где N — целое число) будет иметь конечный набор из пяти кодовых слов, которые кодируют только пять байтов — один байт на одно кодовое слово. Следовательно, декодер должен в первом сканированном символе, минуя управляющую последовательность ECI, установить, где завершается режим 901 в соответствии с 5.4.3.4. На основе этой информации он может установить, каким образом была закодирована группа из пяти кодовых слов.

На рисунке 7 представлено допустимое расположение управляющих последовательностей ECI при кодировании в режиме байтового уплотнения. Если декодер встретит управляющую последовательность ECI внутри группы из пяти кодовых слов, он должен рассматривать символ как дефектный.

Рисунок 7 — Допустимые расположения управляющих последовательностей ECI при кодировании в режиме байтового уплотнения

5.5.3.3 Интерпретации в расширенном канале и режим байтового уплотнения, использующий кодовое слово 913 (регистр режима байтового уплотнения)

При кодировании в режиме байтового уплотнения, использующего кодовое слово 913 (регистр режима байтового уплотнения), управляющая последовательность ЕСІ может быть размещена непосредственно:

- перед кодовым словом 913;
- за кодовым словом 913;
- за кодовым словом, следующим после кодового слова 913.

В первых двух случаях управляющая последовательность ECI выводится до закодированных байтов, в то время как в последнем случае управляющая последовательность ECI выводится после закодированного байта.

5.5.3.4 Интерпретации в расширенном канале и режим цифрового уплотнения

Управляющую последовательность ЕСІ не следует размещать внутри группы кодовых слов, подлежащих обработке преобразованием базы 10 в базу 900 (5.4.4.2). Она может быть размещена только внутри области режима цифрового уплотнения (обычно) на границе между группами из 15 кодовых слов. Это необходимо для обеспечения однозначного позиционирования в декодированном потоке байтов при размещении декодером управляющей последовательности.

Управляющую последовательность ЕСІ размещают непосредственно:

- после кодового слова 902:
- после 15 кодового слова:
- после 30 кодового слова и т.д.

Если кодирующему устройству необходимо расположить управляющую последовательность ECI в позиции, которая не является кратной 15 кодовым словам, то оно должно рассматривать цифровой блок до ECI как завершенный объект в соответствии со вторым этапом 5.4.4.2. Кодирующее устройство должно повторно ввести режим цифрового уплотнения путем расположения в потоке другого кодового слова со значением 902, за которым следует управляющая последовательность ECI.

Если декодер обнаруживает управляющую последовательность ECI на одной из вышеуказанных пограничных точек, то он должен генерировать байты данных, связанные с кодовыми словами до управляющей последовательности (при наличии таковых), генерировать управляющую последовательность и затем продолжить сбор кодовых слов для декодирования в режиме цифрового уплотнения. Если декодер обнаруживает управляющую последовательность ECI в иных позициях, отличающихся от установленных, то он должен рассматривать символ как дефектный.

5.5.3.5 Комбинирование интерпретаций в расширенном канале

Две и более управляющие последовательности ECI (например, номера назначения) могут быть расположены в любой точке, где возможно размещение надлежащим образом одной ECI, при том условии, что между ними размещены только кодовые слова, которые используют для кодирования управляющей последовательности ECI.

5.5.4 Протокол после декодирования

Протокол для передачи данных ЕСІ должен соответствовать представленному в 5.17.2. Во время передачи интерпретаций в расширенном канале, идентификаторы символики (5.17.5) должны быть полностью реализованы, и соответствующий идентификатор символики должен быть передан в качестве преамбулы.

5.6 Определение последовательности кодовых слов

В процессе кодирования генерируется последовательность кодовых слов в виде:

$$d_{n-1} \dots d_0$$

- где *d* кодовое слово данных, включая дескриптор длины символа и все функц<mark>иональные кодовые с</mark>лова;
 - п общее количество кодовых слов данных, включая дескриптор длины символа (и кодовые слова-заполнители), за исключением кодовых слов коррекции ошибок.

Дескриптор длины символа, обозначаемый d_{n-1} , должен быть первым кодовым словом данных. Его значение должно быть равно общему количеству кодовых слов данных n; при этом подсчете должен учитываться непосредственно сам дескриптор длины символа, и его значение должно быть от 1 до 926.

В процессе кодирования должны быть установлены последовательности кодовых слов. По аналогии с исходными данными сначала должны следовать данные позиций старших разрядов, например текстовые и цифровые данные, которые читаются слева направо. Последовательность кодовых слов должна быть представлена таким образом, чтобы кодовые слова данных позиций старших разрядов, содержащие закодированные данные, были обозначены d_{n-2} . Последнее кодовое слово данных (или кодовое слово-заполнитель) обозначается d_0 .

Процесс, используемый для определения матрицы строк и столбцов символа (5.9.2), может потребовать дополнения замыкающими кодовыми словами-заполнителями для завершения последовательности кодовых слов данных.

5.7 Обнаружение и коррекция ошибок

Каждый символ PDF417 содержит минимум два кодовых слова коррекции ошибки. Кодовые слова коррекции ошибок позволяют как обнаруживать, так и исправлять ошибки.

5.7.1 Уровень коррекции ошибок

Уровень коррекции ошибок в символе PDF417 выбирается в момент создания символа. В таблице 9 показано число кодовых слов коррекции ошибки для каждого уровня коррекции ошибок.

T - 6	O \/			
гаолица	9 — уровни	коррекции	ошиоок и кодовые	е слова коррекции ошибок

Уровень коррекции ошибки	Общее число кодовых слов коррекции ошибок
0	2
1	4
2	8
3	16
4	32
5	64
6	128
7	256
8	512

5.7.2 Возможности для исправления ошибок

Исправление ошибок может использоваться для устранения дефектов на этикетке и ошибочного считывания в ходе процедуры декодирования. Для любого заданного уровня коррекции ошибок в символ PDF417 должно быть включено определенное количество кодовых слов коррекции ошибки. Используемый алгоритм кодовых слов коррекции ошибки должен позволять устранить два вида ошибок:

- стирание, обусловленное недостающим или не подлежащим декодированию кодовым словом, расположенном на известной позиции;
 - ошибку подстановки, обусловленную неправильно декодированным кодовым словом.

Схема коррекции ошибок требует наличия одного кодового слова коррекции ошибки для восстановления стирания и двух кодовых слов для устранения ошибки подстановки. Таким образом, заданный уровень коррекции ошибок может исправить любое сочетание ошибок подстановки и стираний, которое удовлетворяет уравнению:

$$l+2f \leq 2^{s+1}-2$$

где l, f и s определены в 4.1.

Если использована большая часть возможностей по коррекции ошибок для восстановления стираний, то возрастает вероятность наличия необнаруженных ошибок. Если исправлено менее четырех ошибок (за исключением s = 0), то возможность коррекции ошибок уменьшается по уравнению:

$$l+2f \leq 2^{s+1}-3$$
.

где l, f и s определены в 4.1.

Пример — Символ PDF417 с уровнем коррекции ошибок 3 предусматривает наличие 16 кодовых слов коррекции ошибки, из которых 14 могут использоваться для исправления ошибок и стираний. С их помощью может быть восстановлено до 13 стираний или до семи ошибок подстановки или любое сочетание I стираний и f ошибок подстановки по условиям приведенного выше практического уравнения. В таблице 10 установлены возможные сочетания.

Таблица	10 — Возможные соч етания	коррекции ошибок	для уровня коррекции 3

Восстановленные ошибки подстановки	Восстановленные стирания	Определяющее уравнение
0	13 или меньше	
1	11 или меньше	$l + 2f \le 2^{s+1} - 3$
2	9 или меньше	(число ошибок <4)
3	7 или меньше	
4	6 или меньше	
5	4 или меньше	$l + 2f \le 2^{s+1} - 2$
6	2 или меньше	(число ошибок ≥ 4)
7	0	

5.7.3 Определение кодовых слов коррекции ошибки

Кодовые слова коррекции ошибки определяют в два этапа:

- а) выбор уровня коррекции ошибок определяет пользователь или требования, установленные применением (приложение E);
- b) формирование кодовых слов коррекции ошибок в соответствии с перечнем правил, приведенным в 5.10. Процедуры не могут быть использованы до тех пор, пока не будут определены все кодовые слова данных, включая кодовые слова-заполнители (5.9.2).

П р и м е ч а н и е — Процедуры в соответствии с 5.3—5.9, 5.13 и 5.14 определяются пользователями. Прочие технические процедуры согласно 5.10, 5.11 и 5.15 выполняются оборудованием и не требуют вмешательств пользователя.

5.8 Размеры

Символы PDF417 должны соответствовать следующим размерам, указанным в 5.8.1—5.8.3.

5.8.1 Минимальная ширина модуля (X)

Минимальная ширина модуля подлежит определению в нормативных документах, устанавливающих требования по применению. Она учитывает наличие оборудования для производства и считывания символов и соответствует основным требованиям, установленным применением.

Размер X должен оставаться неизменным в пределах всего символа.

Примечание — Действующие стандарты оценки качества символа штрихового кода (например, ISO/ IEC 15415) не требуют измерения абсолютных размеров для оценки качества символа. Поэтому несоответствие любому минимальному размеру не является поводом для оценки символа как не соответствующего настоящему стандарту.

5.8.2 Высота строки (*Y*)

Для символов с уровнем коррекции ошибок не меньше рекомендуемого:

$$Y \ge 3X$$

Для символов с уровнем коррекции ошибок меньше рекомендуемого высота строки может быть увеличена, если размер X слишком мал. В приложении Е приведен рекомендуемый уровень коррекции ошибок.

5.8.3 Свободные зоны

Наименьшая ширина горизонтальной свободной зоны (слева и справа от символа PDF417) — 2X. Наименьший размер вертикальной свободной зоны (над и под символом PDF417) — 2X.

5.9 Определение формата символа

Матрицу символа PDF417, общий размер и форму символа определяют следующие факторы:

- а) ширина модуля и коэффициент сжатия;
- b) число строк и столбцов в матрице символа.

При создании символа PDF417 эти параметры выбирают сочетанием установок пользователя, ограничений, определяемых применением, и установок по умолчанию. Процесс выбора может повторяться до получения пользователем требуемого формата.

5.9.1 Определение коэффициента сжатия модуля

Коэффициент сжатия печатаемого модуля (aspect ratio of the module) определяют два размера:

- Х требуемая ширина самого узкого штриха и самого узкого пробела;
- Y требуемая высота каждой строки.

Эти размеры определяются пользователем или нормативными документами, регламентирующими применение штрихового кода. Основным фактором, определяющим эти параметры, является разрешение систем печати и считывания, используемых в рамках конкретного применения (5.14).

5.9.2 Определение матрицы строк и столбцов символа

Для определения матрицы символа, т.е. числа строк r и числа столбцов c, учитывают следующие факторы:

- объем и тип данных, подлежащих кодированию;
- основные правила символики, определяющие, например, предельное число строк и столбцов (5.2.1 и 5.2.2).
 - фактическое пространство для нанесения символа;
- более длинные строки приводят к уменьшенной вспомогательной части символа (включающей знаки СТАРТ и СТОП, индикаторы строки и области свободных зон);
- длина строки (включая свободные зоны) должна быть меньше длины линии сканирования, регламентируемой или подразумеваемой в рамках применения;
 - тип сканера, который может определять общий коэффициент сжатия символа;
 - выбранный уровень коррекции ошибок.

Во многих применениях допустимая ширина символа является первичным ограничением и матрицу символа можно определить фиксированным числом столбцов. В приложении О приведены рекомендации по определению матрицы символа.

После кодирования исходных данных с использованием выбранных режимов уплотнения известно число исходных кодовых слов данных m (до дополнения дескриптором длины символа и любыми кодовыми словами-заполнителями). После выбора числа строк и столбцов и уровня коррекции ошибок общее число кодовых слов данных n вычисляется по формуле:

$$n = c \cdot r - k$$
,

где c, k, n и r соответствуют определениям, приведенным в 4.1.

В матрице могут возникнуть ситуации, когда для достижения необходимого числа строк и столбцов требуется использование кодовых слов-заполнителей (условно используется кодовое слово со значением 900). Такая ситуация может произойти при

$$n > m + 1$$

где *m* и *n* соответствуют определениям, приведенным в 4.1.

Дескриптору длины символа следует назначить значение n, определенное выше. Таким образом

$$d_{n-1} = n = c \cdot r - k.$$

Требуемое число кодовых слов-заполнителей равно (n-m)-1.

Кодовые слова-заполнители должны иметь значение 900 и размещаться в позициях младших разрядов последовательности кодовых слов данных, т.е. справа от исходного кодового слова данных в позиции самого младшего разряда (но до управляющего блока Макро PDF417, при наличии). Пример такого преобразования приведен ниже. Независимо от включения дескриптора длины символа и какихлибо кодовых слов-заполнителей последовательность кодовых слов должна оставаться идентичной последовательности, изначально произведенной при кодировании данных.

Пример — Пусть m = 246, c = 12, r = 24 u k = 32, $moe \partial a$ $n = (c \cdot r) - k = (12 \cdot 24) - 32 = 256$.

Примечание — Обозначения соответствуют указанным выше.

Значение дескриптора длины символа п равно 256.

Число кодовых слов-заполнителей равно (n-m)-1=256-246-1=9.

В настоящем примере кодовые слова данных (до кодовых слов-заполнителей) начинаются с функции фиксации режима цифрового уплотнения (кодовое слово 902) и заканчиваются кодовым словом со значением 423. Все кодовые слова-заполнители являются кодовыми словами 900. Дополнение дескриптором длины символа и кодовыми словами-заполнителями представлено ниже:

исходная последовательность кодовых слов данных	d_{m-1}	 d_0
Значения кодовых слов	902	 423

Дополненная последовательность кодовых слов данных $d_{n-1} = d_{n-2} = \dots = d_9 = d_8 = \dots = d_0$ Значения кодовых слов 256 902 \dots 423 900 \dots 900

5.10 Формирование кодовых слов коррекции ошибок

Кодовые слова коррекции ошибок формируют с помощью приведенной ниже процедуры и вычисляют на основе значений всех кодовых слов данных, включая дескриптор длины символа и все кодовые слова-заполнители. Последовательность кодовых слов должна быть представлена в виде:

$$d_{n-1}, d_{n-2}, ...d_0$$

где d_{n-1} — дескриптор длины символа.

Полином данных символа представляет собой

$$d(x) = d_{n-1}x^{n-1} + d_{n-2}x^{n-2} + ... + d_1x + d_0$$

Ниже приведено математическое описание вычисления кодовых слов коррекции ошибок для конкретного потока данных и выбранного уровня коррекции ошибок. Все арифметические действия должны быть выполнены по модулю 929.

Кодовые слова коррекции ошибки являются дополнением коэффициентов остатка, получающегося в результате деления полинома данных символа d(x), умноженного на x^k , на порождающий полином g(x). Отрицательные значения отражаются в поле Галуа GF (929) прибавлением 929 до получения значения большего или равного нулю.

Для вычисления коэффициентов для кодовых слов коррекции ошибки k, необходимых для уровня коррекции ошибок, используют порождающий полином:

$$g_k(x) = (x-3)(x-3^2)(x-3^3)\dots(x-3^k) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_{k-1} x^{k-1} + x^k,$$

где $g_k(x)$ — порождающий полином;

x — неизвестная переменная;

k — общее число кодовых слов коррекции ошибок;

 α_i — коэффициент показателей степеней x, образованный порождающим полиномом $g_k(x)$.

Пример вычисления коэффициентов приведен в приложении Q.

В приложении F приведены все значения коэффициентов, необходимые для кодирования символа PDF417 для всех уровней коррекции ошибок.

Кодовые слова коррекции ошибок должны вычисляться в соответствии с приведенным ниже алгоритмом с использованием следующих обозначений:

 d_i — кодовое слово данных $d_{n-1} \dots d_0$;

 E_i — кодовые слова коррекции ошибок $E_{k-1} \dots E_0$;

 α_j' — коэффициент показателей степени числа x, из порождающего полинома (пояснения приведены ниже, а значения — в приложении F);

 t_1, t_2, t_3 — временные переменные.

Алгоритм:

а) обозначают последовательность кодовых слов данных $d_{n-1},\,d_{n-2}\dots\,d_0;$

b) устанавливают в исходное состояние кодовые слова коррекции ошибки $E_0, ..., E_{k-1}$ для значения, равного нулю;

с) для каждого кодового слова данных (data)
$$d_i = d_{n-1} \dots d_0$$
: НАЧАЛО

$$t_1=(d_j+E_{k-1})$$
 mod 929 для каждого кодового слова коррекции ошибки $E_j=E_{k-1}\dots E_1$: НАЧАЛО
$$t_2=(t_1\times\alpha_j) \text{ mod 929}$$

$$t_3=929-t_2$$

$$E_j=(E_{j-1}+t_3) \text{ mod 929}$$
 KOHEЦ
$$t_2=(t_1\times\alpha_0) \text{ mod 929}$$
 $t_3=929-t_2$
$$E_0=t_3 \text{ mod 929}$$

КОНЕЦ

d) для каждого кодового слова коррекции ошибки $E_i = E_0 \dots E_{k-1}$ подсчитывают дополнение:

ОПАРАН

если *E_i* ≠ 0

$$E_i = 929 - E_i$$

КОНЕЦ

Пример вычисления кодовых слов коррекции ошибок приведен в приложении Q.

Альтернативная процедура формирования кодовых слов коррекции ошибок с использованием схемы деления приведена в приложении R.

5.11 Низкоуровневое кодирование

Низкоуровневое кодирование необходимо для преобразования значений кодовых слов в соответствующие знаки символа (последовательности штрихов и пробелов), при этом матрица символа должна быть фиксированной.

На рисунке 8 схематично представлены соответствующие позиции каждого кодового слова данных, кодового слова коррекции ошибок и индикаторов строк для символа PDF417.

L ₁	d_{n-1}	d_{n-2}					R ₁	
L ₂		V					R ₂]
]
								ı
L_{r-1}				d ₀	E_{k-1}	E_{k-2}	R_{r-1}	
L _r			•		E ₁	E ₀	R_r	1

 L_r — левый индикатор строки; R_r — правый индикатор строки; затененная область — область кодовых слов данных; незатененная область под областью кодовых слов данных — предназначена для кодовых слов коррекции ошибок

Рисунок 8 — Схема размещения кодовых слов типового символа PDF417

5.11.1 Кластеры

В PDF417 используют систему распознавания локальной строки для определения перехода от строки к строке.

Наборы кодовых слов представлены в каждом из трех кластеров. Кластеры имеют номера 0, 3 и 6. В приложении А приведены соответствующие последовательности штрихов и пробелов для каждого знака символа, представляющие каждое кодовое слово и кластер.

FOCT ISO/IEC 15438—2018

Для кодирования индикаторов строк и других кодовых слов каждая строка должна содержать знаки символа (комбинации в виде штрихов и пробелов) только одного кластера. В первой строке используют знаки символа из кластера 0, во второй строке — из кластера 3, в третьей строке — из кластера 6, в четвертой строке — из кластера 0 и так далее. Последовательность кластеров 0, 3, 6 должна постоянно повторяться. Номер кластера *К* для любой строки вычисляют по формуле:

$$K = [(номер строки - 1) mod 3] \cdot 3$$
,

где все строки пронумерованы от 1 до r (в соответствии с 4.1)

Так как любые две смежные строки имеют разные кластеры, во время декодирования символа PDF417 декодер может использовать пути сканирования, которые пересекают строки.

5.11.2 Определение матрицы символа

Матрицу строк и столбцов символа окончательно определяют в соответствии с процедурами, приведенными в 5.9.2. Они обеспечивают получение значений *r* и *c*.

5.11.3 Определение значений левого и правого индикаторов строк

Индикаторы строк в символе PDF417 — кодовые слова, которые должны кодировать несколько основных параметров: номер строки (*F*), число строк (*r*), число столбцов (*c*) и уровень коррекции ошибки (*s*). Эта информация должна быть отнесена к трем строкам, и цикл должен повторяться непрерывно. Номер строки (*F*) должен быть закодирован в каждой строке.

5.11.3.1 Левый индикатор строк

Левый индикатор строк вычисляют по формулам:

```
при K_F = 0; L_F = 30 \cdot ((F - 1) \text{ div } 3) + (r - 1) \text{ div } 3;
```

при
$$K_F = 3$$
; $L_F = 30 \cdot ((F-1) \text{ div } 3) + (s \times 3) + (r-1) \text{ mod } 3$;

при
$$K_F = 6$$
; $L_F = 30 \cdot ((F - 1) \text{ div } 3) + (c - 1)$,

где *c, F, r,* s и *K* соответствуют определениям, приведенным в 4.1

5.11.3.2 Правый индикатор строк

Правый индикатор строк вычисляют по формулам:

```
при K_F = 0; R_F = 30 \cdot ((F-1) \text{ div } 3) + (c-1);
```

при
$$K_F = 3$$
; $R_F = 30 \cdot ((F-1) \text{ div } 3) + (r-1) \text{ div } 3$;

при
$$K_F = 6$$
; $R_F = 30 \cdot ((F-1) \text{ div } 3) + (s \times 3) + (r-1) \text{ mod } 3$,

где *c, F, r,* s и *K* соответствуют определениям, приведенным в 4.1

5.11.4 Кодирование строки

В каждой строке должны быть согласованы с номером кластера следующие знаки символа:

- левый индикатор строки;
- знаки символа, представляющие кодовые слова данных и (или) коррекции ошибок, в количестве, равном числу столбцов;
 - правый индикатор строки.

Знаки СТАРТ и СТОП должны быть одинаковы для всех строк.

Символ должен кодироваться строка за строкой, с включением с (числа столбцов) кодовых слов в каждой строке. Первая строка должна включать дескриптор длины символа в первом столбце. Последняя строка должна включать частично или полностью кодовые слова коррекции ошибок.

5.12 Компакт PDF417 (Compact PDF417)

Символы Компакт PDF417 являются возможным выбором. В случае использования Компакт PDF417 должен соответствовать требованиям приложения G.

5.13 Makpo PDF417 (Macro PDF417)

Макро PDF417 должен предусматривать механизм разделения данных файла на блоки и представления их более чем в одном символе PDF417. Данный механизм является идентичным свойству структурированного соединения в других символиках.

Каждый символ Макро PDF417 должен содержать дополнительную управляющую информацию для обеспечения надлежащего восстановления исходного файла данных независимо от последовательности, в которой сканируются и декодируются отдельные символы PDF417.

Для кодирования данных в Макро PDF417 можно использовать до 99 999 отдельных символов PDF417.

Процедуры Макро PDF417 приведены в приложении H.

5.13.1 Режимы уплотнения и Макро PDF417

Управляющий блок Макро PDF417 должен иметь предопределенный метод кодирования, так что кодовое слово 928 вызывает завершение любой последовательности режима уплотнения в теле символа. Поле индекса сегмента должно быть закодировано в режиме цифрового уплотнения. Каждое определенное необязательное поле Макро PDF417 имеет особые, изначально подразумеваемые режим и подрежим уплотнения, и начало нового необязательного поля служит окончанием режима уплотнения предыдущего поля (в соответствии с H.2.3) и вызывает собственный режим по умолчанию. В частности, даже если два следующих друг за другом необязательных поля используют один и тот же режим текстового уплотнения, то когда встречается кодовое слово 923, подрежим прописных букв сбрасывается.

5.13.2 Интерпретации в расширенном канале и Макро PDF417

В зависимости от ограничений, приведенных в 5.5.2, ECI могут встречаться в сообщениях, закодированных в отдельном символе или в наборе символов Макро PDF417. Любая вызванная ECI должна применяться до окончания закодированных данных или до тех пор, пока не встретится другая ECI. Таким образом, интерпретация ECI может охватить два символа или более.

Интерпретация (интерпретации) в расширенном канале в теле потока кодовых слов данных не должна распространяться на управляющий блок Макро PDF417, но возобновляется автоматически в начале следующего символа. Данные управляющего блока интерпретируются с помощью значения ECI по умолчанию (000002) до тех пор, пока управляющие последовательности ECI не будут явно закодированы в необязательном поле в управляющем блоке. Действие любой ECI такого рода автоматически заканчивается при окончании поля, в котором она присутствует.

П р и м е ч а н и е — При реализации в качестве идентификаторов глобальной метки в соответствии с прежними спецификациями ([3] и [4]), кодирование подразумевает возврат к GLI 0 (равнозначному ECI 000000) в начале каждого символа. Если подразумевают, что GLI 1 сохраняется в следующем символе, тогда в начале этого следующего символа должен быть явно закодирован GLI 1. В связи с тем, что кодирующие устройства согласованы с этими ранее опубликованными стандартами, которые еще некоторое время будут в использовании, рекомендации по обеспечению совместимости с настоящими требованиями приведены в 5.17.6.

5.14 Рекомендации для пользователя

5.14.1 Визуальное представление

Символы PDF417 допускают кодирование больших объемов данных, в связи с этим печать визуальных представлений знаков данных может оказаться непрактичной. В качестве альтернативы символ может сопровождать описательный, а не дословный текст. Представление может быть отпечатано в любом месте вокруг символа, но без нарушения символа и свободных зон. Размеры знаков и шрифт не регламентированы настоящим стандартом, но могут быть устанавлены в стандартах, регламентирующих требования по применению.

5.14.2 Возможность автоматического распознавания

PDF417 может быть использован в условиях автоматического распознавания с рядом других символик в соответствии с приложением S (см. S.1).

5.14.3 Параметры применения, устанавливаемые пользователем

Параметры символов PDF417, которые в настоящем стандарте указаны как выбираемые пользователем, должны определять стандарты, регламентирующие требования по применению в соответствии с требованиями, указанными в 5.14.2.1 и 5.14.3.2.

5.14.3.1 Символика и размеры

Стандарты, регламентирующие требования по применению, должны устанавливать следующие параметры данных и символики, включая размеры:

- а) выбор и использование интерпретаций в расширенном канале, при необходимости, чтобы расширить возможности кодирования данных за пределами интерпретаций по умолчанию базовых режимов;
- b) объем данных в символе, который может быть фиксированным, переменным или переменным до определенного значения:
 - с) выбор уровня коррекции ошибок;
 - d) диапазон размеров X;
 - е) диапазон размеров У;
- f) параметры символа диапазон допустимых коэффициентов сжатия и/или соответствие длины или высоты символа (любой из двух) наибольшим размерам.

FOCT ISO/IEC 15438—2018

Примечание — Дополнительные факторы, которые следует учитывать при определении применений PDF417, приведены в приложении О и приложении S.

5.14.3.2 Требования контроля

Параметры оценки символов определяют установлением класса качества в соответствии с ISO/IEC 15415 в стандарте, регламентирующем требования по применению.

Класс качества выражается в следующей форме:

класс/апертура/длина волны в максимуме интенсивности отраженного излучения.

Пример представления типов значений, которые необходимо отразить

1,5/10/660,

- где 1,5 полный класс качества символа;
 - 10 ссылочный номер измерительной апертуры (в настоящем примере диаметр 0,25 мм);
 - 660 длина волны отраженного излучения в максимуме интенсивности в нанометрах.

П р и м е ч а н и е — В ISO/IEC 15415 определены классы допустимых значений. Значения, соответствующие применению, должны быть установлены в стандарте, регламентирующем требования по применению.

5.14.4 Качество печати символа PDF417

Качество печати символа PDF417 оценивается, используя рекомендации по оценке качества печати двумерных штрих-кодов, определенных в ISO/IEC 15415 для многострочных символик с возможностью перекрестного сканирования.

5.15 Рекомендуемый алгоритм декодирования

Рекомендуемый алгоритм декодирования для PDF417 приведен в приложении J. Этот алгоритм должен быть основой для оценки качества печати в соответствии с ISO/IEC 15415.

5.16 Процедура обнаружения и коррекции ошибок

В качестве составной части процедуры декодирования возможна реконструкция символа при наличии стираний и ошибок подстановки в пределах возможностей коррекции ошибок символа. Реконструкция может выполняться с помощью процедуры, описанной в приложении К.

5.17 Передаваемые данные

5.17.1 Передаваемые данные в базовой интерпретации (по умолчанию)

Все кодовые слова данных должны быть переведены в данные для пользователя и переданы в виде 8-битовых байтов независимо от того, находятся ли эти данные в режимах текстового, байтового или цифрового уплотнения. Не подлежат передаче знаки СТАРТ и СТОП, индикаторы строк, дескриптор длины символа, кодовые слова переключения режима, кодовые слова-заполнители и кодовые слова коррекции ошибок.

5.17.2 Протокол передачи для интерпретаций в расширенном канале (ЕСІ)

В системах, поддерживающих ЕСІ, в каждой передаче должен использоваться префикс идентификатора символики (согласно стандарту [6] и приложению L). Управляющие блоки Макро PDF417 (в случае, если они передаются) должны обрабатываться как часть набора управляющих последовательностей, который работает совместно с протоколом передачи ECI (5.17.3 и приложение H).

Три кодовых слова (со значениями 925, 926 и 927) являются сигналом для кодирования значения ECI и декодируются как значения байтов следующим образом:

- а) если последовательность ЕСІ начинается с кодового слова 927:
- 1) кодовое слово 927 передается в качестве управляющего знака со значением 92, который представляет знак ОБРАТНАЯ ДРОБНАЯ ЧЕРТА () при кодировании по умолчанию;
- 2) следующее кодовое слово преобразуется в 6-разрядное значение путем размещения начальных нулей перед кодовым словом. 6-разрядное значение передается как шесть соответствующих значений байтов с десятичными значениями от 48 до 57.

Пример — Закодировано в символе — [927] [123] Передаваемые данные (десятичные значения байтов) — 92, 48, 48, 48, 49, 50, 51 Интерпретация в знаках ASCII (версия КОИ-7) — \000123

- b) если последовательность ECI начинается с кодового слова 926:
 - 1) кодовое слово 926 передается как управляющий знак с десятичным значением 92;
- 2) следующие два кодовых слова преобразуются в 6-разрядное значение с начальными нулями (при необходимости), используя следующую формулу:

([первое кодовое слово] + 1) · 900 + [второе кодовое слово])

6-разрядное значение передается как шесть соответствующих значений байтов с десятичными значениями от 48 до 57.

Пример — Закодировано в символе — [926] [136] [156] Передаваемые данные (десятичные значения байтов) — 92, 49, 50, 51, 52, 53, 54 Интерпретация в знаках ASCII (версия КОИ-7) — \123456

- с) если последовательность ЕСІ начинается с кодового слова 925:
 - 1) кодовое слово 925 передается как управляющий знак с десятичным значением 92.
- 2) следующее кодовое слово преобразуется в 6-разрядное значение путем прибавления к нему 810 900. 6-разрядное значение передается как шесть соответствующих значений байтов с десятичными значениями от 48 до 57.

```
Пример — Закодировано в символе — [925] [456]
Передаваемые данные (десятичные значения байтов) — 92, 56, 49, 49, 51, 53, 54
Интерпретация в знаках ASCII (версия КОИ-7) — \811356
```

Процедура повторяется для каждого случая интерпретации в расширенном канале (ЕСІ).

Прикладное программное обеспечение, распознающее 7-байтовую управляющую последовательность по знаку со значением 92, при помощи шести байтов (каждый из диапазона знаков со значениями от 48 до 57) должно интерпретировать все последующие знаки до окончания закодированных данных или до тех пор, пока не встретится другой отдельный байт со значением 92 в качестве байта из интерпретации в расширенном канале, определенной 6-разрядной последовательностью.

Если знак ОБРАТНАЯ ДРОБНАЯ ЧЕРТА или другой знак, представленный байтом со значением 92, необходимо использовать в качестве закодированных данных, то передача должна происходить в соответствии с приведенным примером. Если байт со значением 92 появляется в качестве данных, то должны быть переданы два байта этого значения; таким образом, единичное появление всегда является управляющим знаком, а двоичное появление означает достоверные данные.

```
Пример — Закодированные данные — A\\B\C
Передача — A\\\B\\C
```

5.17.3 Передача данных для Макро PDF417

Протокол передачи данных для Макро PDF417 приведен в H.6.

5.17.4 Передача зарезервированных кодовых слов с использованием протокола интерпретации в расширенном канале

При работе под протоколом передачи ECI декодеры PDF417 должны передавать управляющую последовательность ECI из 6 байтов зарезервированных кодовых слов (интерпретируемых как \CnnnC), представляющую управляющий знак (со значением 92), за которым следует знак C (значение 67), три разряда, которые представляют десятичное значение зарезервированного кодового слова и за которыми следует другое C, завершающее управляющую последовательность ECI независимым от символики способом. Кодовые слова данных, следующие за зарезервированным кодовым словом, не интерпретируются декодером в соответствии с любым режимом уплотнения, но вместо этого передаются как серии управляющих последовательностей, представляющие кодовые слова с использованием той же 6-байтовой управляющей последовательности, указанной ранее. Все оставшиеся кодовые слова данных передаются этим же способом до тех пор, пока не будут достигнуты:

- окончание закодированных данных в символе;
- функция фиксации режима уплотнения;
- функциональное кодовое слово управляющего блока Макро PDF417 (928, 923, или 922).

Кодовое слово 913 (регистр режима байтового уплотнения) разрешено только в режиме текстового уплотнения и не может быть частью потока кодовых слов в процессе отправки неинтерпретируемых управляющих кодовых слов.

П р и м е ч а н и е — Этот протокол может правильно передавать синтаксис сообщения для любых зарезервированных кодовых слов, для которых будущие определения представляют собой обеспечение сигнальных функций или представления новых режимов уплотнения.

5.17.5 Идентификатор символики

После определения структуры данных (в виде Макро PDF417, ECI и т. д.) в качестве преамбулы к переданным декодером данным должен быть добавлен идентификатор символики. Идентификаторы символики для PDF417 приведены в приложении L.

5.17.6 Передача, использующая устаревшие протоколы

Введение системы интерпретаций в расширенном канале в некоторые символики оказало воздействие на ранее существовавшие символики, включая PDF417. Основные правила кодирования и декодирования в настоящем стандарте остались теми же, что и в исходных версиях PDF417 ([3] и [4]). Передача для ECI и Макро PDF417 отличается по формату, но передает равнозначную информацию.

Новое оборудование и программное обеспечение для декодирования символики PDF417 должно соответствовать настоящему стандарту, при этом допускают использование существующего оборудования, соответствующего устаревшим стандартам. В приложении М приведены правила, которыми необходимо руководствоваться при использовании декодирующего оборудования и программного обеспечения, которые не соответствуют современным символам с ECI и Макро PDF417, что обеспечивает сосуществование старого и нового оборудования.

Приложение А (обязательное)

Кодирование/декодирование последовательностей штрихов и пробелов знаков символа PDF417

В таблице А.1 установлены значения каждого кодового слова и последовательности штрихов и пробелов для знаков символа в кластерах 0, 3 и 6.

Таблица А.1 — Последовательность штрихов и пробелов

Значение	Последовате	льность штрихо для кластера	в и пробелов	Значение	Последовательность штрихов и пробелов для кластера			
кодового слова	0 BSBSBSBS	3 BSBSBSBS	6 BSBSBSBS	кодового слова	0 BSBSBSBS	3 BSBSBSBS	6 BSBSBSBS	
0	31111136	51111125	21111155	26	31113251	31112612	61113221	
1	41111144	61111133	31111163	27	11113334	31113125	11113262	
2	51111152	41111216	11111246	28	21113342	41113133	51113312	
3	31111235	51111224	21111254	29	11114144	51113141	11113361	
4	41111243	61111232	31111262	30	21114152	21113216	51113411	
5	51111251	41111315	11111345	31	11114243	31113224	41114114	
6	21111326	51111323	21111353	32	21114251	41113232	51114122	
7	31111334	61111331	31111361	33	11115152	21113315	41114213	
8	21111425	41111414	11111444	34	51116111	31113323	51114221	
9	11111516	51111422	21111452	35	31121135	41113331	41114312	
10	21111524	41111513	11111543	36	41121143	21113414	41114411	
11	11111615	51111521	61112114	37	51121151	31113422	31115114	
12	21112136	41111612	11112155	38	21121226	21113513	41115122	
13	31112144	41112125	21112163	39	31121234	31113521	31115213	
14	41112152	51112133	61112213	40	41121242	21113612	41115221	
15	21112235	61112141	11112254	41	21121325	21114125	31115312	
16	31112243	31112216	21112262	42	31121333	31114133	31115411	
17	41112251	41112224	61112312	43	11121416	41114141	21116114	
18	11112326	51112232	11112353	44	21121424	11114216	31116122	
19	21112334	31112315	21112361	45	31121432	21114224	21116213	
20	11112425	41112323	61112411	46	11121515	31114232	31116221	
21	11113136	51112331	11112452	47	21121523	11114315	21116312	
22	21113144	31112414	51113114	48	11121614	21114323	11121146	
23	31113152	41112422	61113122	49	21122135	31114331	21121154	
24	11113235	31112513	11113163	50	31122143	11114414	31121162	
25	21113243	41112521	51113213	51	41122151	21114422	11121245	

Продолжение таблицы А.1

Значение	Последовате	льность штрихо для кластера	в и пробелов	Значение	Последовате	ельность штрихо для кластера	в и пробелов
кодового слова	0 BSBSBSBS	3 BSBSBSBS	6 BSBSBSBS	кодового слова	0 BSBSBSBS	3 BSBSBSBS	6 BSBSBSBS
52	11122226	11114513	21121253	85	21132134	41122322	21126311
53	21122234	21114521	31121261	86	31132142	31122413	11131145
54	31122242	11115125	11121344	87	11132225	41122421	21131153
55	11122325	21115133	21121352	88	21132233	31122512	31131161
56	21122333	31115141	11121443	89	31132241	31122611	11131244
57	31122341	11115224	21121451	90	11132324	21123116	21131252
58	11122424	21115232	11121542	91	21132332	31123124	11131343
59	21122432	11115323	61122113	92	11132423	41123132	21131351
60	11123135	21115331	11122154	93	11132522	21123215	11131442
61	21123143	11115422	21122162	94	11133134	31123223	11131541
62	31123151	11116133	61122212	95	21133142	41123231	61132112
63	11123234	21116141	11122253	96	11133233	21123314	11132153
64	21123242	11116232	21122261	97	21133241	31123322	21132161
65	11123333	11116331	61122311	98	11133332	21123413	61132211
66	21123341	41121116	11122352	99	11134142	31123421	11132252
67	11124143	511211 24	11122451	100	21141125	21123512	11132351
68	21124151	61121132	51123113	101	31141133	21123611	51133112
69	11124242	41121215	61123121	102	41141141	11124116	11133161
70	11124341	51121223	11123162	103	11141216	21124124	51133211
71	21131126	61121231	51123212	104	21141224	31124132	41134112
72	31131134	41121314	11123261	105	31141232	11124215	41134211
73	41131142	51121322	51123311	106	11141315	21124223	31135112
74	21131225	41121413	41124113	107	21141323	31124231	31135211
75	31131233	51121421	51124121	108	31141331	11124314	21136112
76	41131241	41121512	41124212	109	11141414	21124322	21136211
77	11131316	41121611	41124311	110	21141422	11124413	11141144
78	21131324	31122116	31125113	111	11141513	21124421	21141152
79	31131332	41122124	41125121	112	21141521	11124512	11141243
80	11131415	51122132	31125212	113	11142125	11125124	21141251
81	21131423	31122215	31125311	114	21142133	21125132	11141342
82	11131514	41122223	21126113	115	31142141	11125223	11141441
8 3	11131613	51122231	31126121	116	11142224	21125231	61142111
84	11132126	31122314	21126212	117	21142232	11125322	11142152

Продолжение таблицы А.1

Значение	Последовате	льность штрихо для кластера	в и пробелов	Значение	Последовате	эльность штрихо для кластера	в и пробелов
кодового слова	0 BSBSBSBS	3 BSBSBSBS	6 BSBSBSBS	кодового слова	0 BSBSBSBS	3 BSBSBSBS	6 BSBSBSBS
118	11142323	11125421	11142251	151	42111341	11134214	12113162
119	21142331	11126132	51143111	152	12111416	21134222	52113212
120	11142422	11126231	41144111	153	22111424	11134313	12113261
121	11142521	41131115	31145111	154	12111515	21134321	52113311
122	21143141	51131123	11151143	155	22112135	11134412	42114113
123	11143331	61131131	21151151	156	32112143	11134511	52114121
124	11151116	41131214	11151242	157	42112151	11135123	42114212
125	21151124	51131222	11151341	158	12112226	21135131	42114311
126	31151132	41131313	11152151	159	22112234	11135222	32115113
127	11151215	51131321	11161142	160	32112242	11135321	42115121
128	21151223	41131412	11161241	161	12112325	11136131	32115212
129	31151231	41131511	12111146	162	22112333	41141114	32115311
130	11151314	31132115	22111154	163	12112424	51141122	22116113
131	21151322	41132123	32111162	164	12112523	41141213	32116121
132	11151413	51132131	12111245	165	12113135	51141221	22116212
133	21151421	31132214	22111253	166	22113143	41141312	22116311
134	11151512	41132222	32111261	167	32113151	41141411	21211145
135	11152124	31132313	12111344	168	12113234	31142114	31211153
136	11152223	41132321	22111352	169	22113242	41142122	41211161
137	11152322	31132412	12111443	170	12113333	31142213	11211236
138	11161115	31132511	22111451	171	12113432	41142221	21211244
139	31161131	21133115	12111542	172	12114143	31142312	31211252
140	21161222	31133123	62112113	173	22114151	31142411	11211335
141	21161321	41133131	12112154	174	12114242	21143114	21211343
142	11161511	21133214	22112162	175	12115151	31143122	31211351
143	32111135	31133222	62112212	176	31211126	21143213	11211434
144	42111143	21133313	12112253	177	41211134	31143221	21211442
145	52111151	31133321	22112261	178	51211142	21143312	11211533
146	22111226	21133412	62112311	179	31211225	21143411	21211541
147	32111234	21133511	12112352	180	41211233	11144114	11211632
148	42111242	11134115	12112451	181	51211241	21144122	12121145
149	22111325	21134123	52113113	182	21211316	11144213	22121153
150	32111333	31134131	62113121	183	31211324	21144221	32121161

Продолжение таблицы А.1

Значение	Последовате	льность штрихо для кластера	в и пробелов	Значение	Последовате	ельность штрихо для кластера	в и пробелов
кодового слова	0 BSBSBSBS	3 BSBSBSBS	6 BSBSBSBS	кодового слова	0 BSBSBSBS	3 BSBSBSBS	6 BSBSBSBS
184	41211332	11144312	11212145	217	11213324	52111322	31216112
185	21211415	11144411	12121244	218	12122423	42111413	32125211
186	31211423	11145122	22121252	219	11213423	52111421	31216211
187	41211431	11145221	11212244	220	12123134	42111512	22126112
188	21211514	41151113	21212252	221	22123142	42111611	22126211
189	31211522	51151121	22121351	222	11214134	32112116	11221136
190	22121126	41151212	11212343	223	12123233	42112124	21221144
191	32121134	41151311	12121442	224	22123241	52112132	31221152
192	42121142	31152113	11212442	225	11214233	32112215	11221235
193	21212126	41152121	12121541	226	21214241	42112223	21221243
194	22121225	31152212	11212541	227	11214332	52112231	31221251
195	32121233	31152311	62122112	228	12124142	32112314	11221334
196	42121241	21153113	12122153	229	11215142	42112322	21221342
197	21212225	31153121	22122161	230	12124241	32112413	11221433
198	31212233	21153212	61213112	231	11215241	42112421	21221441
199	41212241	21153311	62122211	232	31221125	32112512	11221532
200	11212316	11154113	11213153	233	41221133	32112611	11221631
201	12121415	21154121	12122252	234	51221141	22113116	12131144
202	22121423	11154212	61213211	235	21221216	32113124	22131152
203	32121431	11154311	11213252	236	31221224	42113132	11222144
204	11212415	41161112	12122351	237	41221232	22113215	12131243
205	21212423	41161211	11213351	238	21221315	32113223	22131251
206	11212514	31162112	52123112	239	31221323	42113231	11222243
207	12122126	31162211	12123161	240	41221331	22113314	21222251
208	22122134	21163112	51214112	241	21221414	32113322	11222342
209	32122142	21163211	52123211	242	31221422	22113413	12131441
210	11213126	42111116	11214161	243	21221513	32113421	11222441
211	12122225	52111124	51214211	244	21221612	22113512	62132111
212	22122233	62111132	42124112	245	22131125	22113611	12132152
213	32122241	42111215	41215112	246	32131133	12114116	61223111
214	11213225	52111223	42124211	247	42131141	22114124	11223152
215	21213233	62111231	41215211	248	21222125	32114132	12132251
216	31213241	42111314	32125112	249	22131224	12114215	11223251

Продолжение таблицы А.1

Значение	Последовате	льность штрихо для кластера	в и пробелов	Значение кодового	Последовате	льность штрихо для кластера	в и пробелов
кодового слова	0 BSBSBSBS	3 BSBSBSBS	6 BSBSB SBS	слова	0 BSBSBS BS	3 BSBSBSBS	6 BSBSBSBS
250	32131232	221142 23	52133111	283	31231124	51212222	12151241
251	11222216	32114231	51224111	284	41231132	52121321	11242241
252	12131315	12114314	42134111	285	21231215	41212313	11251133
253	31222232	22114322	41225111	286	31231223	42121412	21251141
254	32131331	12114413	32135111	287	41231231	41212412	11251232
255	11222315	22114421	31226111	288	21231314	42121511	11251331
256	12131414	12114512	22136111	289	31231322	41212511	12161141
257	22 131422	12115124	11231135	290	21231413	32122115	11252141
258	11222414	22115132	21231143	291	31231421	42122123	11261132
2 59	21222422	12115223	31231151	292	21231512	52122131	11261231
260	22131521	22115231	11231234	293	21231611	31213115	13111145
261	12131612	12115322	21231242	294	12141116	32122214	23111153
262	12132125	12115421	11231333	295	22141124	42122222	33111161
263	22132133	12116132	21231341	296	32141132	31213214	13111244
264	32132141	12116231	11231432	297	11232116	41213222	23111252
265	11223125	51211115	11231531	298	12141215	42122321	13111343
266	12132224	61211123	12141143	299	22141223	31213313	23111351
2 67	22132232	11211164	22141151	300	32141231	32122412	13111442
268	11223224	51211214	11232143	301	11232215	31213412	13111541
269	21223232	61211222	12141242	302	21232223	32122511	63112112
270	22132331	11211263	11232242	303	31232231	31213511	13112153
271	11223323	51211313	12141341	304	11232314	22123115	23112161
272	12132422	61211321	11232341	305	12141413	32123123	63112211
273	12132521	11211362	12142151	306	22141421	42123131	13112252
274	12133133	51211412	11233151	307	11232413	21214115	13112351
275	22133141	51211511	11241134	308	21232421	22123214	53113112
276	11224133	42121115	21241142	309	11232512	32123222	13113161
277	12133232	52121123	11241233	310	12142124	21214214	53113211
278	11224232	62121131	21241241	311	22142132	31214222	43114112
279	12133331	41212115	11241332	312	11233124	32123321	43114211
280	11224331	42121214	11241431	313	12142223	21214313	33115112
281	11225141	61212131	12151142	314	22142231	22123412	33115211
282	21231116	41212214	11242142	315	11233223	21214412	23116112

Продолжение таблицы А.1

Значение	Последовате	льность штрихо для кластера	в и пробелов	Значение	Последовате	эльность штрихо для кластера	в и пробелов
кодового слова	0 BSBSBSBS	3 BSBSBSBS	6 BSBSBSBS	кодового слова	0 BSBSBSBS	3 BSBSBSBS	6 BSBSBSBS
316	21233231	22123511	23116211	349	31251221	52131122	33125111
317	11233322	21214511	12211136	350	21251411	41222114	32216111
318	12142421	12124115	22211144	351	22161122	42131213	23126111
319	11233421	22124123	32211152	352	12161213	52131221	21311135
320	11234132	32124131	12211235	353	11252213	41222213	31311143
321	11234231	11215115	22211243	354	11252312	51222221	41311151
322	21241115	12124214	32211251	355	11252411	41222312	11311226
323	31241123	22124222	12211334	356	23111126	42131411	21311234
324	41241131	11215214	22211342	357	33111134	41222411	31311242
325	21241214	21215222	12211433	358	43111142	32132114	11311325
326	31241222	22124321	22211441	359	23111225	42132122	21311333
3 27	21241313	11215313	12211532	360	33111233	31223114	31311341
328	31241321	12124412	12211631	361	13111316	32132213	11311424
329	21241412	11215412	13121144	362	23111324	42132221	21311432
330	21241511	12124511	23121152	363	33111332	31223213	11311523
331	12151115	12125123	12212144	364	13111415	41223221	21311531
332	22151123	22125131	13121243	365	23111423	31223312	11311622
333	32151131	11216123	23121251	366	13111514	32132411	12221135
334	11242115	12125222	12212243	367	13111613	31223411	22221143
335	12151214	11216222	22212251	368	13112126	22133114	32221151
336	22151222	12125321	12212342	369	23112134	32133122	11312135
337	11242214	11216321	13121441	370	33112142	21224114	12221234
338	21242222	12126131	12212441	371	13112225	22133213	22221242
339	22151321	51221114	63122111	372	23112233	32133221	11312234
340	11242313	61221122	13122152	373	33112241	21224213	21312242
341	12151412	11221163	62213111	374	13112324	31224221	22221341
342	11242412	512 21213	12213152	375	23112332	21224312	11312333
343	12151511	61221221	13122251	376	13112423	22133411	12221432
344	12152 123	1122 1262	12213251	377	13112522	21224411	11312432
345	11243123	5122 1312	53123111	378	13113134	12134114	12221531
346	11243222	11221361	52214111	379	23113142	22134122	11312531
347	11243321	51221411	43124111	380	13113233	11225114	13131143
348	31251122	42131114	42215111	381	23113241	12134213	23131151

Продолжение таблицы А.1

Значение	Последовате	льность штрихо для кластера	в и пробелов	Значение кодового	Последовате	льность штрихо для кластера	в и пробелов
кодового слова	0 BSBSBSBS	3 BSBSBSBS	6 BSBSBSBS	слова	0 BSBSB SBS	3 BSBSBSBS	6 BSBSBSBS
382	13113332	22134221	12222143	415	231221 33	31234121	13141142
383	13114142	11225213	13131242	416	33122141	21234212	12232142
384	13114241	21225221	11313143	417	12213125	22143311	13141241
385	32211125	11225312	12222242	418	13122224	21234311	11323142
386	42211133	12134411	13131341	419	32213141	12144113	12232241
387	52211141	11225411	11313242	420	12213224	22144121	11323241
388	22211216	12135122	12222341	421	22213232	11235113	11331125
3 89	32211224	11226122	11313341	422	23122331	12144212	21331133
390	42211232	12135221	13132151	423	12213323	11235212	31331141
391	22211315	11226221	12223151	424	13122422	12144311	11331224
392	32211323	51231113	11314151	425	12213422	11235311	21331232
393	42211331	61231121	11321126	426	13123133	12145121	11331323
394	22211414	11231162	21321134	427	23123141	11236121	21331331
395	32211422	51231212	31321142	428	12214133	51241112	11331422
396	22211513	11231261	11321225	429	13123232	11241161	11331521
397	32211521	51231311	21321233	430	12214232	51241211	12241133
398	23121125	42141113	31321241	431	13123331	42151112	22241141
399	33121133	52141121	11321324	432	13124141	41242112	11332133
400	43121141	41232113	21321332	433	12215141	42151211	12241232
401	22212125	51232121	11321423	434	31311116	41242211	11332232
402	23121224	41232212	21321431	435	41311124	32152112	12241331
403	33121232	42141311	11321522	436	51311132	31243112	11332331
404	12212216	41232311	11321621	437	31311215	32152211	13151141
405	13121315	32142113	12231134	438	41311223	31243211	12242141
406	32212232	42142121	22231142	439	51311231	22153112	11333141
407	33121331	31233113	11322134	440	31311314	21244112	11341124
408	12212315	32142212	12231233	441	41311322	22153211	21341132
409	22212323	31233212	22231241	442	31311413	21244211	11341223
410	23121422	32142311	11322233	443	41311421	12154112	21341231
411	12212414	31233311	21322241	444	31311512	11245112	11341322
412	13121513	22143113	11322332	445	22221116	12154211	11341421
413	12212513	32143121	12231431	446	32221124	11245211	12251132
414	13122125	21234113	11322431	447	42221132	51251111	11342132

Продолжение таблицы А.1

Значение кодового	Последовате	льность штрихо для кластера	в и пробелов	Значение кодового	Последовате	ельность штрихо для кластера	в и пробелов
слова	0 BSBSBSBS	3 BSBSBSBS	6 BSBSBSBS	слова	0 BSBSBSBS	3 BSBSBSBS	6 BSBSBSBS
448	21312116	42161111	12251231	481	13132124	13114115	13212143
449	22221215	41252111	11342231	482	23132132	23114123	14121242
450	41312132	32162111	11351123	483	12223124	33114131	13212242
451	42221231	31253111	21351131	484	13132223	13114214	14121341
452	21312215	22163111	11351222	485	23132231	23114222	13212341
453	31312223	21254111	11351321	486	11314124	13114313	14122151
454	41312231	43111115	12261131	487	12223223	23114321	13213151
455	21312314	53111123	11352131	488	22223231	13114412	12311126
456	22221413	63111131	11361122	489	11314223	13114511	22311134
457	32221421	43111214	11361221	490	21314231	13115123	32311142
458	21312413	53111222	14111144	491	13132421	23115131	12311225
459	31312421	43111313	24111152	492	12223421	13115222	22311233
460	22221611	53111321	14111243	493	13133132	13115321	32311241
461	13131116	43111412	24111251	494	12224132	13116131	12311324
462	23131124	43111511	14111342	495	13133231	52211114	22311332
463	33131132	33112115	14111441	496	11315132	62211122	12311423
464	12222116	43112123	14112152	497	12224231	12211163	22311431
465	13131215	53112131	14112251	498	31321115	52211213	12311522
466	23131223	33112214	54113111	499	41321123	62211221	12311621
467	33131231	43112222	44114111	500	51321131	12211262	13221134
468	11313116	33112313	34115111	501	31321214	52211312	23221142
469	12222215	43112321	24116111	502	41321222	12211361	1 2 312134
470	22222223	33112412	13211135	503	31321313	52211411	13221233
471	32222231	33112511	23211143	504	41321321	43121114	23221241
472	11313215	23113115	33211151	505	31321412	53121122	12312233
473	21313223	33113123	13211234	506	31321511	42212114	13221332
474	31313231	43113131	23211242	507	22231115	43121213	12312332
475	23131421	23113214	13211333	508	3223112 3	53121221	13221431
476	11313314	33113222	23211341	509	42231131	42212213	12312431
477	12222413	23113313	13211432	510	21322115	52212 221	14131142
478	22222421	3311 33 21	13211531	511	22231214	42212 312	13222142
479	11313413	2311 34 12	14121143	512	41322131	43121411	14131241
480	13131611	23113511	24121151	513	21322214	42212411	1231 3142

Про∂олж**е**ние таблицы А.1

Значение	Последовательность штрихов и пробелов для кластера			Значение	Последовате	ельность штрихо для кластера	в и пробелов
кодового слова	0 BSBSBSBS	3 BSBSBSBS	6 BSBSBSBS	кодового слова	0 BSBSBSBS	3 BSBSBSBS	6 BSBSBSBS
514	31322222	33122114	13222241	547	13143131	12216221	13231232
51 5	32231321	43122122	1231 3241	548	11325131	61311113	11413133
516	21322313	32213114	21411125	549	31331114	11311154	12322232
517	22231412	33122213	31411133	550	41331122	21311162	13231331
518	21322412	43122221	41411141	551	31331213	61311212	11413232
519	22 231511	32213213	11411216	552	41331221	11311253	12322331
520	21322511	42213221	21411224	553	31331312	21311261	11413331
521	13141115	32213312	31411232	554	31331411	61311311	14141141
522	23141123	33122411	11411315	555	22241114	11311352	13232141
5 23	33141131	32213411	21411323	556	32241122	11311451	12323141
524	12232115	23123114	31411331	557	21332114	52221113	11414141
52 5	13141214	33123122	11411414	558	22241213	62221121	11421116
526	23141222	22214114	21411422	559	32241221	12221162	21421124
527	11323115	23123213	11411513	560	21332213	51312113	31421132
528	12232214	33123221	21411521	561	31332221	61312121	11421215
529	22 232222	22214213	11411612	562	21332312	11312162	21421223
530	23141321	32214221	12321125	563	22241411	12221261	31421231
531	11323214	22214312	22321133	564	21332411	51312212	11421314
5 32	21323222	23123411	32321141	565	13151114	52221311	21421322
5 33	13141412	22214411	11412125	566	23151122	11312261	11421413
534	11323313	13124114	12321224	567	12242114	51312311	21421421
535	12232412	23124122	22321232	568	13151213	43131113	11421512
536	13141511	12215114	11412224	569	23151221	53131121	11421611
537	12232511	13124213	21412232	570	11333114	42222113	12331124
538	13142123	23124221	22321331	571	12242213	43131212	22331132
539	23142131	12215213	11412323	572	22242221	41313113	11422124
540	12233123	222 15221	12321422	573	11333213	51313121	12331223
541	13142222	1 22 15312	11412422	574	21333221	43131311	22331231
542	11324123	13124411	12321521	575	13151411	41313212	11422223
543	12233222	12215411	11412521	576	11333312	42222311	21422231
544	13142321	1 312 5122	13231133	577	12242411	41313311	11422322
545	11324222	122 16122	23231141	578	11333411	33132113	12331421
546	12233321	13125221	12322133	579	12243122	43132121	11422421
	•	•	•		•	-	•

Продолжение таблицы А.1

Значение	Последовате	льность штрихо для кластера	в и пробелов	Значение	Последовате	ельность штрихо для кластера	в и пробелов
кодового слова	0 BSBSBSBS	3 BSBSBSB S	6 BSBSBSBS	кодового слова	0 BSBSBSBS	3 BSBSBSBS	6 BSBSBSBS
580	11334122	32223113	13241132	613	14113232	61321211	12351221
581	11334221	3313221 2	12332132	614	14113331	11321252	11442221
582	41341121	31314113	13241231	615	14114141	11321351	11451113
583	31341311	3222321 2	11423132	616	23211116	52231112	21451121
584	32251121	33132311	12332231	617	33211124	12231161	11451212
585	22251212	31314212	11423231	618	43211132	51322112	11451311
586	22251311	32223311	11431115	619	23211215	52231211	12361121
587	13161113	31314311	21431123	620	33211223	11322161	11452121
588	12252113	23133113	31431131	621	23211314	51322211	15111143
589	11343113	33133121	11431214	622	33211322	43141112	25111151
590	13161311	22224113	21431222	623	23211413	42232112	15111242
591	12252311	23133212	11431313	624	33211421	43141211	15111341
592	24111125	21315113	21431321	625	23211512	41323112	15112151
593	14111216	22224212	11431412	626	14121116	42232211	14211134
594	24111224	23133311	11431511	627	24121124	41323211	24211142
595	14111315	21315212	12341123	628	34121132	33142112	14211233
5 96	24111323	22224311	22341131	629	13212116	32233112	24211241
5 97	34111331	21315311	11432123	630	14121215	33142211	14211332
598	14111414	13134113	12341222	631	33212132	31324112	14211431
599	24111422	23134121	11432222	632	34121231	32233211	15121142
600	14111513	12225113	12341321	633	13212215	31324211	14212142
601	24111521	13134212	11432321	634	23212223	23143112	15121241
602	14112125	11316113	13251131	635	33212231	22234112	14212241
603	24112133	12225212	12342131	636	13212314	23143211	13311125
604	34112141	13134311	11433131	637	14121413	21325112	23311133
605	14112224	11316212	11441114	638	24121421	22234211	33311141
606	24112232	12225311	21441122	639	13212413	21325211	13311224
607	14112323	11316311	11441213	640	23212421	13144112	23311232
608	24112331	13135121	21441221	641	14121611	12235112	13311323
609	14112422	12226121	11441312	642	14122124	13144211	23311331
610	14112521	61321112	11441411	643	24122132	11326112	13311422
611	14113133	11321153	12351122	644	13213124	12235211	13311521
612	24113141	21321161	11442122	645	14122223	11326211	14221133

Продолжение таблицы А.1

Значение	Последовате	льность штрихо для кластера	в и пробелов	Значение кодового	Последовате	ельность штрихо для кластера	в и пробелов
кодового слова	0 BSBSBSBS	3 BSBSBSB S	6 BSBSBSBS	слова	0 BSBSBSBS	3 BSBS BSBS	6 BSBSBSBS
646	24122231	61331111	24221141	679	13222115	34113221	14231231
647	13213223	11331152	13312133	680	14131214	24113312	12 413132
648	23213231	11331251	14221232	681	33222131	24113411	13322231
649	13213322	52241111	13312232	682	12313115	14114114	12413231
650	14122421	51332111	14221331	683	13222214	24114122	21511115
651	14123132	43151111	13312331	684	2322222	14114213	31511123
652	13214132	42242111	15131141	685	24131321	24114221	41511131
653	14123231	41333111	1422 2141	686	12313214	14114312	21511214
654	13214231	33152111	13313141	687	22313222	14114411	31511222
655	32311115	32243111	12411116	688	14131412	14115122	21511313
656	423 11123	31334111	22411124	689	12313313	14115221	31511321
657	52 311131	23153111	3241 1132	690	13222412	53211113	21511412
658	32311214	22244111	12411215	691	14131511	63211121	21511511
659	42311222	21335111	22411223	692	13222511	13211162	12421115
660	32311313	13154111	32411231	693	14132123	53211212	22421123
661	42311321	12245111	12411314	694	24132131	13211261	32421131
662	32311412	11336111	22411322	695	13223123	53211311	11512115
663	32311511	11341151	12411413	696	14132222	44121113	12421214
664	23221115	44111114	22411421	697	12314123	54121121	22421222
665	33221123	54111122	12411512	698	13223222	43212113	11512214
666	22312115	44111213	12411611	699	14132321	44121212	21512222
667	23221214	54111221	13321124	700	12314222	43212212	22421321
668	33221222	44111312	23321132	701	13223321	44121311	11512313
669	22312214	44111411	12412124	702	14133131	43212311	12421412
670	32312222	34112114	13321223	703	13224131	34122113	11512412
671	33221321	44112122	23321231	704	12315131	44122121	12421511
672	22312313	34 112213	12412223	705	41411114	33213113	11512511
673	23221412	44112221	22412231	706	51411122	34122212	13331123
674	22312412	3 4112312	12412322	707	41411213	33213212	23331131
675	23221511	34112411	13321421	708	51411221	34122311	12422123
676	22312511	24113114	12412421	709	41411312	33213311	13331222
677	14131115	34113122	14231132	710	41411411	24123113	11513123
678	24131123	24113213	13322132	711	32321114	34123121	12422222

Продолжение таблицы А.1

Значение	Последовате	льность штрихо для кластера	в и пробелов	Значение	Последовате	эльность штрихо для кластера	в и пробелов
кодового слова	0 BSBSBSBS	3 BSBSBSBS	6 BSBSBSBS	кодового слова	0 BSBSBSBS	3 BSBSBSBS	6 BSBSBSBS
712	42321122	23214113	13331321	745	22323221	33223112	21531311
713	31412114	24123212	11513222	746	14141411	34132211	12441113
714	41412122	23214212	12422321	747	11414213	32314112	22441121
715	42321221	24123311	11513321	748	21414221	33223211	11532113
716	31412213	23214311	14241131	749	13232411	32314211	12441212
717	41412221	14124113	13332131	750	11414312	24133112	11532212
718	31412312	24124121	12423131	751	14142122	23224112	12441311
719	32321411	132 15113	11514131	752	13233122	24133211	11532311
720	31412411	14124212	21521114	753	14142221	22315112	13351121
721	23231114	13215212	31521122	754	12324122	23224211	12442121
722	33231122	14124311	21521213	755	13233221	22315211	11533121
723	223 22114	13215311	31521221	756	11415122	14134112	21541112
724	23231213	14125121	21521312	757	12324221	13225112	21541211
725	33231221	13216121	21521411	758	11415221	14134211	12451112
726	21413114	62311112	12431114	759	41421113	12316112	11542112
727	22322213	12311153	22431122	760	51421121	13225211	12451211
728	32322221	22311161	11522114	761	41421212	12316211	11542211
729	21413213	62311211	12431213	762	41421311	11411144	16111142
730	31413221	12311252	22431221	763	32331113	21411152	16111241
731	23231411	12311351	11522213	764	42331121	11411243	15211133
732	21413312	53221112	21522221	765	31422113	21411251	25211141
733	22322411	13221161	11522312	766	41422121	11411342	15211232
734	21413411	52312112	12431411	767	31422212	11411441	15211331
735	14141114	53221211	11522411	768	32331311	62321111	16121141
736	24141122	12312161	13341122	769	31422311	12321152	15212141
737	13232114	52312211	12432122	770	23241113	61412111	14311124
738	14141213	44131112	13341221	771	33241121	11412152	24311132
739	24141221	43222112	11523122	772	22332113	12321251	14311223
740	12323114	44131211	12432221	773	23241212	11412251	24311231
741	1323 2213	42313112	11523221	774	21423113	53231111	14311322
742	23232 22 1	43222211	21531113	775	22332212	52322111	14311421
743	11414114	42313211	31531121	776	23241311	51413111	152211 32
744	12323213	34132112	21531212	7 77	21423212	44141111	14312132

Продолжение таблицы А.1

Значение	Последовате	льность штрихо для кластера	в и пробелов	Значение	Последовате	ельность штрихо для кластера	в и пробелов
кодового слова	0 BSBSBSBS	3 BSBSBSBS	6 BSBSBSBS	кодового слова	0 BSBSBSBS	3 BSBSBSBS	6 BSBSBSBS
712	42321122	23214113	13331321	745	22323221	33223112	21531311
713	31412114	24123212	11513222	746	14141411	34132211	12441113
714	41412122	23214212	12422321	747	11414213	32314112	22441121
715	42321221	24123311	11513321	748	21414221	33223211	11532113
716	31412213	23214311	14241131	749	13232411	32314211	12441212
717	41412221	14124113	13332131	750	11414312	24133112	11532212
718	31412312	24124121	12423131	751	14142122	23224112	12441311
719	32321411	13215113	11514131	752	13233122	24133211	11532311
720	31412411	14124212	21521114	753	14142221	22315112	13351121
721	23231114	13215212	31521122	754	12324122	23224211	12442121
722	33231122	14124311	21521213	755	13233221	22315211	11533121
723	22322114	13215311	31521221	756	11415122	14134112	21541112
724	23231213	14125121	21521312	757	12324221	13225112	21541211
725	33231221	13216121	21521411	758	11415221	14134211	12451112
726	21413114	62311112	12431 114	759	41421113	12316112	11542112
72 7	22322213	12311153	22431122	760	51421121	13225211	12451211
728	32322221	22311161	11522114	761	41421212	12316211	11542211
729	21413213	62311211	12431213	762	41421311	11411144	16111142
730	31413221	12311252	22431221	763	32331113	21411152	16111241
731	23231411	12311351	1152 2213	764	42331121	11411243	15211133
732	21413312	5322111 2	21522221	765	31422113	21411251	25211141
733	22322411	13221161	115 22312	766	41422121	11411342	15211232
734	21413411	5231211 2	12431411	767	31422212	11411441	15211331
735	14141114	53221 211	11522411	768	32331311	62321111	16121141
736	24141122	12312161	13341122	769	31422311	12321152	15212141
737	13232114	5231 2211	12432122	770	23241113	61412111	14311124
738	14141213	44131112	13341221	771	33241121	11412152	24311132
739	24141221	43222112	11523122	772	22332113	12321251	14311223
740	12323114	44131211	12432221	773	23241212	11412251	24311231
741	13232213	42313112	11523221	774	21423113	53231111	14311322
742	23232221	43222211	21531113	775	22332212	52322111	14311421
743	11414114	42313211	31531121	776	23241311	51413111	15221132
744	12323213	34132112	21531212	777	21423212	44141111	14312132

Продолжение таблицы А.1

Значение	Последовате	льность штрихо для кластера	в и пробелов	Значение	Последовате	эльность штрихо для кластера	в и пробелов
кодового слова	0 BSBSBSBS	3 BSBSBSBS	6 BSBSBSBS	кодового слова	0 BSBSBSBS	3 BSBSBSBS	6 BSBSBSBS
778	22332311	43232111	15221231	811	15112124	25113311	13421312
779	21423311	42323111	14312231	812	15112223	15114113	12512312
780	14151113	41414111	13411115	813	15112322	25114121	13421411
781	24151121	34142111	23411123	814	15112421	15114212	12512411
782	13242113	332 33 111	33411131	815	15113132	15114311	14331122
783	23242121	32 324 111	13411214	816	15113231	15115121	13422122
784	12333113	31415111	23411222	817	24211115	54211112	14331221
785	13242212	24143111	13411313	818	24211214	14211161	12513122
786	14151311	23234111	23411321	819	34211222	54211211	13422221
787	11424113	22325111	13411412	820	24211313	45121112	12513221
788	12333212	21416111	13411511	821	34211321	44212112	31611113
	13242311	14144111	14321123	822	24211412	45121211	41611121
790	11424212	13235111	24321131	823	24211511	44212211	31611212
791	12333311	12326111	13412123	824	15121115	35122112	31611311
792	11424311	11421143	23412131	825	25121123	34213112	22521113
793	13243121	21421151	13412222	826	14212115	35122211	32521121
794	11425121	11421242	14321321	827	24212123	34213211	21612113
795	41431211	11421341	13412321	828	25121222	25123112	22521212
 796	31432112	12331151	15231131	829	14212214	24214112	21612212
	31432211	11422151	14322131	830	24212222	25123211	22521311
798	22342112	11431142	13413131	831	14212313	24214211	21612311
799	21433112	11431241	22511114	832	24212321	15124112	13431113
800	21433211	11441141	32511122	833	14212412	14215112	23431121
801	13252112	45111113	22511213	834	15121511	15124211	12522113
802	12343112	45111212	32511221	835	14212511	14215211	13431212
803	11434112	45111311	22511312	836	15122123	63311111	11613113
804	11434211	35112113	22511411	837	25122131	13311152	12522212
805	15111116	45112121	13421114	838	14213123	13311251	13431311
806	15111215	35112212	23421122	839	24213131	54221111	11613212
807	25111223	35112311	12512114	840	14213222	53312111	12522311
808	15111314	25113113	22512122	841	15122321	45131111	11613311
809	15111413	35113121	23421221	842	14213321	44222111	14341121
810	15111512	25113212	12512213	843	15123131	43313111	13432121

Продолжение таблицы А.1

Значение	Последовате	льность штрихо для кластера	в и пробелов	Значение	Последовате	ельность штрихо для кластера	в и пробелов
кодового слова	0 BSB SBSBS	3 BSBSBSBS	6 BSBSBSBS	кодового слова	0 BSBSBSBS	3 BSBSBSBS	6 BSBSBSBS
844	14214131	35132111	12523121	877	42411212	11541131	14411411
845	33311114	34223111	11614121	878	42411311	36112112	15321122
846	33311213	33314111	31621112	879	33321113	36112211	14412122
847	33311312	2513 31 11	31621211	880	32412113	26113112	15321221
848	33311411	24224111	22531112	881	42412121	26113211	14412221
849	24221114	23315111	21622112	882	32412212	16114112	23511113
8 50	23312114	15134111	22531211	883	33321311	16114211	33511121
851	33312122	14225111	21622211	884	32412311	4521 2 111	23511212
852	34221221	13316111	13441112	885	24231113	36122111	23511311
853	23312213	12411143	12532112	886	34231121	35213111	14421113
854	33312221	22411151	13441211	887	23322113	26123111	24421121
855	23312312	12411242	11623112	888	33322121	25214111	13512113
856	24221411	12411341	12532211	889	22413113	16124111	23512121
857	23312411	13321151	11623211	890	23322212	15215111	13512212
858	15131114	12412151	31631111	891	24231311	14311151	14421311
859	14222114	11511134	22541111	892	22413212	13411142	13512311
860	15131213	21511142	21632111	893	23322311	13411241	15331121
861	25131221	11511233	13451111	894	22413311	12511133	14422121
862	13313114	21511241	12542111	895	15141113	22511141	13513121
863	14222213	11511332	11633111	896	25141121	12511232	32611112
864	15131312	11511431	16211132	897	14232113	12511331	32611211
865	13313213	12421142	16211231	898	24232121	13421141	23521112
866	14222312	11512142	15311123	899	13323113	12512141	22612112
867	15131411	12421241	25311131	900	14232212	11611124	23521211
868	13313312	11512241	15311222	901	15141311	21611132	22612211
869	14222411	11521133	15311321	902	12414113	11611223	14431112
870	15132122	21521141	16221131	903	13323212	21611231	13522112
871	14223122	11521232	15312131	904	14232311	11611322	14431211
872	15132221	11521331	14411114	905	12414212	11611421	12613112
873	13314122	12431141	24411122	906	13323311	12521132	13522211
874	14223221	11522141	14411213	907	15142121	11612132	12613211
875	13314221	11531132	24411221	908	14233121	12521231	32621111
876	42411113	11531231	14411312	909	13324121	11612231	23531111

Окончание таблицы А.1

Значение	Последовате	льность штрихо для кластера	в и пробелов	Значение	Последовательность штрихов и пробелов для кластера					
кодового слова	0 BSBSBSBS	3 BSBSBSBS	6 BSB S BSBS	кодового слова	0 BSBSBSBS	3 BSBSBSBS	6 BSBSBSBS			
910	12415121	11621123	226 22 111	920	31513112	13511231	16321121			
911	51511112	21621131	14441111	921	32422211	12 611123	15412121			
912	51511211	11621222	13532111	922	31513211	22611131	24511112			
913	42421112	11621321	12623111	923	24241112	12611222	24511211			
914	41512112	12531131	16311122	924	23332112	12611321	15421112			
915	42421211	11622131	16311221	925	24241211	13521131	14512112			
916	41512211	11631122	15411113	926	22423112	12612131	15421211			
917	33331112	11631221	25411121	927	23332211	12621122	14512211			
918	32422112	14411141	15411212	928	21514112	12621221	33611111			
919	33331211	13511132	15411311							

Приложение В (обязательное)

Набор знаков по умолчанию для режима байтового уплотнения

Набор знаков по умолчанию для режима байтового уплотнения приведен в таблице В.1.

Таблица В.1 — Набор знаков по умолчанию для режима байтового уплотнения

В	С	В	С	В	С	В	С	В	С	В	С	В	С	В	С
0	NUL	32	space	64	@	96	`	128		160	NBSP	192	À	224	à
1	SOH	33	!	65	Α	97	а	129		161	i	193	Á	225	á
2	STX	34	и	66	В	98	b	130		162	¢	194	Â	226	â
3	ETX	35	#	67	C	99	С	131		163	£	195	Ã	227	ã
4	EOT	36	\$	68	D	100	d	132		164	¤	196	Ä	228	ä
5	ENQ	37	%	69	Е	101	е	133		165	¥	197	Å	229	å
6	ACK	38	&	70	F	102	f	134		166	-	198	Æ	230	æ
7	BEL	39	1	71	G	103	g	135		167	§	199	Ç	231	ç
8	BS	40	(72	Н	104	h	136		168		200	È	232	è
9	HT	41)	73	- 1	105	ı	137		169	©	201	É	233	é
10	LF	42	*	74	J	106	j	138		170	а	202	Ê	234	ê
11	VT	43	+	75	K	107	k	139		171	«	203	Ë	235	ë
12	FF	44	,	76	L	108	ı	140		172	7	204	Ì	236	ì
13	CR	45	-	77	М	109	m	141		173	SHY	205	ĺ	237	ĺ
14	S	46		78	N	110	n	142		174	®	206	ĵ	238	î
15	S	47	1	79	0	111	0	143		175	ı	207	Ϊ	239	Ϊ
16	DLE	48	0	80	Р	112	р	144		176	0	208	Đ	240	ð
17	DC1	49	1	81	Ø	113	q	145		177	Ħ	209	Ñ	241	ñ
18	DC2	50	2	82	R	114	r	146		178	2	210	Ò	242	ò
19	DC3	51	3	83	S	115	s	147		179	3	211	Ó	243	ó
20	DC4	52	4	84	Τ	116	t	148		180	•	212	Ô	244	ô
21	NAK	53	5	85	U	117	u	149		181	μ	213	Õ	245	õ
22	SYN	54	6	86	V	118	٧	150		182	¶	214	Ö	246	ö
23	ETB	55	7	87	W	119	w	151		183		215	×	247	÷
24	CAN	56	8	88	Х	120	х	152		184	_ د	216	Ø	248	ø
25	EM	57	9_	89	Υ	121	у	153		185	1	217	Ù	249	ù
26	SUB	58	:	90	Z	122	z	154		186	0	218	Ú	250	ú
27	ESC	59	;	91	[123	{	155		187	»	219	Û	251	û
28	IS4/FS	60	<	92	١	124		156		188	1/4	220	Ü	252	ü
29	IS3/GS	61	=	93]	125	}	157		189	1/2	221	Ý	253	ý
30	IS2/RS	62	>	94	۸	126	~	158		190	3/4	222	Þ	254	þ
31	IS1/US	63	?	95	_	127	DEL	159		191	خ	223	ß	255	ÿ

П р и м е ч а н и е — Эта таблица соответствует набору знаков, определенному в ISO/IEC 8859-1¹⁾, с добавлением управляющих знаков (с десятичными значениями байтов 00 — 31), определенных в ISO/IEC 646.

¹⁾ Набор графических знаков по ISO/IEC 8859-1 приведен в приложении ДБ (ДБ.2).

Приложение С (обязательное)

Алгоритм кодирования в режиме байтового уплотнения

Это преобразование следует использовать в режиме байтового уплотнения. С его помощью могут быть преобразованы шесть байтов данных в пять кодовых слов данных PDF417 по уравнению

$$b_5 \cdot 256^5 + b_4 \cdot 256^4 + b_3 \cdot 256^3 + b_2 \cdot 256^2 + b_1 \cdot 256^1 + b_0 \cdot 256^0 =$$

$$= d_4 \cdot 900^4 + d_3 \cdot 900^3 + d_2 \cdot 900^2 + d_1 \cdot 900^1 + d_0 \cdot 900^0,$$

где b — значение байта данных (от 0 до 255);

d — кодовое слово данных.

Для преобразования базы 256 в базу 900 может быть использован следующий алгоритм:

- а) принимают t в качестве временной переменной;
- b) вычисляют $t = b_5 \cdot 256^5 + b_4 \cdot 256^4 + b_3 \cdot 256^3 + b_2 \cdot 256^2 + b_1 \cdot 256^1 + b_0 \cdot 256^0$
- с) каждое кодовое слово вычисляют следующим образом:

для каждого кодового слова данных d_i = d_0 d_4 НАЧАЛО $d_i = t \bmod 900$ $t = t \operatorname{div} 900$ KOHELI

Пример — Требуется закодировать знаки данных в режиме байтового уплотнения b_5 b_0 {231, 101, 11, 97, 205, 2}.

Вычисляют сумму t с использованием десятичных значений шести знаков в режиме байтового уплотнения:

 $t = 231 \cdot 256^5 + 101 \cdot 256^4 + 11 \cdot 256^3 + 97 \cdot 256^2 + 205 \cdot 256^1 + 2 \cdot 256^0 = 254421168672002$

Вычисляют кодовое слово 0

 $d_0 = 254 \ 421 \ 168 \ 672 \ 002 \ mod \ 900 = 302$

t = 254 421 168 672 002 div 900 = 282 690 187 413

Вычисляют кодовое слово 1

 d_4 = 282 690 187 413 mod 900 = 213

t = 282 690 187 413 div 900 = 314 100 208

Вычисляют кодовое слово 2

 d_2 =314 100 208 mod 900 = 208

 $t = 314\ 100\ 208\ div\ 900 = 349\ 000$

Вычисляют кодовое слово 3

 d_3 = 349 000 mod 900 = 700

 $t = 349\ 000\ div\ 900 = 387$

Вычисляют кодовое слово 4

 $d_A = 387 \mod 900 = 387$

t = 387 div 900 = 0

Последовательность кодовых слов $d_4 \dots d_0$ представляет собой 387, 700, 208, 213, 302.

Приложение D (обязательное)

Алгоритм кодирования в режиме цифрового уплотнения

Это преобразование должно использоваться в режиме цифрового уплотнения. С его помощью могут быть преобразованы группы, содержащие до 44 последовательных цифровых разрядов включительно, в 15 (или менее) кодовых слов данных PDF417.

Для преобразования базы 10 в базу 900 может быть использован следующий алгоритм:

- а) принимают t в качестве временной переменной;
- b) устанавливают начальное значение t в виде группы последовательных цифровых разрядов, количество которых доходит до 44, которой предшествует единица ;
 - с) каждое кодовое слово вычисляют в следующем порядке:

```
Для каждого кодового слова данных d_i = d_0 \dots d_{n-1}
           НАЧАЛО
                    d_i = t \mod 900
                   t = t \operatorname{div} 900
                    Если t = 0, то кодирование прекращается
           КОНЕЦ
Пример — Требуется закодировать числовую цепочку из 15 цифр 000213298174000
В начале числовой цепочки ставят 1 и устанавливают исходное значение в виде:
t = 1 000 213 298 174 000
Вычисляют кодовое слово 0
d_0 = 1\ 000\ 213\ 298\ 174\ 000\ mod\ 900 = 200
t = 1 000 213 298 174 000 div 900 = 1 111 348 109 082
Вычисляют кодовое слово 1
d_1 = 1 \ 111 \ 348 \ 109 \ 082 \ mod \ 900 = 282
t = 1 111 348 109 082 div 900 = 1 234 831 232
Вычисляют кодовое слово 2
d_2 = 1 \ 234 \ 831 \ 232 \ mod \ 900 = 632
t = 1 234 831 232 \text{ div } 900 = 1 372 034
Вычисляют кодовое слово 3
d_3 = 1 \ 372 \ 034 \ mod \ 900 = 434
t = 1 372 034 div 900 = 1 524
Вычисляют кодовое слово 4
d_A = 1524 \mod 900 = 624
t = 1524 \text{ div } 900 = 1
Вычисляют кодовое слово 5
d_5 = 1 \mod 900 = 1
t = 1 \text{ div } 900 = 0
Последовательность кодовых слов d_5 \dots d_0 представляют в виде: 1, 624, 434, 632, 282, 200.
```

Приложение Е (обязательное)

Выбор пользователем уровня коррекции ошибок

Е.1 Рекомендуемый минимальный уровень коррекции ошибок

Минимальный уровень коррекции ошибок должен соответствовать приведенному в таблице Е.1.

Таблица Е.1 — Рекомендуемый уровень коррекции ошибок

Количество кодовых слов данных	Минимальный уровень коррекции ошибок
от 1 до 40	2
от 41 до 160	3
от 161 до 320	4
от 321 до 863	5

Для приблизительного подсчета количества кодовых слов данных из содержания данных при использовании таблицы Е.1 следует использовать 1,8 текстовых знаков на кодовое слово данных в режиме текстового уплотнения, 2,9 цифры на кодовое слово данных в режиме цифрового уплотнения и 1,2 байта на кодовое слово данных в режиме байтового уплотнения.

Если возможны значительные повреждения изображения символа, то следует использовать более высокие уровни коррекции ошибок. В замкнутых системах применений могут использоваться уровни коррекции ошибок ниже рекомендуемых.

E.2 Прочие факторы, принимаемые во внимание пользователем при выборе уровня коррекции ошибок

Целью прикладного стандарта, регламентирующего требования по применению, должно быть использование особенностей исправления ошибок без уменьшения емкости для данных.

При выборе уровня коррекции ошибок пользователь должен учитывать следующие факторы:

- а) должен выбираться рекомендуемый уровень коррекции ошибки (в соответствии с таблицей Е.1);
- b) так как наибольшее количество кодовых слов данных в одном символе составляет 925, большое количество кодовых слов данных ограничивает наивысший уровень коррекции ошибок, который может быть использован. Количество кодовых слов данных более 415 исключает применение уровня коррекции ошибок 8. Количество кодовых слов данных более 671 исключает применение уровней 7 и 8. Количество кодовых слов данных более 799 исключает применение уровней 6, 7 и 8. Количество кодовых слов данных более 863 исключает уровень коррекции ошибок 5 и не рекомендуется;
- с) при высокой вероятности того, что в символах PDF417 возможны недостающие или полностью стертые кодовые слова, уровень коррекции ошибки может быть увеличен до уровня 8 или более высокого уровня, при котором количество кодовых слов коррекции ошибки заполняет матрицу максимального размера, допустимого применением;
- d) более предпочтительным является поддержка высокого качества печати символа, по сравнению с компенсацией низкого качества печати увеличением уровня коррекции ошибок. Вместо выбора наивысшего уровня коррекции ошибок рекомендуется установить больший размер X или специальную подложку и материалы, способные обеспечить высокое качество печати символа PDF417.

Приложение F (обязательное)

Таблицы коэффициентов для вычисления кодовых слов коррекции ошибок PDF417

j	0	1
α_j	27	917

j	0	1	2	3
α_j	522	568	723	809

j	0	1	2	3	4	5	6	7
α_j	237	308	436	284	646	653	428	379

j	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
α_{j}	274	562	232	755	599	524	801	132	295	116	442	428	295	42	176	65

j	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
α_j	361	575	922	525	176	5 8 6	640	321	536	742	677	742	687	284	193	517
j	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	273	494	263	147	593	800	571	320	803	133	231	390	685	330	63	410

j	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
α_{j}	539	422	6	93	862	771	453	106	610	287	107	505	733	877	381	612
j	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
α_{j}	723	476	462	172	430	609	858	822	543	376	511	400	672	762	283	184
j	32	33	34	35	36	37	38	39	40	41	4 2	43	44	45	46	47
α_{j}	440	35	519	31	460	594	225	5 35	517	352	605	158	651	201	488	502
j	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
α_{j}	648	733	717	83	404	97	280	771	840	629	4	381	843	623	264	543

7 Таблица F.7 — Коэффициенты для уровня коррекции ошибок 6

j	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
α_{j}	521	310	864	547	858	580	296	379	53	779	897	444	400	925	749	415
j	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
α_{j}	822	93	217	208	928	244	583	620	246	148	447	631	292	908	490	704
j	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
α_{j}	516	258	457	907	594	723	674	292	272	96	684	432	686	606	860	569
j	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
α_{j}	193	219	129	186	236	287	192	775	278	173	40	379	712	463	646	776
j	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
α_{j}	171	491	297	763	156	732	95	270	447	90	507	48	228	821	808	898
j	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
α_{j}	784	663	627	378	382	262	380	602	754	336	89	614	87	432	670	616
j	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
α_{j}	157	374	242	726	600	269	375	898	845	454	354	130	814	587	804	34
j	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
α_{j}	211	330	539	297	827	865	37	517	834	315	550	86	801	4	108	539

j	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
α_{j}	524	894	75	766	882	857	74	204	82	586	708	250	905	786	138	720
j	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
α_j	858	194	311	913	275	190	375	850	438	733	194	280	201	280	828	757

Продолжение таблицы F.8

j	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
α_{j}	710	814	919	89	68	569	11	204	796	605	540	913	801	700	799	137
j	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
α_{j}	439	418	592	668	353	859	370	694	325	240	216	257	284	549	209	884
j	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
α_{j}	315	70	329	793	490	274	877	162	749	812	684	461	334	376	849	521
j	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
α_{j}	307	291	803	712	19	358	399	908	103	511	51	8	517	225	289	470
j	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
α_{j}	637	731	66	255	917	269	463	830	730	433	848	585	136	538	906	90
j	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
α_{j}	2	290	743	199	655	903	329	49	802	580	355	588	188	462	10	134
j	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
α_{j}	628	320	479	130	739	71	263	318	374	601	192	605	142	673	687	234
j	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
α_j	722	384	177	752	607	640	455	193	689	707	805	641	48	60	732	621
j	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
α_{j}	895	544	261	852	655	309	697	755	756	60	231	773	434	421	726	528
j	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
α_j	503	118	49	795	32	144	500	238	836	394	280	566	319	9	647	550
j	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
α_{j}	73	914	342	126	32	681	331	792	620	60	609	441	180	791	893	754

ე Окончание таблицы F.8

j	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
α_{j}	605	383	228	749	760	213	54	297	134	54	834	299	922	191	910	532
j	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
α_j	609	829	189	20	167	29	872	449	83	402	41	656	505	579	481	173
j	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255
α_j	404	251	688	95	497	555	642	543	307	159	924	558	648	55	497	10

j	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
α_j	352	77	373	504	35	599	428	207	409	574	118	498	285	380	350	492
j	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
α_j	197	265	920	155	914	299	229	643	294	871	306	88	87	193	352	781
j	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
α_j	846	75	327	520	435	543	203	666	249	346	781	621	640	268	794	534
j	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
α_{j}	539	781	408	390	644	102	476	499	290	632	545	37	858	916	552	41
j	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
α_j	542	289	122	272	383	800	485	98	752	472	761	107	784	860	658	741
j	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
α_j	290	204	681	407	855	85	99	62	482	180	20	297	451	593	913	142
j	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
α_{j}	808	684	287	536	561	76	653	899	729	567	744	390	513	192	516	258

Продолжение таблицы F.9

j	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
α_{j}	240	518	794	395	768	848	51	610	384	168	190	826	328	596	786	303
j	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
α_{j}	570	381	415	641	156	237	151	429	531	207	676	710	89	168	304	402
j	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
α_{j}	40	708	575	162	864	229	65	861	841	512	164	477	221	92	358	785
j	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
α_{j}	288	357	850	836	827	736	707	94	8	494	114	521	2	499	851	543
j	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
α_{j}	152	729	771	95	248	361	578	323	856	797	289	51	684	466	533	820
j	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
α_{j}	669	45	902	452	167	342	244	173	35	463	651	51	699	591	452	578
j	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
α_{j}	37	124	298	332	552	43	427	119	662	777	475	850	764	364	578	911
j	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
α_{j}	283	711	472	420	245	288	594	394	511	327	589	777	699	688	43	408
j	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255
α_{j}	842	383	721	521	560	644	714	559	62	145	873	663	713	159	672	729
j	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271
α_{j}	624	59	193	417	158	209	563	564	343	693	109	608	563	365	181	772
j	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287
α_j	677	310	248	353	708	410	579	870	617	841	632	860	289	536	35	777

ପ୍ଥ Продолжение таблицы F.9

j	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303
α_i	618	586	424	833	77	597	346	269	757	632	695	751	331	247	184	45
j	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319
α_j	787	680	18	66	407	369	54	492	228	613	830	922	437	519	644	905
j	320	321	322	323	324	325	326	327	328	329	330	331	332	333	334	335
	789	420	305	441	207	300	892	827	141	537	381	662	513	56	252	341
α_j																
<i>j</i>	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350	351
α_{j}	242	797	838	837	720	224	307	631	61	87	560	310	756	665	397	808
j	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367
α_{j}	851	309	473	795	378	31	647	915	459	806	590	731	425	216	548	249
j	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383
α_{j}	321	881	699	535	673	782	210	815	905	303	843	922	281	73	469	791
j	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399
α_{j}	660	162	498	308	155	422	907	817	187	62	16	425	535	336	286	437
j	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415
α_{j}	375	273	610	296	183	923	116	667	751	353	62	366	691	379	687	842
j	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431
α_{j}	37	357	720	742	330	5	39	923	311	424	242	749	321	54	669	316
j	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447
α_{j}	342	299	534	105	667	488	640	672	576	540	316	486	721	610	46	656

Окончание таблицы F.9

j	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463
α_{j}	447	171	616	464	190	531	297	321	762	752	533	175	134	14	381	433
j	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479
α_{j}	717	45	111	20	596	284	736	138	646	411	877	669	141	919	45	780
j	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495
α_{j}	407	164	332	899	165	726	600	325	498	655	357	752	768	223	849	647
j	496	497	498	499	500	501	502	503	504	505	506	507	508	509	510	511
α_{j}	63	310	863	251	366	304	282	738	675	410	389	244	31	121	303	263

Приложение G (обязательное)

Компакт PDF417

G.1 Описание

Компакт PDF417 (Compact PDF417) можно использовать в тех случаях, когда обеспечение поверхности соответствующего размера для нанесения символа является предметом первостепенной важности и маловероятно повреждение символа. Если повреждение символа маловероятно (например, в условиях офиса), можно исключить правые индикаторы строк и сократить комбинацию штрихов и пробелов знака СТОП до штриха шириной в один модуль в соответствии с рисунком G.1. Эта процедура позволяет сокращать объем кодовых слов, не относящихся к данным, с четырех кодовых слов на строку до двух, с некоторым компромиссом в части выполнения декодирования и устойчивости или способности противостоять помехам, повреждениям, пыли и т.д.

Эта версия с уменьшением кодовых слов, не относящихся к данным, именуемая Компакт PDF417, полностью совместима в процессе декодирования с типовым PDF417.

Символ Компакт PDF417, имеющий менее шести строк, кодирует число столбцов только в одном кодовом слове, которое не учитывается при коррекции ошибок, и поэтому он особенно уязвим при плохом качестве печати или повреждении.

Примечание — В предыдущих версиях стандартов PDF417 ([3] и [4]) использовался термин «Сжатый PDF417» (Truncated PDF417). Термин Компакт PDF417 (Compact PDF417) является более предпочтительным во избежание путаницы с общим использованием термина «сжатый» («truncated»).

Рисунок G.1 — Компакт PDF417

G.2 Качество печати

Хотя стандартный метод оценки качества печати, описанный в 5.14.4, применим и к Компакт PDF417, отсутствие знака СТОП, отличного от штриха шириной в один модуль, требует, чтобы были сделаны следующие два исключения.

Анализ профиля отражения для знаков СТАРТ и СТОП применяется только к знаку СТАРТ.

При оценке параметра эффективности декодирования кодовых слов (Codeword Yield) требование к подлежащему оценке сканированию верхней или нижней строки символа (которое в соответствии с ISO/IEC 15415 включает декодирование и знака СТАРТ и знака СТОП) не может применяться; вместо этого, как для остальных строк, должны быть декодированы знак СТАРТ и, по крайней мере, одно дополнительное кодовое слово. Приложение Н (обязательное)

Макро PDF417

Н.1 Обзор Макро PDF417

Макро PDF417 предусматривает стандартный механизм создания распределенного представления файлов, размеры которых слишком велики для того, чтобы быть представленными в отдельном символе PDF417. Символы Макро PDF417 отличаются от обычных символов PDF417 тем, что они содержат дополнительную управляющую информацию в управляющем блоке Макро PDF417.

При использовании Makpo PDF417 большие файлы данных разделяются на несколько сегментов файла и каждый кодируется в отдельных символах. Управляющий блок определяет идентификацию файла, последовательность соединения, а также иную нестандартную информацию о файле. Декодер Макро PDF417 использует информацию управляющего блока для точного восстановления файла независимо от того, в каком порядке были отсканированы символы.

H.2 Синтаксис Макро PDF417

Каждый символ Макро PDF417 должен кодировать управляющий блок Макро PDF417, в котором содержится управляющая информация. Управляющий блок начинается с кодового слова Макро маркера (Macro marker) (значение 928). Управляющий блок следует за блоком данных, с которым он связан; число кодовых слов в управляющем блоке Макро PDF417 учитывают как данные и включают в значение дескриптора длины символа. Окончание управляющего блока Макро PDF417 идентифицируется началом кодовых слов коррекции ошибки.

П р и м е ч а н и е — Символ, не содержащий данных пользователя, отличных от управляющего блока Макро PDF417, является действительным символом.

Управляющий блок Макро PDF417 должен содержать не менее двух обязательных полей: индекса сегмента (segment index) и идентификации файла (file ID). Он также может содержать ряд необязательных полей (см. H.2.3). На рисунке H.1 показано расположение управляющего блока в символе Макро PDF417.

Схема стандартного символа PDF417 Заколированные данные + Дескриптор длины символа (N) Коррекция ошибок кодовые слова-заполнители Схема символа Макро PDF417 Дескриптор длины Управляющий блок Закодированные данные + Коррекция Макро PDF417 символа (N)кодовые слова-заполнители ошибок Идентификация Необязательная Кодовое слово Индекс сегмента файла со значением 928 информация - Управляющий заголовок

Рисунок H.1 — Схемы символов PDF417

Н.2.1 Индекс сегмента

В Макро PDF417 каждый символ представляет сегмент целого файла. Для восстановления целого файла сегменты необходимо разместить в определенном порядке. Этот процесс облегчает управляющая информация, содержащаяся в управляющем блоке Макро PDF417. Для файла, разделенного на множество j символов Макро PDF417, поле индекса сегмента (segment index) в каждом управляющем блоке Макро PDF417 символа содержит значения от 0 до j-1, соответствующие относительной позиции содержимого этого символа внутри распределенного представления.

Поле индекса сегмента состоит из поля длиной в два кодовых слова и кодируется с помощью режима цифрового уплотнения в соответствии с 5.4.4. При кодировании значение индекса сегмента должно быть дополнено начальными нулями до пяти разрядов до применения режима цифрового уплотнения, и это переключение в режим цифрового уплотнения не требует явной фиксации режима (кодового слова 902). Самое большое допустимое значение в поле индекса сегмента равно 99 998. Таким образом, распределенное представление файла данных может содержать до 99 999 символов Макро PDF417.

Примечание — При переводе в объем информации 99 999 символов составят примерно 110 млн байтов данных в режиме байтового уплотнения, или 184 млн. знаков в режиме текстового уплотнения, или около 300 млн знаков в режиме цифрового уплотнения.

Н.2.2 Поле идентификатора файла

Для каждого связанного символа Макро PDF417 поле идентификации файла (file ID) должно содержать одно и то же значение, которое обеспечивает соответствие всех воссоединенных данных символов одному распределенному представлению файла. Идентификация файла представляет собой поле переменной длины, которое начинается с первого кодового слова, следующего за индексом сегмента, и продолжается до начала необязательных полей (если таковые присутствуют) или до окончания управляющего блока 0Макро PDF417 (в случае отсутствия необязательных полей).

Каждое кодовое слово в идентификации файла может иметь значение от 0 до 899, эффективно создавая серии идентификации файла для номеров базы 900. Каждое кодовое слово серии передается в качестве 3-разрядного десятичного значения представления АSCII (версия КОИ-7).

Примечание — На эффективность схемы идентификации файла влияет длина поля идентификации файла и соответствие алгоритма, используемого для генерирования значения идентификации файла.

Н.2.3 Необязательные поля

Необязательные поля (optional field) могут следовать после идентификации файла. Каждое необязательное поле начинается со специальной последовательности-указателя (tag sequence) и продолжается до начала следующего необязательного поля (если оно присутствует) или окончания управляющего блока (если отсутствует следующее необязательное поле). Последовательность-указатель состоит из кодового слова 923, за которым следует отдельное кодовое слово указателя поля (field designator). В каждом необязательном поле данные, следующие за последовательностью-указателем, имеют интерпретацию, обусловленную спецификой поля. Не следует использовать пустые необязательные поля. В таблице Н.1 представлено соответствие между текущими заданными указателями полей и необязательным содержимым полей. Каждое необязательное поле начинается с подразумеваемого возврата к режиму уплотнения, представленному в таблице Н.1 и с подразумеваемого возвращения к ЕСІ 000002 (или GLI 0 для кодирующих устройств, соответствующих ранее опубликованным стандартам PDF417). Также могут быть использованы управляющая последовательность ЕСІ и функции фиксации режима и регистра режима, но только в необязательных полях, изначально находящихся в режиме текстового уплотнения.

Эти поля всегда представляют параметры глобального файла и поэтому не нуждаются в представлении в управляющем блоке более чем в одном символе Макро PDF417 в пределах распределенного представления файла, за исключением поля числа сегментов (segment count), в соответствии с представленным ниже. Сегмент, который содержит эти поля, задается специальной реализацией кодирующего устройства. Если особое поле подлежит появлению более чем в одном сегменте, оно должно идентично появиться в каждом сегменте. Для необязательных полей не существует определенного порядка.

Таблица Н	.1 — Указатели необязательных	полей Макро PDF417
-----------	-------------------------------	--------------------

Указатель поля (Field Designator)	Переданное байтовое значение	Содержимое	Исходный режим уплот- нения	Фиксирован- ный режим уплотнения ^а	Общее число кодовых слов ^b
0	48	Имя файла (File Name)	Текстовое уплотнение	Нет	Переменное
1	49	Число сегментов (Segment Count)	Цифровое уплотнение	Да	4
2	50	Отметка времени (Time Stamp)	Цифровое уплотнение	Да	6
3	51	Отправитель (Sender)	Цифровое уплотнение	Нет	Переменное
4	52	Получатель (Addressee)	Цифровое уплотнение	Нет	Переменное
5	53	Размер файла (File Size)	Цифровое уплотнение	Да	Переменное

Окончание таблицы Н.1

Указател (Fie Design	eld	Переданное байтовое значение	Содержимое	Исходный режим уплот- нения	Фиксирован- ный режим уплотнения ^а	Общее число кодовых слов ^b
6		54	Контрольная сумма (Checksum)	Цифровое уплотнение	Да	4

^а«Да» в графе «Фиксированный режим уплотнения» означает, что в этом поле не допускается использовать никакие функции фиксации режима и регистра режима.

В соответствии с таблицей H.1 все необязательные поля используют стандарт высокоуровневого кодирования PDF417. Действующий режим по умолчанию в начале каждого поля должен быть задан как в таблице H.1 безотносительно к функциям фиксации режима и регистра режима, ранее присутствующим в символе.

Особое построение необязательного поля должно соответствовать нижеследующему:

- поле числа сегментов (Segment Count) (идентифицирующее общее количество символов PDF417 в распределенном файле) может содержать значения от 1 до 99 999 и должно быть закодировано как два кодовых слова. Если используют необязательное поле числа сегментов, то оно должно быть представлено в каждом сегменте;
- поле отметки времени (Time Stamp) подлежит интерпретации в режиме цифрового уплотнения. Оно указывает отметку времени в исходном файле, и выглядит как астрономическое время в секундах, начиная с 1970:01:00:00:00 (т.е. 00:00:00 по Гринвичу на 1 января 1970 г.). Используя данный формат, четыре кодовых слова могут закодировать любую дату в пределах следующих 200 столетий;
 - поле размера файла (File Size) содержит размер в байтах исходного единого файла;
- поле контрольной суммы (Checksum) содержит значение контрольной суммы 16-битового (2 байта) циклически избыточного кода (CRC), использующей полином CCITT-16 $x^{16} + x^{12} + x^5 + 1$, вычисленный по всему исходному единому файлу.

Размер файла и контрольную сумму следует вычислять из исходного файла до прибавления любых управляющих последовательностей ECI, используемых для кодирования интерпретаций в расширенном канале. Имеется в виду, что если приемное устройство проверяет контрольную сумму после осуществления приема, исходный файл должен быть дословно восстановлен. Это требуется для проверки данной необязательной контрольной суммы, чтобы не проводились никакие задаваемые пользователем или необязательные преобразования потока байтов даже в том случае, когда проверка может быть выполнена в процессе декодирования ECI.

Если используют CRC, вычисление может быть выполнено до отправки данных к принтеру или в самом принтере на основе возможностей принтера.

Значения указателя поля больше шести в настоящее время не заданы. Однако, оборудование, декодирующее PDF417, должно декодировать и передавать любые встречающиеся необязательные поля со значением указателя поля от 7 до 9 (значение байта от 55 до 57) или от А до Z (значения байта от 65 до 90) путем обработки данных поля в качестве данных, исходно находящихся в режиме текстового уплотнения и имеющих переменную длину.

H.2.4 Ограничитель Макро PDF417

Управляющий блок в символе, представляющем последний сегмент файла Макро PDF417, содержит особый маркер (называемый ограничителем Макро PDF417 — Macro PDF417 terminator), состоящий из кодового слова 922 в конце управляющего блока. Управляющий блок любого иного символа должен оканчиваться после любых необязательных полей, не имеющих специального ограничителя.

Н.3 Рассмотрение высокоуровневого кодирования

Несмотря на то, что Макро PDF417 подразумевает механизм логического связывания множества символов, при высокоуровневом кодировании PDF417, каждый символ должен оставаться как отдельный объект. Таким образом, сфера действия переключения режима должна ограничиваться рамками символа, в котором она возникла. Каждый символ должен начинаться в подрежиме прописных букв режима текстового уплотнения.

Два обязательных поля должны быть закодированы следующим образом: поле индекса сегмента закодировано в режиме цифрового уплотнения; а поле идентификации файла кодируется как последовательность чисел базы 900.

В контексте необязательного поля управляющего блока режимы уплотнения, указанные в таблице Н.1, должны замещать текущие режимы, заданные кодовыми словами идентификатора режима в пределах области кодовых слов данных символа. Однако сфера действия текущей интерпретации в расширенном канале переходит через управляющий блок Макро PDF417 к началу следующего символа Макро PDF417. Каждое поле управляющего блока Макро начинается с подразумеваемого возврата к ЕСІ 000002 (или GLI 0 для кодирующих устройств, совместимых с исходными стандартами PDF417). Также должна быть возможность установить другую ЕСІ внутри необязательного поля управляющего блока в режиме текстового уплотнения (например, для правильного представления

В последней графе «Общее число кодовых слов» учитывают последовательность-указатель из двух кодовых слов.

греческого имени получателя). Управляющую последовательность ЕСІ можно разместить в любой допустимой позиции (5.5.3) после кодового слова 923.

Н.4 Пример кодирования

Приведенный пример показывает кодирование управляющего блока Макро PDF417:

Комплект Макро PDF417 кодирует в общей сложности 4 567 байт, заданных пользователем данных в четырех символах PDF417 (или сегментах файлов). Другие «заголовки» данных, подлежащие кодированию:

- идентификатор файла = 17_{base 900} 53_{base 900};
- число сегментов, подлежащих использованию;
- отправитель: CEN BE;
- получатель: ISO CH.

П р и м е ч а н и е — Поля: число сегментов, отправитель и получатель — являются тремя необязательными полями, выбираемыми пользователем.

При условии, что кодирующее устройство располагает необязательные поля в первом символе, кодирование управляющего блока Макро PDF417 в этом символе должно соответствовать приведенному ниже:

... [последнее кодовое слово данных] [928]_A [111] [100]_B [017] [053]_C [923] [001]_D

[111] [104]_E [923] [003]_F [064] [416] [034]_G [923] [004]_H [258] [446] [067]_I [первое кодовое слово коррекции ощибки]...

В последнем из четырех символов будет следующий управляющий блок Макро PDF417:

[последнее кодовое слово данных] [928] $_{\rm A}$ [111] [103] $_{\rm B}$ [017] [053] $_{\rm C}$

[923] [001]_D [111] [104]_E [922], [первое кодовое слово коррекции ошибки],

где A — кодовое слово маркера макро (Macro marker);

В — идентификация сегмента файла (File Segment ID).

Сегменты файла пронумерованы от 0 до j-1 и закодированы с использованием режима цифрового уплотнения:

Первый сегмент = 00000 = кодовые слова со значениями 111, 100;

Четвертый сегмент = 00003 = кодовые слова со значениями 111, 103;

С — идентификация файла по базе 900;

D — признак поля числа сегментов;

Е — число сегментов;

F — признак поля отправителя;

G — поле отправителя, кодирующее CEN BE;

Н — признак поля получателя;

I — поле получатель, кодирующее ISO CH;

J — ограничитель Макро PDF417.

H.5 Макро PDF417 и протокол интерпретации в расширенном канале

Независимый от символики протокол интерпретации в расширенном канале (протокол ECI) был разработан после того, как PDF417 был регламентирован как символика. PDF417 поддерживал собственную систему идентификаторов глобальной метки (GLI), предшественницу и основу протокола ECI, с самой первой публикации спецификаций символики в 1994 г. ([3] и [4]). Поэтому следует принять во внимание ранние внедрения GLI. Существуют два обстоятельства, которые следует учитывать:

- GLI 0 и GLI 1 (равнозначные ECI 000000 и ECI 000001) были только интерпретациями, установленными в исходных спецификациях PDF417. Они эквивалентны ECI 000000 и ECI 000001. Прежние правила для Макро PDF417 приведены в H.5.1;

- иные назначения ECI, используемые совместно с Макро PDF417, приведены в H.5.2.

H.5.1 Макро PDF417 с интерпретациями в расширенном канале 000000 и 000001 (GLI 0 и GLI 1)

Так как GLI были действительной частью исходной спецификации PDF417, является логичным наличие кодирующих устройств GLI и Макро PDF417, объединенных в одну единицу. Исходная спецификация символики PDF417 вызывала обязательную логическую схему «возврат к GLI 0» в начале второго и последующего символов Макро PDF417, поэтому каждый символ должен начинаться с интерпретации по умолчанию. Для GLI 0 и GL 1 (эквивалентным ECI 000000 и ECI 000001) это не оказывает никакого внутреннего воздействия на кодирование. Однако для некоторых сложных интерпретаций в расширенном канале логическую схему «возврат к GLI 0» трудно реализовать независимым от символики способом.

Кодирующее программное обеспечение, соответствующее исходной спецификации для Макро PDF417 и GLI 0 и GLI 1, полностью подходит для ранее существовавших применений, а также применений GLI, задаваемых пользователем (теперь именуемых ECI), так как сфера действия системы по определению является ограниченной.

Все ECI, имеющие нумерацию 000002 или выше, не должны быть заданы логической схемой с возвратом к GLI 0. Следовательно, символы PDF417 не должны смешивать ECI 000000 и ECI 000001 с интерпретациями в расширенном канале, имеющими более высокую нумерацию (за исключением закрытых систем).

H.5.2 Макро PDF417 и прочие интерпретации в расширенном канале

Кодирующее устройство ECI может быть независимым от символики и генерировать поток байтов для ввода данных в кодирующее устройство символики PDF417. Кодирующее устройство ECI должно работать так, как если бы имелся отдельный поток данных независимо от размера файла. Таким образом, после вызова ECI должна сохраняться через сегменты до появления другой ECI или окончания закодированных данных. Это необходимо, например, в случае, где назначение ECI представляет схему шифрования, в которой не приемлем возврат в GLI 0.

Кодирующим устройствам Макро PDF417, соответствующим настоящему стандарту, нет необходимости кодировать преобладающую ECI в начале следующих символов Макро PDF417.

Примечание — Может потребоваться проведение нескольких итераций для генерации логической схемы кодирования окончания символа, например режим цифрового уплотнения не должен растягиваться на два сегмента, но два отдельных блока режима цифрового уплотнения могут быть закодированы в окончании одного символа и в начале следующего. Эти условия относятся к Макро PDF417 и высокоуровневому кодированию (в соответствии с H.3), а не относятся к Макро PDF417 и ECI.

Н.6 Передача данных Макро PDF417

Передача информации управляющего блока Макро PDF417 должна трактоваться так же, как интерпретируемые ECI. Независимый от символики протокол ECI приведен ниже; исходный протокол PDF417 приведен в приложении M. Несмотря на то, что управляющий блок Макро PDF417 кодируется в конце данных символа, при использовании протокола ECI он передается перед данными символа.

Три кодовых слова (922, 923 и 928) отмечают кодирование управляющего блока Макро PDF417 или одной из его составных частей. Декодирование происходит следующим образом:

- а) если последовательность начинается с кодового слова 928 (макро-маркер):
- 1) кодовое слово 928 передается как управляющая последовательность 92, 77, 73, которую представляет \МI в интерпретации по умолчанию:
- 2) следующие два кодовых слова идентифицируют индекс сегмента. Они закодированы в режиме цифрового уплотнения и декодируются как 5-разрядное число в диапазоне от 00000 до 99998;
- 3) следующие кодовые слова кодируют поле идентификации файла, которое должно быть одинаковым для всех связанных символов Макро PDF417. Поле идентификации файла оканчивается кодовым словом 922 или 923, или завершается с окончанием закодированных данных в символе. Каждое кодовое слово преобразуется в 3-разрядное число в диапазоне от 000 до 899 (т.е. номер кодового слова) и передается как три значения байтов (с десятичными значениями в диапазоне от 48 до 57) после управляющего заголовка: 92, 77, 70, который представлен \MF в интерпретации по умолчанию.
- b) если последовательность начинается с кодового слова 923:
- 1) кодовое слово 923 передается как управляющая последовательность 92, 77, 79, которая представлена \МО в интерпретации по умолчанию;
- 2) следующее кодовое слово, представляющее один из указателей необязательного поля (field designator), приведенных в таблице H.1, передается как отдельный байт, представляющий значение знака ASCII (версия КОИ-7) для указателя;
- 3) следующие кодовые слова несут содержимое данных указателя необязательного поля. Необязательное поле оканчивается кодовым словом 922 или 923, или с окончанием закодированных данных в символе. Промежуточные кодовые слова следует преобразовывать в соответствии с правилами декодирования соответствующего режима уплотнения, приведенными в таблице Н.1. Полученные в результате данные могут иметь переменную длину;
- с) при идентификации ограничителя Макро PDF417 (кодовое слово 922) следует передать управляющую последовательность 92, 77, 90, которая представлена \MZ в интерпретации по умолчанию;
- d) в конце управляющего блока Макро PDF417, как определено для окончания кодируемых данных в символе, следует передать управляющую последовательность 92, 77, 89, которая представлена \МY в интерпретации по умолчанию.

Примечание — Эта управляющая последовательность явно в символе не закодирована.

Все поля управляющего блока Макро PDF417 для символа (сегмента) должны быть переданы как единый блок, начинающийся с \MI и оканчивающийся \MY. Передача управляющего блока Макро PDF417 должна предварять передачу остатка закодированного сегмента файла даже в том случае, если управляющий блок Макро PDF417 закодирован в конце символа.

Пример — Управляющий блок Макро PDF417 для первого символа, индекс сегмента = 0 и идентификация файла (100, 200, 300) будут закодированы в символе как последовательность кодовых слов:

[928] [111] [100] [100] [200] [300]

Она будет передаваться следующим образом: передача данных (байты):

92, 77, 73, 48, 48, 48, 48, 48, 92, 77, 70, 49, 48, 48, 50, 48, 48, 51, 48, 48, 92, 77, 89

интерпретация в знаках ASCII (версия КОИ-7):

\MI00000\MF100200300\MY

После сканирования символов Макро PDF417 функция депакетирования восстановит исходное сообщение с учетом того, что символы могли быть сканированы не по порядку. Если система работает в буферизованном режиме, функция депакетирования находится в декодере; при работе в небуферизованном режиме эта функция находится в системе приема.

Декодеры должны предусматривать специфичный для каждого декодера метод, посредством которого обработка заданной идентификации файла Макро PDF417 (Масго PDF417) может быть отменена таким образом, чтобы позволить декодеру начать обработку новой идентификации файла. Это необходимо для предотвращения условий блокировки, которая может возникнуть при потере или невозможности декодирования одного или более символов заданной идентификации файла.

Н.6.1 Работа в буферизованном режиме

При работе в буферизованном режиме (buffered mode) депакетизация должна выполняться в декодере/считывающем устройстве. В зависимости от конфигурации оборудования, декодер будет отправлять:

- восстановленные данные, без управляющего блока Макро PDF417
- один управляющий блок Макро PDF417 (который сам по себе может быть восстановлен путем включения всех необязательных полей, присутствующих в любых символах) для нахождения в начале всего закодированного сообщения. Полученный в результате управляющий блок Макро PDF417 должен иметь свое поле индекса Макро (Macro Index) со значением, равным 0, и должен включать в себя поле окончания файла Макро (Macro end-of-file) (в сущности, для обозначения всего восстановленного сообщения как первый и единственный Макро сегмент псевдосерии).

Н.6.2 Работа в небуферизованом режиме

В небуферизованном режиме (unbuffered mode) депакетирование должно быть выполнено в системе приема. Каждый переданный управляющий блок Макро PDF417 должен представлять все обязательные и необязательные поля, которые в действительности закодированы в символе.

При конфигурировании в небуферизованном режиме декодер может иметь необязательную конфигурацию, допускающую, чтобы последовательные символы имели одну идентификацию файла (File ID). Эта процедура может быть целесообразной только в том случае, если декодер сконфигурирован для передачи управляющего блока Макро PDF417 в систему приема, и эта система приема разработана для отслеживания идентификации файла управляющего блока Макро PDF417 с целью определения когда был обработан весь файл. Символы с разной идентификацией файлов или без нее (например, отдельный символ, не являющийся частью комплекта символов Макро PDF417) должны рассматриваться в соответствии с установками системы приема.

Для облегчения контроля получения всех символов набора символов Макро PDF417 (Macro PDF417) в небуферизованном режиме, следует по возможности использовать необязательное поле числа сегментов как часть закодированного управляющего блока Макро PDF417.

Н.6.3 Передача с возвратом к нулю

Поскольку в исходной спецификации([3] и [4]) символики PDF417 определены правила для GLI 0 и GLI 1, которые незначительно отличаются от правил для ECI, считывающее устройство, соответствующее настоящему стандарту, должно добавлять особые управляющие последовательности при передаче символов, содержащие явные вызовы GLI 1, в следующих двух случаях:

- а) декодер должен передавать управляющую последовательность GLI 0 или управляющую последовательность ECI 000000 (в зависимости от того, какой протокол передачи запрограммирован для использования) после передачи данных каждого символа Макро PDF417, данные которого заканчиваются в интерпретации GLI 1 (ECI 000001);
- b) декодер должен передавать GLI 1 (ECI 000001) в начале каждого необязательного поля переменной длины, закодированного в режиме текстового уплотнения в управляющем блоке Макро PDF417, если данные, предваряющие это поле, заканчиваются в интерпретации GLI 1 (ECI 000001).

Это требование применяется вне зависимости от режима (буферизованого или небуферизованого) и вне зависимости от программирования декодера на передачу с использованием одного из двух протоколов (протокола ECI или исходного протокола PDF417).

Приложение I (обязательное)

Испытание качества символа PDF417

В соответствии с 5.14.4 качество печати символов PDF417 оценивается согласно методике, определенной в ISO/IEC 15415 для оценки многострочных символик, предусматривающих сканирование, пересекающее несколько строк.

Символ PDF417 оценивается следующим образом:

- по анализу профиля отражения при сканировании, при котором учитываются только знаки start (СТАРТ) и stop (СТОП);
- по параметру «эффективность декодирования кодовых слов» (Codeword Yield), определяемому с учетом только кодовых слов данных и исправления ошибок, который служит для измерения эффективности, с которой линейные пути сканирования позволяют получать данные от символа. Параметр «эффективность декодирования кодовых слов» (Codeword Yield) соответствует количеству успешно декодированных кодовых слов, выраженному как процент от максимального возможного количества кодовых слов, которые можно декодировать, то есть числу столбцов данных в символе, умноженному на количество «подходящих» просмотров (после корректировки с учетом наклона);
- по параметру «неиспользованных исправлений ошибок» (Unused Error Correction), определяемому с учетом только кодовых слов данных и исправления ошибок, отражающему процент числа ошибок и стираний от общего числа ошибок, которые могут быть исправлены в символе;
- по качеству печати кодовых слов (знаков символа), применимому только к знакам символа кодовых слов данных и кодовых слов коррекции ошибки, обеспечиваемому параметрами «декодируемость» (Decodability), «дефекты» (Defects) и «модуляция» (Modulation) профиля отражения при сканировании по всей области данных символа, которые подлежат оценке с присвоением классов; классы, полученные в результате такой оценки, затем корректируются с целью исправления ошибок, которое состоит в маскировке несовершенных параметров символа, оказывающих влияние на качество символа.

За полный класс символа принимается наменьшее из значений классов, основанных на анализе профиля отражения при сканировании, а также классов, основанных на оценке параметров «эффективность декодирования кодовых слов» (Codeword Yield), «неиспользованное исправление ошибок» (Unused Error Correction), и оценке качества печати кодовых слов (знаков символа).

Приложение J (обязательное)

Рекомендуемый алгоритм декодирования для PDF417

J.1 Общие положения

Рекомендуемый алгоритм декодирования применяют для вычисления декодируемости при оценке качества символа с использованием методов, приведенных в ISO/IEC 15415.

При оценке качества символа с помощью настоящего рекомендуемого алгоритма декодирования символ PDF417 должен декодироваться в виде серии линий сканирования вдоль этого символа до знаков СТАРТ или СТОП, но необязательно строка за строкой. Символ может быть декодирован с помощью номера кластера и в том случае, если линия сканирования проходит через две или более строк. Последовательности штрихов и пробелов знаков символа PDF417 декодируют с использованием измерений «от края до подобного края» (е).

Символ PDF417 подлежит декодированию в четыре этапа:

- а) инициализация для установления матрицы символа;
- b) декодирование линии с использованием рекомендуемого алгоритма декодирования;
- с) заполнение матрицы;
- d) интерпретация.

J.2 Инициализация

В начале процесса декодирования для установления параметров структуры символа (числа строк *r*, числа столбцов *c*) и уровней коррекции ошибок должно быть выполнено достаточное количество декодирований вдоль линии сканирования (J.3). Эта информация кодируется в левом и правом индикаторах строки, примыкающих соответственно к знакам СТАРТ и СТОП.

После проведения инициализации параметров структуры символа должна быть установлена матрица, отражающая размер (число строк и число столбцов) декодируемого символа. Матрица должна исключать знаки СТАРТ и СТОП и индикаторы строк.

J.3 Рекомендуемый алгоритм декодирования линии

Декодируемая линия сканирования должна содержать свободную зону, знак СТАРТ и/или СТОП, один или два индикатора строки и один или более знаков символа в области данных. Линия сканирования может пересекать более чем одну строку. Алгоритм должен включать следующие этапы по декодированию линии:

- а) подтверждение наличия свободной зоны;
- b) подсчет для каждой последовательности штрихов и пробелов знака символа (включая знаки СТАРТ и СТОП) ширины элементов в соответствии с рисунком J.1:

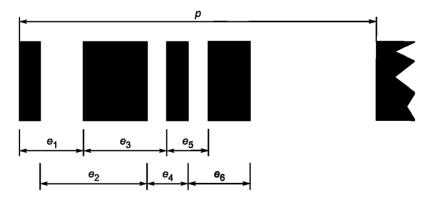


Рисунок J.1 — Размеры для декодирования

с) преобразование измерения e_1 , e_2 , e_3 , e_4 , e_5 , u e_6 в нормализованные значения E_1 , E_2 , E_3 , E_4 , E_5 и E_6 , которые должны представлять ширину этих элементов в модулях. Используют следующий способ для определения i-го значения:

```
при 1,5p/17 \le e_i < 2,5p/17, E_i = 2 при 2,5p/17 \le e_i < 3,5p/17, E_i = 3 при 3,5p/17 \le e_i < 4,5p/17, E_i = 4 при 4,5p/17 \le e_i < 5,5p/17, E_i = 5 при 5,5p/17 \le e_i < 6,5p/17, E_i = 6
```

при $6,5p/17 \le e_i < 7,5p/17$, $E_i = 7$ при $7,5p/17 \le e_i < 8,5p/17$, $E_i = 8$ при $8,5p/17 \le e_i < 9,5p/17$, $E_i = 9$

В противном случае последовательность штрихов и пробелов знака символа должна считаться ошибочной;

- d) после нахождения знаков СТАРТ и СТОП предпринимают попытку декодировать индикатор строки и знаки символа в количестве, соответствующем числу столбцов матрицы в направлении, выведенном из декодированных знаков СТАРТ и СТОП. Последовательности штрихов и пробелов знаков символа декодируют в соответствии с этапом e);
 - е) вычисление номера кластера К знака символа по формуле:

$$K = (E_1 - E_2 + E_5 - E_6 + 9) \mod 9$$

Примечание — Формула дает результаты, идентичные результатам уравнения, приведенного в 5.3.1.

Номер кластера *К* должен быть равен 0, 3 или 6; в противном случае знак символа и связанное с ним кодовое слово должны считаться ошибочными;

f) восстанавливают значение кодового слова по таблице декодирования (см. приложение A) с использованием семи значений (значения кластера K и значений E_1 , E_2 , E_3 , E_4 , E_5 и E_6) в качестве ключевых. Эти значения можно вычислить из последовательностей штрихов и пробелов, приведенных в приложении A.

П р и м е ч а н и е — В вычислении неявно используют номер кластера для обнаружения всех ошибок декодирования, вызванных отдельными несистематическими ошибками положения края на величину одного модуля;

- g) как только будут установлены знаки СТАРТ и СТОП, должны использоваться значения кодового слова левого индикатора строки и (или) правого индикатора строки для установления параметров структуры символа. Применяют уравнения, обратные к приведенным в 5.11.3.1 и 5.11.3.2 для установления: номера строки (*F*), числа строк (*r*), числа столбцов (*c*) и уровня коррекции ошибок (s);
- h) выполняются дополнительные проверки (ускорение сканирования, абсолютные синхронизированные размеры, свободные зоны и т.д.), результаты которых должны быть приемлемы для отдельных характеристик считывающего устройства.

J.4 Заполнение матрицы

Для заполнения матрицы из (r) строк и (c) столбцов, установленной с помощью процедуры инициализации, должна использоваться следующая процедура:

- а) устанавливают начальное значение v для подсчета числа стираний $v = r \times c$;
- b) для каждого сканирования следует декодировать количество кодовых слов, равное числу столбцов в матрице;
- с) действительные результаты декодирования размещают в матрице на соответствующих местах, определенных по номеру строки (из индикаторов строк), и значению кластера.

Если происходит пересечение нескольких строк, линия сканирования будет характеризоваться разными номерами строк, определяемыми левым и правым индикаторами строк. Номер кластера следует использовать для интерполяции правильного номера строки для каждого отдельного действительного кодового слова.

Пример — Сканирование с декодированием характеризуется знаками start (СТАРТ) и stop (СТОП), в нем присутствует левый индикатор строки с номером строки 7 и правый индикатор строки с номером строки 10. В матрице присутствуют 10 столбцов. Линия сканирования при декодировании не смогла декодировать три кодовых слова, поскольку она не оставалась полностью в одной строке для полного перехода, однако на основании синхронизации элементов известно положение этих «неустановленных» кодовых слов.

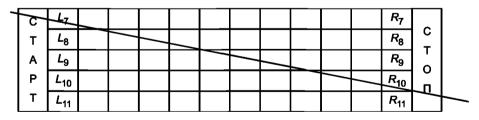


Рисунок J.2 — Схема, представляющая линию сканирования, пересекающую строки

Кластеры расположены в следующей последовательности: «неустановленный», 6, 6, 6; «неустановленный», 0, 0; «неустановленный», 3, 3.

Используя систему обозначений матрицы для строки (r) и столбца (c), кодовые слова подлежат заполнению согласно позициям: «неустановленная», (8,2), (8,3), (8,4); «неустановленная», (9,6), (9,7); «неустановленная», (10,9) и (10,10).

П р и м е ч а н и е — Этот пример является крайним случаем в связи с тем, что линия сканирования пересекает четыре строки, но с его помощью достигается декодирование 70 % кодовых слов;

- d) по мере заполнения матрицы подсчет стираний v должен быть уменьшен на одно значение для каждого действительного кодового слова.
- е) если уровень коррекции ошибки не равен нулю, то может быть предпринято исправление ошибки, когда число неустановленных кодовых слов (число стираний v) будет удовлетворять уравнениям, приведенным в 5.7.2 (при v = I и f = 0). Если устранить ошибки не удается, то должны быть собраны дополнительные кодовые слова;
 - f) если уровень коррекции ошибок равен нулю, то следует ввести два кодовых слова коррекции ошибок. Дальнейшие подробности обнаружения и коррекции ошибки приведены в приложении K.

J.5 Интерпретация

Начиная с первоначального состояния подрежима прописные буквы режима текстового уплотнения, кодовые слова данных следует интерпретировать в соответствии с режимами уплотнения.

Приложение К (обязательное)

Процедуры коррекции ошибок

Схема восстановления может быть вызвана при общем числе неустановленных кодовых слов v менее или равном значению l, заданному соответствующим уравнением в 5.7.2, где f = 0, тогда возможно применение схемы восстановления. Неустановленные кодовые слова подлежат замещению нулями, и позицией неустановленного кодового слова l является j_l ,где l = 1,2,..., v. Составляют полином знака символа:

$$C(x) = C_{n-1}x_{n-1} + C_{n-2}x^{n-2} + ... + C_1x^1 + C_0$$

где коэффициенты при x являются считанными кодовыми словами с первым кодовым словом, C_{n-1} ; n — общее количество кодовых слов.

Рассчитывают значения синдрома k (от S_1 до S_k) путем следующих вычислений:

$$C(x)$$
 при $x = 3^{i}$

для i = 1 до i = k,

где k — число кодовых слов коррекции в символе, равное 2^{s+1} .

Схема генерации синдромов приведена на рисунке К.1.

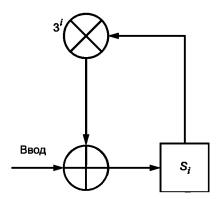


Рисунок К.1 — Делитель синдрома символа

Так как позиции неустановленных кодовых слов известны из j_l для l = 1, 2, ... v, полином местонахождения ошибки $\sigma(x)$ для этих известных позиций можно вычислить по формуле

$$\sigma(x) = (1 - \beta_1 x)(1 - \beta_2 x)...(1 - \beta_v x) = 1 + \sigma_1 x + ... + \sigma_v x^v$$

где $\beta_l = 3^{j_l}$.

Полином местонахождения ошибок $\sigma(x)$ можно корректировать, чтобы включить позиции ошибок. Это можно выполнить с помощью алгоритма Берлекампа-Массе (Berlekamp-Massey), приведенного в [2].

Далее следует удостовериться, что количество стираний и ошибок удовлетворяет соответствующему уравнению, вычисляющему возможности исправления ошибок, приведенному в 5.7.2.

Решение $\sigma(x)=0$ дает позицию для t ошибок, где $t\geq 0$; если t=0, то ошибки отсутствуют. Далее рассчитывают значение ошибок e_{jl} для позиции j_l , l=1,...,v+t. Для вычисления ошибок требуется вспомогательный полином Z(x), который определяют следующим образом

$$Z(x) = 1 + (s_1 + \sigma_1)x + (s_2 + \sigma_1s_1 + \sigma_2)x^2 + ... + (s_{\eta} + \sigma_1s_{\eta-1} + \sigma_2s_{\eta-2} + \sigma_{\eta})x^{\eta},$$

где $\eta = v + t$.

Значение ошибок в позиции j_1 таким образом получается через

$$e_{j_{l}} = \frac{Z(\beta_{l}^{-1})}{\beta_{l} \prod_{i=1, l \neq l}^{\eta} (1 - \beta_{i} \beta_{l}^{-1})}.$$

После успешного решения для ошибок дополнения значений ошибок добавляются к кодовым словам в соответствующих позициях.

Приложение L (обязательное)

Идентификатор символики

Унифицированная методика, определенная в ISO/IEC 15424, используется для формирования сообщения о считываемой символике, о настройках декодера и других особых свойствах символики.

Идентификатор символики для PDF417 должен быть представлен в виде:

]Lm

где] — знак флага идентификатора символики (десятичное значение ASCII — 93);

L — идентификатор символики для PDF417;

т — знак-модификатор, имеющий одно из значений, приведенных в таблице L.1.

Таблица L.1 — Значения модификаторов идентификатора символики для PDF417

m	Вариант обработки
0	Считывающее устройство установлено в соответствии с протоколом, приведенным в спецификациях символики [3] и [4], опубликованных в 1994 (приложение M) ^а
1	Считывающее устройство установлено в соответствии с протоколом настоящего стандарта для интерпретации в расширенном канале (5.17.2). Все знаки данных со значением 92 дублируются
2	Считывающее устройство установлено в соответствии с протоколом настоящего стандарта для операций базового канала (5.17.1). Знаки данных со значением 92 не дублируются ^р
	3.0

^а Во время передачи этого вари**анта приемное устройство не может точно определить, были ли вызваны** ЕСІ или в передаче повторились байты данных со значением 92.

Эта информация не должна кодироваться в символе штрихового кода, однако она должна генерироваться декодером после декодирования и передаваться как преамбула к данным сообщения.

^b Когда декодер установлен на этот режим, небуферизованные символы Макро PDF417 и символы, вынуждающие декодер передавать управляющие последовательности ECI, не могут корректно быть переданы.

Приложение М (обязательное)

Протокол передачи для декодеров, соответствующий исходным спецификациям PDF417

М.1 Общие положения

Ранее опубликованные спецификации символики PDF417 ([3] и [4]) поддерживают режим базового канала, идентификаторы глобальной метки — GLI (предшествующие независимой от символики интерпретации в расширенном канале — ECI) и Макро PDF417 (но без интегрирования с протоколом ECI). Настоящее приложение определяет протокол передачи, соответствующий первоначальной спецификации, который все еще может находится в эксплуатации. и направлено на обеспечение совместимости.

М.2 Режим базового канала

В режиме базового канала (Basic Channel mode) все знаки данных символа передаются в соответствии с действующими режимами уплотнения и включаются в передачу данных как последовательность 8-битовых байтов. Знаки СТАРТ и СТОП, индикаторы строк, дескриптор длины символа, кодовые слова переключения режима и кодовые слова коррекции ошибок не передаются.

Примечание — Передача идентична процедуре, приведенной в 5.17.1.

Ранние декодеры должны выдавать идентификатор символики]L0, однако могут и не передавать префикс идентификатора символики.

М.3 Символы, кодирующие GLI

Ранее были установлены только GLI 1 и GLI 0, но исходным протоколом поддерживается передача всех управляющих последовательностей GLI/ECI. Три кодовых слова (925, 926 и 927) отмечают кодирование значения GLI и декодируются как значения байтов в соответствии с приведенной ниже процедурой:

- а) если управляющая последовательность GLI начинается кодовым словом 927 (идентификатор ECI для набора знаков или кодовой страницы):
 - 1) кодовое слово со значением 927 передается как 4-байтовая управляющая последовательность 92, 57, 50, 55, которая представлена \927 в интерпретации знаков ASCII (версия КОИ-7);
 - 2) следующее кодовое слово представляет номер GLI в области значений от 000 до 899. Кодовое слово преобразовывается в 3-разрядное значение. 3-разрядное значение передается как соответствующие значения байтов (с десятичными значениями от 48 до 57), которым предшествует байт со значением 92.

Пример — В символе закодировано: [927] [001]
Передача данных (байты): 92, 57, 50, 55, 92, 48, 48, 49
Интерпретация знаков ASCII (версия КОИ-7): \927\001

- b) если управляющая последовательность GLI начинается кодовым словом 926 (идентификатор общего назначения формата ECI):
 - 1) кодовое слово 926 передается как 4-байтовая управляющая последовательность 92, 57, 50, 54, которая представлена \926 в интерпретации знаков ASCII (версия КОИ-7);
 - 2) следующие два кодовых слова (допускаются кодовые слова со значениями от 000 до 899) представляют номер ECI следующим способом:

Кодовое слово 1: Homep_ECI div 900 - 1 Кодовое слово 2: Homep_ECI mod 900.

Каждое кодовое слово преобразовывается в 3-разрядное значение. 3-разрядное значение передается как соответствующие значения байтов (от 48 до 57), которым предшествует байт со значением 92.

Пример — В символе закодировано: [926] [136] [156]
Передача данных (байты): 92, 57, 50, 54, 92, 49, 51, 54, 92, 49, 53, 54
Интерпретация знаков ASCII (версия КОИ-7): \926\136\156

- с) если управляющая последовательность GLI начинается кодовым словом 925 (идентификатор ECI, задаваемый пользователем):
 - 1) кодовое слово 925 передается как 4-байтовая управляющая последовательность 92, 57, 50, 53, которая представлена \925 в интерпретации в знаках ASCII (версия КОИ-7);
 - 2) следующее кодовое слово представляет номер задаваемого пользователем GLI минус 810 900 (допускаются кодовые слова со значениями от 000 до 899). Кодовое слово преобразуется в 3-разрядное значение. 3-разрядное значение передается как соответствующие значения байтов (от 48 до 57), которым предшествует байт со значением 92.

Пример — В символе закодировано: [925] [456]

Передача данных (байты): 92, 57, 50, 53, 92, 52, 53, 54 Интерпретация знаков ASCII (версия КОИ-7): \925\456

Эта процедура повторяется для каждого случая появления GLI.

 Π р и м е ч а н и е — Объяснения примеров с соответствующими ECI, но использующих протокол передачи ECI, приведены в 5.17.2.

Если знак ОБРАТНАЯ ДРОБНАЯ ЧЕРТА или другой знак, представленный байтом со значением 92, необходимо использовать в качестве закодированных данных, передача должна происходить в соответствии с нижеуказанным примером. Всякий раз, когда байт со значением 92 появляется в качестве данных, должны быть переданы два байта этого значения; таким образом, единичное появление всегда является управляющим знаком, а двоичное появление означает достоверные данные.

Пример — Закодированные данные: A\\B\C Передача: A\\\B\\C

Заданный по умолчанию управляющий знак может быть изменен в декодере (в таком случае должна быть соответственно сконфигурирована система получения), но для этого не должны использоваться значения байтов от 47 до 58 (в основном интерпретируемые как цифровые разряды).

Примечание — В протоколе для передачи ЕСІ (5.17.2) значение 92 для управляющего знака является фиксированным.

В качестве варианта декодеры могут иметь режим работы, при котором управляющие знаки не определены. Такие считывающие устройства не могут ни передавать управляющие последовательности, ни дублировать любые знаки данных, поэтому этот режим не может поддерживать передачу управляющих последовательностей ЕСІ и передачу управляющих блоков Макро PDF417.

М.4 Символы Макро PDF417

При работе по первоначальному протоколу передачи данных PDF417, после того как декодер PDF417 обработал символ Макро PDF417 с заданной идентификацией файла, он должен декодировать и передать все символы с той же идентификацией файла до передачи любых иных символов. Это требование применяют для каждого из нижеуказанных режимов передачи.

М.4.1 Передача в буферизованном режиме

Буферизованная система передачи требует, чтобы декодер собрал весь комплект символов до его передачи. Обработка обязательных полей управляющего блока Макро PDF417 проводится в самом декодере. Передача необязательных полей в декодере может быть индивидуально разрешена или запрещена. Необязательные поля, при их наличии, должны единовременно передаваться в конце полного комплекта данных. Передача каждого поля должна начинаться с передачи соответствующей последовательности — указателя необязательного поля Макро PDF417. Последовательность-указатель состоит из кодового слова 923 (начало необязательного поля Макро PDF417), за которым следует значение указателя в соответствии с таблицей Н.1. Эта последовательность должна передаваться с помощью управляющего знака в соответствии с М.3. Декодированное высокоуровневое содержимое поля должно передаваться после этой последовательности-указателя.

М.4.2 Передача в небуферизованном режиме

Система небуферизованной передачи позволяет декодеру передавать отдельные символы по мере их декодирования.

При использовании небуферизованной схемы должна быть разрешена передача управляющего заголовка Макро PDF417 (Macro PDF417 Control Header), поскольку символы в небуферизованной схеме не подлежат внутреннему упорядочиванию считывающим устройством. Это позволяет системе сервера производить соответствующую систематизацию поступающих данных.

Передача управляющего заголовка Макро PDF417 может быть разрешена или запрещена. Управляющий заголовок Макро PDF417 является частью управляющего блока Макро PDF417 (рисунок H.1), который состоит из кодового слова 928 (Макро-маркер), индекса сегмента (в режиме цифрового уплотнения) и последовательности кодовых слов идентификации файла. В случае, когда передача управляющего заголовка Макро PDF417 разрешена, кодовое слово Макро-маркера и кодовые слова идентификации файла следует передавать, используя управляющий знак в соответствии с М.3. Например, управляющий заголовок Макро PDF417 первого символа, индекс сегмента, равный 0, и идентификация файла (значения кодовых слов 100, 200, 300) должны быть закодированы в символе как последовательность кодовых слов:

[928] [111] [100] [100] [200] [300]

и (принимая управляющий знак со значением 92 по умолчанию) переданы следующим образом: Передача данных (байты):

92, 57, 50, 56, 48, 48, 48, 48, 48, 92, 49, 48, 48, 92, 50, 48, 48, 92, 51, 48, 48

Интерпретация в знаках ASCII (версия КОИ-7); \92800000\100\200\300

Управляющий заголовок Макро PDF417 (если разрешен) следует передавать после данных, закодированных в символе.

Если последняя последовательность GLI, переданная считывающим устройством, не является GLI 0, тогда переданные данные из этого сегмента должны оканчиваться последовательностью байтов 92, 57, 50, 55, 92, 48, 48, 48 (эквивалент в знаках ASCII \927\000), как если бы данные символа оканчивались последовательностью кодовых слов [927][000]. Это возвращает интерпретацию следующего блока к GLI 0.

Передача необязательных полей может быть индивидуально разрешена или запрещена в декодере. Разрешенные необязательные поля должны передаваться вместе с каждым символом Макро PDF417, в котором они были закодированы. Каждое поле должно начинаться с передачи соответствующей последовательности — указателя необязательного поля Макро PDF417. Последовательность-указатель состоит из кодового слова 923, за которым следует значение указателя в соответствии с таблицей H.1; эта последовательность должна передаваться с использованием управляющего знака в соответствии с М.3. Декодированное высокоуровневое содержимое поля должно передаваться после этой последовательности-указателя.

Базируясь только на передаче закодированного потока данных, могут возникнуть трудности или невозможность определения наличия границы между окончанием управляющего блока Макро PDF417 (особенно если он содержит необязательные поля) и началом содержимого данных следующего символа. Протокол передачи системы (например, использующий типовую передачу управляющих знаков STX (HT)¹⁾ и ETX (КТ) или другие процедуры установления связи) может использоваться для определения границ между переданными символами Макро PDF417.

С целью облегчения контроля получения всех символов Макро PDF417 в небуферизованом режиме, когда это возможно, следует использовать необязательное поле числа сегментов как часть закодированного управляющего блока Макро PDF417.

М.5 Передача зарезервированных кодовых слов с использованием исходного протокола PDF417

При работе по исходному протоколу передачи PDF417 декодер должен передавать зарезервированное кодовое слово как управляющий знак (со значением 92 по умолчанию), за которым следуют три разряда, представляющие десятичное значение зарезервированного кодового слова. Кодовые слова данных, которые следуют после зарезервированного кодового слова, интерпретируются и передаются в соответствии с режимом уплотнения, действующим до зарезервированного кодового слова. В частности, будет установлена интерпретация, как если бы зарезервированное кодовое слово ввело кодовое слово фиксации режима в уже действующем режиме уплотнения.

Такая функция фиксации режима байтового или цифрового уплотнения заново устанавливает новое «группирование» кодовых слов. Если доминирующим режимом является режим текстового уплотнения, то осуществляется повторный переход в подрежим прописных букв режима текстового уплотнения.

Несмотря на то, что протокол может соответствующим образом передавать синтаксис сообщения для любых зарезервированных кодовых слов, будущие определения которых заключаются в сигнальных функциях, он не будет предусматривать однозначного выхода данных для нового режима уплотнения. При использовании исходного протокола передачи PDF417 приемное устройство не должно учитывать любые данные, которые следуют за управляющей последовательностью, представляющей вновь определенное кодовое слово режима уплотнения.

М.6 Достижение согласованности между старым и новым оборудованием PDF417

М.6.1 Кодирующие устройства

Введение интерпретаций в расширенном канале, которые не зависят от символики, подразумевает отделение функций кодирования ECI от кодирования символики. Кодирование GLI фактически является внутренне связанным с символикой PDF417. Закодированный поток кодовых слов будет равнозначным независимо от того, какое кодирующее оборудование использовалось для его кодирования: существующее или вновь вводимое. Возможно кодирование, например, данных в соответствии с интерпретацией ECI 000123 (которая еще не задана на момент публикации настоящего стандарта) с помощью кодирующего устройства, способного устанавливать GLI для PDF417; или на первом этапе, кодирование с помощью кодирующего устройства для независимой от символики ECI, за которым, на втором этапе, следует кодирующее устройство для символики PDF417.

Имеются два ограничения:

- логическая схема с возвратом к GLI 0 должна применяться для GLI 0 (ECI 000000) и GLI 1 (ECI 000001);
- GLI 0 и GLI 1 не должны смешиваться с другими ECI в одном символе или комплекте символов Макро PDF417.

М.6.2 Декодеры

Ключом к взаимодействию декодеров, использующих исходный и новый протокол PDF417, является обязательная передача префикса идентификатора символики всякий раз, когда декодер сконфигурирован для работы в новом режиме расширенного канала (extended channel mode) и требует обязательного использования префикса, когда старое и новое оборудование PDF417 используется в одной системе. То есть декодер, имеющий разрешение для работы в режиме расширенного канала (даже при считывании разнородных символов режима базового канала и режима расширенного канала) будет отправлять идентификатор символики с каждой передачей.

¹⁾ В скобках приведены русские обозначения управляющих знаков по ГОСТ 27465.

Примечание — Исходный стандарт PDF417 ([3] и [4]) не обязывает использовать идентификатор символики даже при дублировании управляющего знака (со значением 92 по умолчанию). Соответствие протоколу ECI, представленное в настоящем стандарте, обязывает использовать идентификатор символики.

Декодеры подлежат проверке на соответствие по одному из нижеследующих условий:

- а) полностью соответствуют протоколу ЕСІ и настоящему стандарту:
 - 1) передают соответствующие идентификаторы символики;
- 2) имеют возможность установки или переключения на работу в режиме базового канала или режиме расширенного канала;
 - 3) передают протокол ЕСІ в соответствии с настоящим стандартом (5.17.2);
 - 4) обрабатывают Макро PDF417 в соответствии с настоящим стандартом.
- b) соответствуют стандартам 1994 года¹⁾:
 - 1) и имеют возможности взаимодействия с новым оборудованием и символами, кодирующими ECI:
 - і) передают идентификатор символики]L0:
 - іі) имеют возможность установки или переключения на работу в режиме базового канала или в режиме расширенного канала:
 - ііі) передают протокол GLI в соответствии с М.З;
 - iv) обрабатывают Макро PDF417 в соответствии с М.4;
 - 2) но не имеют возможности взаимодействия с новым оборудованием и символами, кодирующими ECI:
 - і) не передают идентификатор символики;
 - іі) имеют возможность установки или переключения на работу в режиме базового канала или в режиме расширенного канала;
 - ііі) передают протокол GLI в соответствии с М.З;
 - iv) обрабатывают Макро PDF417 в соответствии с М.4;
- с) соответствуют только режиму базового канала:
- 1) передают идентификатор символики]L0 (старое оборудование) или]L2 (новое оборудование) или не передают идентификатор символики;
 - 2) рассматривают символы, содержащие кодовые слова ЕСІ, как ошибочные;
- 3) рассматривают символы Макро PDF417 как ошибочные, за исключением случая, когда считывающее устройство работает в буферизованном режиме и передача управляющего заголовка Макро PDF417 запрещена.

Допустим, что оборудование настроено в соответствии с вышеуказанным, что предоставит считывающему устройству возможность обнаруживать и соответствующим образом реагировать на следующие условия:

а) если в начале передачи присутствует идентификатор символики]L1.

В данном случае приемное устройство достоверно информируется, что декодер работает в режиме расширенного канала для сканированного символа. Следовательно, все байты со значением 92, когда они появляются в качестве данных, были дублированы независимо от того, содержит ли символ ECI или является частью комплекта Макро PDF417. Появления одиночного байта со значением 92 указывают начало управляющей последовательности. Все остальные свойства должны соответствовать настоящему стандарту;

b) если в начале передачи присутствует идентификатор символики]L2.

В данном случае приемное устройство информируется, что декодер работает в режиме базового канала для отсканированного символа. Следовательно, байт со значением 92 будет представлять отдельный байт данных.

Символы с управляющими последовательностями ECI должны рассматриваться как ошибочные. Символы Макро PDF417 должны быть рассмотрены как ошибочные, за исключением, если считывающее устройство работает в буферизованном режиме и передача управляющих заголовков Макро PDF417 запрещена;

- с) если в начале передачи присутствует идентификатор символики]L0, указывая версию PDF417 1994 года: Данный случай является исключением по причине того, что исходные документы по PDF417 организаций AIM USA (1994 г.)²⁾ и AIM Europe (1994 г.)³⁾ несмотря на то, что он подразумевает явную поддержку режима расширенного канала, определяет 0 (т.е. набор вариантов отсутствует) как единственное значение варианта обработки для идентификатора символики PDF417. Таким образом, существующее оборудование PDF417 при полном соответствии исходным документам по PDF417 организаций AIM USA (1994 г.) и AIM Europe (1994 г.) не будет использовать новые значения вариантов, чтобы указать, действует ли режим базового канала, или режим расширенного канала. Следовательно, если приемное устройство встречает]L0, тогда оно должно ожидать режим, соответствующий документам 1994 г. В частности:
 - 1) приемное устройство не может распознать из передачи, в каком из режимов находится декодер: в режиме расширенного канала (всегда дублирует байт, задаваемый в качестве управляющего знака в соответствии с М.3) или в режиме базового канала (никогда не дублирует байтов); декодер должен быть конфигурирован таким образом, чтобы соответствовать данным, ожидаемым приемным устройством;

¹⁾ Имеются в виду документы [3] и [4].

²⁾ См. документ [3].

³⁾ Cm. документ [4].

- 2) если декодер установлен в режим расширенного канала и если в символе закодированы ECI, декодер будет скорее передавать управляющие последовательности GLI в формате PDF417 1994 г. (в соответствии с М.3), чем управляющую последовательность ECI, как указано в 5.17.2;
- 3) при использовании исходного протокола, если присутствует управляющий блок Макро PDF417, содержимое управляющего блока Макро PDF417 скорее следует после байтов данных символа, чем предваряет их;
- d) если в начале передачи нет идентификатора символики.

В этом случае:

- 1) декодер соответствующим образом сконфигурирован для поддержки только символов режима базового канала. Система приема должна быть настроена на то, чтобы декодер не дублировал ни одного значения байта и чтобы любые встречающиеся в потоке байтов управляющие последовательности ЕСІ являлись случайными комбинациями знаков или
- 2) декодер неправильно сконфигурирован для возможности взаимодействия в открытой системе, где могут встречаться символы, кодирующие ECI.

Приложение N (справочное)

Алгоритм минимизации числа кодовых слов

Одни и те же данные могут быть представлены в виде различных последовательностей кодовых слов PDF417 использованием разных режимов уплотнения и процедур перехода. Не существует предписанной процедуры для минимизации числа требуемых кодовых слов, но для этих целей можно использовать следующий алгоритм:

- а) принимают, что Р указывает на начало потока данных:
- b) устанавливают текущий режим кодирования в режим текстового уплотнения;
- c) принимают, что N число последовательных цифр, начинающихся от P;
- d) если *N* ≥ 13, тогда:
 - 1) фиксируют режим цифрового уплотнения;
 - 2) кодируют N знаков с использованием цифрового уплотнения;
 - 3) передвигают указатель P вперед на N знаков:
 - 4) переходят к этапу с);
- е) в противном случае, если N < 13, тогда:
- 1) принимают, что *T* длина последовательности знаков в режиме текстового уплотнения, начинающейся с *P*. Последовательность заканчивается в том случае, если будут обнаружены либо знак, не находящийся в режиме текстового уплотнения, либо цифровая последовательность длиной 13 и более разрядов:
 - 2) если Т≥5, тогда
 - і) фиксируют режим текстового уплотнения;
 - іі) кодируют Т знаков с использованием режима текстового уплотнения;
 - ііі) перемещают указатель Р вперед на Т знаков;
 - іу) переходят к этапу с);
 - 3) если *T* < 5, тогда:
 - і) принимают, что B длина кодируемой в двоичном виде последовательности, начинающейся с P. Последовательность заканчивают в случаях, если будут найдены либо последовательность в режиме текстового уплотнения, длиной 5 и более, либо цифровая последовательность, длиной 13 и более:
 - іі) если В = 1 и текущий режим текстового уплотнения, тогда;
 - I) переводят регистр в режим байтового уплотнения;
 - II) кодируют значение одного байта с использованием регистра режима байтового уплотнения;
 - III) перемещают вперед указатель P на B;
 - IV) переходят к этапу с);
 - ііі) иначе
 - I) фиксируют режим байтового уплотнения;
 - II) кодируют В байтов с использованием режима байтового уплотнения:
 - III) перемещают вперед указатель P на B;
 - IV) переходят к этапу с).

Приложение О (справочное)

Рекомендации по определению матрицы символа PDF417

О.1 Параметры, влияющие на определение матрицы

Для определения матрицы символа в виде числа строк (r) и столбцов (c) до печати символа следует использовать ряд параметров.

Каждый параметр назначает одну характеристику, которая может ограничивать матрицу символа. Обозначения (в нижеуказанных уравнениях) A, c, k, Q_{L} , Q_{V} , r, X и Y соответствуют обозначениям, установленным в 4.1.

Следующие формулы можно использовать непосредственно или для создания более сложного алгоритма:

- параметр 1 — число строк, r

$$3 \le r \le 90$$
 (cm. 5.2.1)

- параметр 2 — число столбцов, *с*

$$1 \le c \le 30$$
 (cm. 5.2.2)

- параметр 3 — размер X

Определяют в нормативном документе, устанавливающем требования по применению (см. 5.8.1)

- параметр 4 — размер Y

$$Y \ge 3X$$
 (cm. 5.8.2)

- параметр 5 — горизонтальная свободная зона, Q_µ

$$Q_{H} \ge 2X$$
 (cm. 5.8.3)

- параметр 6 — Вертикальная свободная зона, Q_V

$$Q_V \ge 2X$$
 (cm. 5.8.3)

- параметр 7 — полезная ширина символа, W

$$W \ge (17c + 69) + 2Q_H$$

Примечание — Этот параметр может быть ограничен полем обзора сканера или шириной этикетки.

- параметр 8 — полезная высота символа, *H*

$$H \ge Yr + 2Q_V$$

Примечание — Этот параметр может быть ограничен полем обзора сканера или размером этикетки.

- параметр 9 — параметры матрицы

$$(n + k) = (c \cdot r) < 929$$

- параметр 10 — коэффициент сжатия символа, А.

До определения размера символа может быть вычислено число кодовых слов данных и кодовых слов коррекции ошибки. Следующий этап зависит от ограничений определенных параметров, указанных в применении. Если параметры применения определяют общий коэффициент сжатия символа, можно использовать рекомендации, приведенные в О.2, по вычислению числа столбцов области данных, требуемых для создания символа с данным коэффициентом сжатия.

Если в применении ограничивается допустимая высота или ширина символа (или оба параметра), можно использовать более простые вычисления. В О.1 приведен простой алгоритм, который следует использовать при ограниченной длине символа.

Если общая ширина W(включающая свободные зоны) задана, то число столбцов данных можно вычислить, используя уравнение параметра 7 (округляя до ближайшего целого значения числа столбцов). В этом случае число строк выводится из общего числа кодовых слов:

$$(n+k)=(c\cdot r).$$

Коэффициент сжатия символа *A* представляет собой отношение высоты к длине символа, включая свободные зоны. Для получения заданного значения *A* необходимо решить приведенное ниже уравнение относительно числа столбцов (*c*), в котором допускается, что свободные зоны выражены в точных значениях *X*. Уравнение может использоваться для всех случаев получения наилучшей аппроксимации числа столбцов (*c*).

$$A = \frac{H}{W} = \frac{rY + 2Q_V}{17X(c + 73)}$$

где A, c, H, Q_{V} , r, W, X и Y соответствуют обозначениям, приведенным в разделе 4;

$$Q_V = 2X$$

Затем количество строк вычисляется по формуле:

$$r = \left(\frac{n+k}{c}\right),\,$$

где n и k соответствуют обозначениям, приведенным в разделе 4.

Уравнение может быть записано в следующем виде

$$A = \frac{\left(\frac{n+k}{c}\right)Y + 4X}{(17c+73)X} = \frac{(n+k)Y + 4cX}{(17c^2+73c)X} = \frac{(n+k)\frac{Y}{X} + 4c}{17c^2+73c},$$

затем

$$A\left(17c^2+73c\right)-\left\lceil (n+k)\frac{Y}{X}\right\rceil-4c=0.$$

Это эквивалентно

$$17Ac^{2} + (73A-4)c - [(n+k)Y/X] = 0.$$

Это уравнение (при замене c на x) является квадратным уравнением вида:

$$ax^2 + bx + c = 0,$$

имеющее корни

$$X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

При подстановке значений параметров PDF417 решение квадратного уравнения, с отбрасыванием отрицательных значений, может быть записано в следующем виде

$$c = \frac{-(73A-4) + \left\{ (73A-4)^2 + 4(17A) \left[(n+k)Y/X \right] \right\}^{0.5}}{2(17A)}.$$

Значение n зависит от числа кодовых слов-заполнителей, которое неизвестно до определения параметров матрицы. Однако число исходных кодовых слов известно, и оно может быть подставлено в виде $m+1 \le n$ в уравнении, представленном выше, следующим способом

$$c = \frac{-(73A-4) + \left\{ (73A-4)^2 + 4(17A) \left[(m+1+k)Y/X \right] \right\}^{0.5}}{2(17A)}$$

При определении положительного значения c может быть получен результат, не являющийся целым числом. Ближайшее значение величины целого числа c должно давать наилучшее значение числа столбцов для определения коэффициента сжатия.

Число строк задается величиной

$$r = INT \lceil (m+1+k)/c \rceil + 1.$$

Если $(c \cdot r) \ge m + 1 + k + c$, то

$$r=r-1$$

При $(c \cdot r) = (n+k)$ число кодовых слов-заполнителей равно (n+k) - (m+1+k).

Пример — Требуется получить коэффициент сжатия A=0,5 для символа PDF417, где m+1+k=277, X=0,33~mm и Y=1,00~mm

$$c = \frac{-\left[(73 \cdot 0.5) - 4 \right] = \left\{ \left[(73 \cdot 0.5) - 4 \right]^2 + 4(17 \cdot 0.5) \left(\frac{277 \cdot 1.00}{0.33} \right) \right\}^{0.5}}{2(17 \cdot 0.5)}.$$

$$c = \frac{-32.5 + (1056 + 28539)^{0.5}}{17},$$

$$c = \frac{-32.5 + 172.0}{17},$$

$$c = \frac{139.5}{17} = 8.21 = 8,$$

$$r = INT \left(\frac{277}{c} \right) + 1 = INT \left(34.6 \right) + 1 = 35,$$

$$(m + 1 + k) \le (c \cdot r) < 929,$$

277 ≤ 280 < 929.

Число требуемых кодовых слов-заполнителей равно:

$$(c\cdot r)-(m+1+k),$$

280 - 277 = 3.

Этот символ характеризуется следующими параметрами: количество строк 35, количество столбцов 8, ширина 68,97 мм, высота 36,32 мм, фактический коэффициент сжатия 0,527.

О.2 Рекомендации, когда не удается достичь приемлемых параметров

Если символ не соответствует требуемому размеру этикетки, следует придерживаться следующих рекомендаций:

- а) по возможности, уменьшают содержание данных;
- b) увеличивают размер этикетки в одном или двух измерениях;
- с) уменьшают уровни коррекции ошибок;
- d) уменьшают размер X или высоту модуля (Y).

Приложение Р (справочное)

Пример вычисления коэффициентов для генерации кодовых слов коррекции ошибок

Для подсчета коэффициентов каждого уровня коррекции ошибок должен использоваться порождающий полином $g_k(x)$:

$$g_k(x) = (x-3)(x-3^2)(x-3^3) \dots (x-3^k)$$

= $\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_{k-1} x^{k-1} + x^k$,

где k — общее количество кодовых слов коррекции ошибок;

 α_i — коэффициенты при x, вычисляемые согласно порождающему полиному $g_\iota(x)$.

Сначала раскладывают в ряд приведенное выше уравнение, затем вычисляют дополнение коэффициента:

Для
$$\alpha_j = \alpha_0 \dots \alpha_{k-1}$$

НАЧАЛО $\alpha_j = \alpha_j \bmod 929$
КОНЕЦ

Пример — Требуется вычислить коэффициенты порождающего полинома для уровня коррекции ошибок 1

s= 1уровень коррекции ошибок 1k= 2^{s+1} = 4 (количество кодовых слов коррекции ошибок) $g_4(x)$ = $(x-3)(x-3^2)(x-3^3)(x-3^4)$ = $59\ 049-29\ 160x+3\ 510x^2-120x^3+x^4$ α_0 = $59\ 049\ mod\ 929$ = $522\ \alpha_1$ α_1 = $-29\ 160\ mod\ 929$ = $568\ \alpha_2$ α_2 = $3\ 510\ mod\ 929$ = $723\ \alpha_3$ α_3 = $-120\ mod\ 929$ = $809\ mod\ 929$

Примечание — В приложении F приведены таблицы коэффициентов для вычисления кодовых слов коррекции ошибки PDF417, содержащие все значения коэффициентов, необходимые для кодирования символа PDF417 любого уровня коррекции ошибок.

Приложение Q (справочное)

Пример генерации кодовых слов коррекции ошибок

Для генерации кодовых слов коррекции ошибки должен использоваться алгоритм в соответствии с 5.10 (обозначения, используемые в приведенном примере, соответствуют обозначениям в 5.10).

Пример — Данные PDF417 представлены кодовыми словами 5, 453, 178, 121, 239, перед которыми расположен дескриптор длины символа)Кодовые слова-заполнители отсутствуют. Тогда

```
n=5 (количество кодовых слов, включая дескриптор длины символа) d_4=5 d_3=453 d_2=178 d_1=121 d_0=239 При выборе уровня коррекции ошибок 1 получают: s=1 k=2^{1+1}=4 a_0...,a_3=522,568,723,809
```

Примечани е — Пример, приведенный для представления всего процесса, упрощен и содержит только пять кодовых слов данных и четыре кодовых слова коррекции ошибок. Процесс значительно усложняется при увеличении числа кодовых слов данных и кодовых слов коррекции ошибки.

```
Порядок вычисления:
```

```
устанавливают E_{0^{*}} ..., E_{3} на нулевое значение.
   t_1 = (d_4 + E_3) \mod 929 = (5 + 0) \mod 929 = 5
        t_2 = (t_1 \cdot a_3) \mod 929 = (5 \cdot 809) \mod 929 = 329
        t_3 = 929 - t_2 = 929 - 329 = 600
        E_3 = (E_2 + t_3) \mod 929 = (0 + 600) \mod 929 = 600
        t_2 = (t_1 \cdot \alpha_2) \mod 929 = (5 \cdot 723) \mod 929 = 828
        t_3 = 929 - t_2 = 929 - 828 = 101
        E_2 = (E_1 + t_3) \mod 929 = (0 + 101) \mod 929 = 101
        t_2 = (t_1 \cdot \alpha_1) \mod 929 = (5 \cdot 568) \mod 929 = 53
        t_3 = 929 - t_2 = 929 - 53 = 876
        E_1 = (E_0 + t_3) \mod 929 = (0 + 876) \mod 929 = 876
        t_2 = (t_1 \cdot \alpha_0) \mod 929 = (5 \cdot 522) \mod 929 = 752
        t_3 = 929 - t_2 = 929 - 752 = 177
        E_0 = t_3 \mod 929 = 177 \mod 929 = 177
   t_1 = (d_3 + E_2) \mod 929 = (453 + 600) \mod 929 = 124
        t_2 = (t_1 \cdot \alpha_3) \mod 929 = (124 \cdot 809) \mod 929 = 913
        t_3 = 929 - t_2 = 929 - 913 = 16
        E_3 = (E_2 + t_3) \mod 929 = (101 + 16) \mod 929 = 117
        t_2 = (t_1 \cdot \alpha_2) \mod 929 = (124 \cdot 723) \mod 929 = 468
        t_3 = 929 - t_2 = 929 - 468 = 461
        E_2 = (E_1 + t_3) \mod 929 = (876 + 461) \mod 929 = 408
        t_2 = (t_1 \cdot \alpha_1) \mod 929 = (124 \cdot 568) \mod 929 = 757
        t_3 = 929 - t_2 = 929 - 757 = 172
        E_1 = (E_0 + t_3) \mod 929 = (177 + 172) \mod 929 = 349
        t_2 = (t_1 \cdot \alpha_0) \mod 929 = (124 \cdot 522) \mod 929 = 627
        t_3 = 929 - t_2 = 929 - 627 = 302
        E_0 = t_3 \mod 929 = 302 \mod 929 = 302
```

```
t_1 = (d_2 + E_3) \mod 929 = (178 + 117) \mod 929 = 295
     t_2 = (t_4 \cdot \alpha_2) \mod 929 = (295 \cdot 809) \mod 929 = 831
     t_2 = 929 - t_2 = 929 - 831 = 98
     E_3 = (E_2 + t_3) \mod 929 = (408 + 98) \mod 929 = 506
     t_2 = (t_1 \cdot \alpha_2) \mod 929 = (295 \cdot 723) \mod 929 = 544
     t_3 = 929 - t_2 = 929 - 544 = 385
     E_2 = (E_1 + t_2) \mod 929 = (349 + 385) \mod 929 = 734
     t_2 = (t_4 \cdot \alpha_4) \mod 929 = (295 \cdot 568) \mod 929 = 340
     t_3 = 929 - t_2 = 929 - 340 = 589
     E_1 = (E_0 + t_3) \mod 929 = (302 + 589) \mod 929 = 891
     t_2 = (t_1 \cdot \alpha_0) \mod 929 = (295 \cdot 522) \mod 929 = 705
     t_3 = 929 - t_2 = 929 - 705 = 224
     E_0 = t_3 \mod 929 = 224 \mod 929 = 224
t_1 = (d_1 + E_2) \mod 929 = (121 + 506) \mod 929 = 627
     t_2 = (t_1 \cdot a_3) \mod 929 = (627 \cdot 809) \mod 929 = 9
     t_3 = 929 - t_2 = 929 - 9 = 920
     E_3 = (E_2 + t_3) \mod 929 = (734 + 920) \mod 929 = 725
     t_2 = (t_1 \cdot \alpha_2) \mod 929 = (627 \cdot 723) \mod 929 = 898
     t_3 = 929 - t_2 = 929 - 898 = 31
     E_2 = (E_1 + t_3) \mod 929 = (891 + 31) \mod 929 = 922
     t_2 = (t_1 \cdot \alpha_1) \mod 929 = (627 \cdot 568) \mod 929 = 329
     t_3 = 929 - t_2 = 929 - 329 = 600
     E_1 = (E_0 + t_2) \mod 929 = (224 + 600) \mod 929 = 824
     t_2 = (t_1 \cdot \alpha_0) \mod 929 = (627 \cdot 522) \mod 929 = 286
     t_3 = 929 - t_2 = 929 - 286 = 643
     E_0 = t_0 \mod 929 = 643 \mod 929 = 643
t_1 = (d_0 + E_3) \mod 929 = (239 + 725) \mod 929 = 35
     t_2 = (t_1 \cdot \alpha_3) \mod 929 = (35 \cdot 809) \mod 929 = 445
     t_3 = 929 - t_2 = 929 - 445 = 484
     E_3 = (E_2 + t_3) \mod 929 = (922 + 484) \mod 929 = 477
     t_2 = (t_1 \cdot \alpha_2) \mod 929 = (35 \cdot 723) \mod 929 = 222
     t_3 = 929 - t_2 = 929 - 222 = 707
     E_2 = (E_1 + t_3) \mod 929 = (824 + 707) \mod 929 = 602
     t_2 = (t_1 \cdot \alpha_1) \mod 929 = (35 \cdot 568) \mod 929 = 371
     t_3 = 929 - t_2 = 929 - 371 = 558
     E_1 = (E_0 + t_3) \mod 929 = (643 + 558) \mod 929 = 272
     t_2 = (t_1 \cdot \alpha_0) \mod 929 = (35 \cdot 522) \mod 929 = 619
     \overline{t_3} = 929 - t_2 = 929 - 619 = 310
     E_0 = t_3 \mod 929 = 310 \mod 929 = 310
```

В конце вычисляют дополнения приведенных выше результатов и получают четыре кодовых слова коррекции ошибок для закодированных данных PDF417:

```
E_3 = 929 - E_3 = 929 - 477 = 452

E_2 = 929 - E_2 = 929 - 602 = 327

E_1 = 929 - E_1 = 929 - 272 = 657

E_0 = 929 - E_0 = 929 - 310 = 619
```

Приложение R (справочное)

Процедура схемы деления для генерации кодовых слов коррекции ошибок

Эта процедура представляет собой альтернативу процедуре, установленной в 5.10, и использует схему деления в качестве базы определения кодовых слов коррекции ошибок.

Схема деления приведена на рисунке R.1.

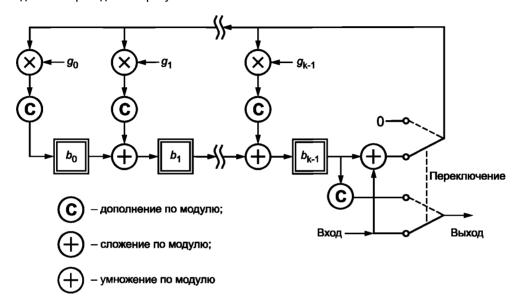


Рисунок R.1 — Схема кодирования кодовых слов коррекции ошибок

Регистры от b_0 до b_{k-1} должны быть установлены в нуль. Математика по модулю должна быть задана следующими уравнениями:

$$x \oplus y \equiv (x + y) \mod 929;$$

 $x \otimes y \equiv (x \cdot y) \mod 929;$
© $x = (929 - x) \mod 929,$

где x и y — числа от 0 до 928;

⊕ — сложение по модулю;

 \otimes — умножение по модулю; $^{\circ}$ — дополнение по модулю.

Генерирование кодирования происходит в два этапа. На первом этапе с переключением в нижнее положение данные символа проходят и к выводу и к схеме. Первый этап завершается после n синхронизирующих импульсов. На втором этапе (синхронизирующие импульсы $n+1 \dots n+k$) с переключением в верхнее положение генерируются кодовые слова коррекции ошибки $E_{k-1}, ..., E_0$ путем сдвига регистров по порядку и дополнения вывода данных при удержании ввода данных на нуле.

Приложение S (справочное)

Дополнительные правила использования символики PDF417

S.1 Совместимость для автоматического распознавания

Символы PDF417 могут быть считаны с применением соответствующим образом запрограммированных декодеров штрихового кода, которые были разработаны для автоматического распознавания этих символов от символов других символик. Для обеспечения максимальной надежности считывания набор символик, распознаваемых декодером, должен ограничиваться теми, которые используются в конкретном применении.

S.2 Пиксель-ориентированная печать

S.2.1 Основные принципы

Программное обеспечение для формирования символов штрихового кода с использованием устройств печати с попиксельным формированием изображения должно обеспечивать масштабирование штрихов и пробелов с точностью до пикселя. Для символик, декодируемых от края одного элемента до соответствующего края следующего элемента, подобных PDF417, число пикселей, составляющих каждый знак символа, должно представлять собой фиксированное постоянное целое число и должно быть равно числу модулей в знаке символа, умноженному на константу. В PDF417 число модулей в знаках символа и знаке CTAPT равно 17, а в знаке СТОП — 18. Поэтому данный принтер может печатать символы только с определенным набором размеров X.

Компенсировать однородное увеличение (уменьшение) ширины штриха следует путем смещения границы штрих/пробел на одинаковую величину по всему символу. Это может быть выполнено путем изменения целого числа пикселей с темного на светлые или со светлого на темные одинаковым образом для каждой пары штрих/пробел в символе и для последнего штриха. Например, все пиксели по тому же самому (правому или левому) краю каждого штриха в символе могли быть изменены с темного на светлый, или пиксели по обоим краям каждого штриха в символе могли быть изменены с темного на светлый, при условии, что разрешающая способность принтера достаточна для удовлетворительной печати. Любой вариант замены пикселей с темного на светлый или со светлого на темный (выбираемый при настройке оборудования) выполняется последовательно по всему символу и не должен изменять измерения от края одного элемента до соответствующего края следующего элемента или общую длину символа. Несоблюдение этих принципов приводит к снижению качества символа и зачастую к невозможности его считывания.

Программное обеспечение печати общего назначения, предназначенное для поддержки широкого диапазона принтеров, должно предусмотреть возможность корректировки пользователем размера X и приращения/уменьшения ширины штриха.

S.2.2 Пример программирования

Эти принципы можно свести к следующим правилам для производства цифровых файлов штрихового кода:

- а) преобразуют желательный размер X в размер модуля в пикселях, округленный в меньшую сторону до ближайшего целого;
- b) определят число пикселей, соответствующее требуемой компенсации общего увеличения ширины штриха, и округляют его до ближайшего большего целого числа;
- с) полученное в результате значение применяют для определения числа пикселей каждого штриха и пробела в символе.

Пример:

Используя файлы штрихового кода на устройстве печати с разрешением 24 точки на мм, создают символ с размером X = 0,27 мм с учетом сокращения ширины штриха до 0,06 мм, при этом:

- число точек, приходящихся на модуль: 24 точек/мм х 0,27 мм/модуль = 6,5 пикселей округляют в меньшую сторону до шести пикселей на модуль;
- компенсацию ширины штриха: 0,06 мм × **24** точек/мм = 1,4 пикселей округляют в большую сторону до двух пикселей.

Результаты вычислений для штрихов и пробелов разной ширины приведены в таблице S.1.

ΓΟCT ISO/IEC 15438—2018

Таблица S.1 — Пример коррекции числа пикселей на элемент с учетом разрешающей способности изображения и сокращения ширины штриха

Ширина элемента	Номинальная ширина	Скорректированное число пикселей		
(в модулях)	(в пикселях)	Штрихов	Пробелов	
1	6	4	8	
2	12	10	14	
3	18	16	20	
4	24	22	26	
5	30	28	32	
6	36	34	38	
8	8 48		Неприменимо	

Приложение ДА (справочное)

Соответствие международных и русских терминов и обозначений, встречающихся в тексте настоящего стандарта

Данное приложение включено в дополнение к международному стандарту ISO/IEC 15438 и содержит соответствие терминов и обозначений на русском языке (в настоящем стандарте) и английском языке (в ISO/IEC 15438) для удобства пользователей при переводе документов с одного языка на другой.

Таблица ДА.1 — Соответствие международных и русских наименований кодовых слов

Наименование кодового слова (знака символа)							
Русское	Международное						
Кодовое слово коррекции ошибки	Error correction codeword						
Функциональное кодовое слово	function codeword						
Кодовое слово фиксации режима	Mode Latch codeword						
Кодовое слово регистра режима	Mode Shift codeword						
Кодовое слово индикатора строки	Row Indicator codeword						
Дескриптор длины символа	Symbol Length Descriptor						
Кодовое слово данных	data codeword						
Левый индикатор строки	Left row indicator						
Правый индикатор строки	Right row indicator						
Кодовое слово-заполнитель	pad codeword						
Фиксация режима текстового уплотнения	Text Compaction mode latch						
Фиксация режима байтового уплотнения	Byte Compaction mode latch						
Фиксация режима цифрового уплотнения	Numeric Compaction mode latch						
Регистр режима байтового уплотнения	mode shift to Byte Compaction mode						
Инициализация считывающего устройства	reader initialisation						
Огранич итель Мак ро PDF417	Macro PDF417 Terminator						
Начало необязательного поля Макро PDF417	Beginning of Macro PDF417 Optional Field						
Идентификатор интерпретации в расширенном канале пользователя	identifier for a user defined ECI						
Идентификатор общего назначения формата интерпретации в расширенном канале	identifier for a general purpose ECI format						
Идентификатор интерпретации в расширенном канале для набора знаков или кодовой страницы	identifier for an ECI of a character set or code page						
Начало управляющего блока Макро PDF417 Макро-маркер	Beginning of Macro PDF417 Control Block Macro marker						
Указатель поля	field designator						
Знак символа «CTAPT»	START character (Start pattern)						
Знак символа «СТОП»	STOP character (Stop pattern)						

Таблица ДА.2 — Соответствие международных и русских наименований знаков

Обозначение	Наименов	ание знака
знака	Русское	Международное
al	Знак фиксации подрежима прописных букв	Latch to uppercase alphabetic sub-mode
LI	Знак фиксации подрежима строчных букв	Latch to lowercase alphabetic sub-mode
ml	Знак фиксации подрежима смешанных знаков	Latch to mixed sub-mode
pl	Знак фиксации подрежима знаков пунктуации	Latch to punctuation sub-mode
as	Знак регистра подрежима прописных букв	Shift to uppercase alphabetic sub-mode
ps	Знак регистра подрежима знаков пунктуации	Shift to punctuation sub-mode

Таблица ДА.3— Соответствие международных и русских наименований и обозначений режимов и подрежимов и блоков PDF417

Наименование режима (подрежима)						
Русское	Международное					
Режим уплотнения	Compaction mode					
Режим текстового уплотнения	Text Compaction mode					
Режим байтового уплотнения	Byte Compaction mode					
Режим цифрового уплотнения	Numeric Compaction mode					
Подрежим прописных букв	Alpha sub-mode					
Подрежим строчных букв	Lower sub-mode					
Подрежим смешанных знаков	Mixed sub-mode					
Подрежим знаков пунктуации	Punctuation sub-mode					
Буферизированный режим	Buffered mode					
Небуферизированный режим	Unbuffered mode					
Режим базового канала	Basic Channel					
Режим расширенного канала	Extended Channel mode					

Таблица ДА.4 — Соответствие международных и русских наименований свойств PDF417

Наименование свойства PDF417							
Русское	Международное						
Уплотнение данных Интерпретация в расширенном канале Макро PDF417 Декодируемость от края до края Перекрестное сканирование строк Коррекция ошибок Компакт PDF 417 Идентификатор глобальной метки Управляющий блок Макро PDF417 Модель базового канала Модель расширенного канала Кластер Коэффициент сжатия символа Идентификатор символики Коэффициент сжатия модуля Глобальный порог Управляющий заголовок Макро PDF417	Data compaction Extended Channel Interpretation Macro PDF417 Edge to edge decodable Cross row scanning Error correction Compact PDF417 Global Label Identifier Macro PDF417 Control Block Basic Channel Model Extended Channel Model Cluster Symbol aspect ratio Symbology identifier Aspect ratio of the module Global threshold Macro PDF417 Control Header						

Таблица ДА.5 — Соответствие международных и русских наименований полей PDF417 и их атрибутов

Наименование полей PDF417						
Русское	Международное					
Индекс сегмента Идентификация файла Имя файла Число сегментов Отметка времени Отправитель Получатель Размер файла Контрольная сумма Необязательное поле Последовательность-указатель Указатель поля	Segment index File ID File Name Segment Count Time Stamp Sender Addressee File Size Checksum Optional field Tag sequence Field designator					
Последовательность-указатель	Tag sequence					

Таблица ДА.6 — Соответствие международных и русских наименований и обозначений управляющих знаков

Обозначение знака		Наимен	нование знака
Международное Русское		Международное	Русское
NUL	ПУС	NULL	ПУСТО
SOH	НЗ	START OF HEADING	НАЧАЛО ЗАГОЛОВКА
STX	HT	START OF TEXT	НАЧАЛО ТЕКСТА
ETX	кт	END OF TEXT	КОНЕЦ ТЕКСТА
EOT	КП	END OF TRANSMISSION	КОНЕЦ ПЕРЕДАЧИ
ENQ	ктм	ENQUIRY	KTO TAM?
ACK	ДА	ACKNOWLEDGE	ПОДТВЕРЖДЕНИЕ
BEL	3B	BELL	звонок
BS	ВШ	BACKSPACE	ВОЗВРАТ НА ШАГ
HT	П	HORIZONTAL TABULATION	ГОРИЗОНТАЛЬНАЯ ТАБУЛЯЦИЯ
LF	ПС	LINE FEED	ПЕРЕВОД СТРОКИ
VT	ВТ	VERTICAL TABULATION	ВЕРТИКАЛЬНАЯ ТАБУЛЯЦИЯ
FF	ПФ	FORM FEED	ПЕРЕВОД ФОРМАТА
CR	ВК	CARRIAGE RETURN	ВОЗВРАТ КАРЕТКИ
so	вых	SHIFT-OUT	выход
SI	BX	SHIFT-IN	вход
DLE	AP1	DATA LINK ESCAPE	АВТОРЕГИСТР ОДИН
DC1	СУ1	DEVICE CONTROL ONE	СИМВОЛ УСТРОЙСТВА ОДИН
DC2	СУ2	DEVICE CONTROL TWO	СИМВОЛ УСТРОЙСТВА ДВА
DC3	СУЗ	DEVICE CONTROL THREE	СИМВОЛ УСТРОЙСТВА ТРИ
DC4	СУ4	DEVICE CONTROL FOUR	СИМВОЛ УСТРОЙСТВА ЧЕТЫРЕ
NAK	HET	NEGATIVE ACKNOWLEDGE	ОТРИЦАНИЕ
SYN	СИН	SYNCHRONOUS IDLE	синхронизация
ETB	КБ	END OF TRANSMISSION BLOCK	КОНЕЦ БЛОКА
CAN	AH	CANCEL	АННУЛИРОВАНИЕ
EM	КН	END OF MEDIUM	конец носителя
SUB	ЗМ	SUBSTITUTE CHARACTER	ЗАМЕНА СИМВОЛА
ESC	AP2	ESCAPE	АВТОРЕГИСТР ДВА
FS	РΦ	FILE SEPARATOR	РАЗДЕЛИТЕЛЬ ФАЙЛОВ
GS	РГ	GROUP SEPARATOR	РАЗДЕЛИТЕЛЬ ГРУПП
RS	РЗ	RECORD SEPARATOR	РАЗДЕЛИТЕЛЬ ЗАПИСЕЙ
US	РЭ	UNIT SEPARATOR	РАЗДЕЛИТЕЛЬ ЭЛЕМЕНТОВ
DEL	35	DELETE	ЗАБОЙ
NBSP	НПР	NO-BREAK SPACE	НЕПРЕРЫВАЮЩИЙ ПРОБЕЛ

Примечания

¹ Русские наименования и обозначения знаков по ГОСТ 27465—87, кроме знака NBSP. 2 Русские наименования и обозначения знака NBSP по ГОСТ 34.302.2—91.

Приложение ДБ (справочное)

Набор знаков ASCII (версия КОИ-7) по ISO/IEC 646, графические знаки расширенного набора знаков ASCII (версия КОИ-8) по ISO/IEC 8859-1 и набор 8-битовых графических знаков (версия КОИ-8) по ISO/IEC 8859-5

ДБ.1 Набор 7-битовых знаков ASCII (версия КОИ-7) по ISO/IEC 646

В таблице ДБ.1 приведен набор 7-битовых знаков ASCII (версия КОИ-7) по ISO/IEC 646 и соответствие международных и русских наименований и обозначений знаков.

Таблица ДБ.1 — Набор 7-битовых знаков ASCII (версия КОИ-7) по ISO/IEC 646

Деся-	Шест-	Обозначен	ния знака	Наименование знака		
тичное значение	надца- теричное значение	Между- народное	Русское	Международное	Русское	
00	00	NUL	ПУС	NULL	ПУСТО	
01	01	SOH	НЗ	START OF HEADING	НАЧАЛО ЗАГОЛОВКА	
02	02	STX	HT	START OF TEXT	НАЧАЛО ТЕКСТА	
03	03	ETX	КТ	END OF TEXT	КОНЕЦ ТЕКСТА	
04	04	EOT	КΠ	END OF TRANSMISSION	КОНЕЦ ПЕРЕДАЧИ	
05	05	ENQ	КТМ	ENQUIRY	КТО ТАМ?	
06	06	ACK	ДА	ACKNOWLEDGE	ПОДТВЕРЖДЕНИЕ	
07	07	BEL	3B	BELL	звонок	
08	08	BS	ВШ	BACKSPACE	ВОЗВРАТ НА ШАГ	
09	09	HT	ГТ	HORIZONTAL TABULATION	ГОРИЗОНТАЛЬНАЯ ТАБУЛЯЦИЯ	
10	0A	LF	ПС	LINE FEED	ПЕРЕВОД СТРОКИ	
11	0B	VT	BT	VERTICAL TABULATION	ВЕРТИКАЛЬНАЯ ТАБУЛЯЦИЯ	
12	0C	FF	ПФ	FORM FEED	ПЕРЕВОД ФОРМАТА	
13	0D	CR	ВК	CARRIAGE RETURN	ВОЗВРАТ КАРЕТКИ	
14	0E	so	ВЫХ	SHIFT-OUT	выход	
15	0F	SI	BX	SHIFT-IN	вход	
16	10	DLE	AP1	DATA LINK ESCAPE	АВТОРЕГИСТР ОДИН	
17	11	DC1	СУ1	DEVICE CONTROL ONE	СИМВОЛ УСТРОЙСТВА ОДИН	
18	12	DC2	СУ2	DEVICE CONTROL TWO	СИМВОЛ УСТРОЙСТВА ДВА	
19	13	DC3	СУЗ	DEVICE CONTROL THREE	СИМВОЛ УСТРОЙСТВА ТРИ	
20	14	DC4	СУ4	DEVICE CONTROL FOUR	СИМВОЛ УСТРОЙСТВА ЧЕТЫРЕ	
21	15	NAK	HET	NEGATIVE ACKNOWLEDGE	ОТРИЦАНИЕ	
22	16	SYN	СИН	SYNCHRONOUS IDLE	СИНХРОНИЗАЦИЯ	
23	17	ETB	КБ	END OF TRANSMISSION BLOCK	КОНЕЦ БЛОКА	
24	18	CAN	АН	CANCEL	АННУЛИРОВАНИЕ	

Продолжение таблицы ДБ.1

Деся- Шест-		Обозначения знака		Наименование знака		
тичное значение	надца- теричное значение	Между- народное	Русское	Международное	Русское	
25	19	EM	КН	END OF MEDIUM	КОНЕЦ НОСИТЕЛЯ	
26	1A	SUB	ЗМ	SUBSTITUTE CHARACTER	ЗАМЕНА СИМВОЛА	
27	1B	ESC	AP2	ESCAPE	АВТОРЕГИСТР ДВА	
28	1C	FS	РΦ	FILE SEPARATOR	РАЗДЕЛИТЕЛЬ ФАЙЛОВ	
29	1D	GS	РΓ	GROUP SEPARATOR	РАЗДЕЛИТЕЛЬ ГРУПП	
30	1E	RS	P3	RECORD SEPARATOR	РАЗДЕЛИТЕЛЬ ЗАПИСЕЙ	
31	1F	US	РЭ	UNIT SEPARATOR	РАЗДЕЛИТЕЛЬ ЭЛЕМЕНТОВ	
32	20	SP		SPACE	ПРОБЕЛ	
33	21	!	!	EXCLAMATION MARK	ВОСКЛИЦАТЕЛЬНЫЙ ЗНАК	
34	22	ш	u	QUOTATION MARK	КАВЫЧКИ	
35	23	#	#	NUMBER SIGN	HOMEP	
36 ¹⁾	24	п	п	CURRENCY SIGH	ЗНАК ДЕНЕЖНОЙ ЕДИНИЦЫ	
37	25	%	%	PERCENT SIGH	ПРОЦЕНТЫ	
38	26	&	&	AMPERSAND	КОММЕРЧЕСКОЕ И (АМПЕРСАНД)	
39	27	1	1	APOSTROPHE	АПОСТРОФ	
40	28	((LEFT PARENTHESIS	КРУГЛАЯ СКОБКА ЛЕВАЯ	
41	29))	RIGHT PARENTHESIS	КРУГЛАЯ СКОБКА ПРАВАЯ	
42	2A	*	*	ASTERISK	ЗВЕЗДОЧКА	
43	2B	+	+	PLUS SIGH	плюс	
44	2C	,	,	COMMA	ЗАПЯТАЯ	
45	2D	-	-	HYPHEN-MINUS	ДЕФИС, МИНУС	
46	2E			FULL STOP	ТОЧКА	
47	2F	/	/	SOLIDUS	ДРОБНАЯ ЧЕРТА	
48	30	0	0	DIGIT ZERO	ЦИФРА НОЛЬ	
49	31	1	1	DIGIT ONE	ЦИФРА ОДИН	
50	32	2	2	DIGIT TWO	ЦИФРА ДВА	
51	33	3	3	DIGIT THREE	ЦИФРА ТРИ	
52	34	4	4	DIGIT FOUR	ЦИФРА ЧЕТЫРЕ	
53	35	5	5	DIGIT FIVE	ЦИФРА ПЯТЬ	
54	36	6	6	DIGIT SIX	ЦИФРА ШЕСТЬ	
55	37	7	7	DIGIT SEVEN	ЦИФРА СЕМЬ	

¹⁾ В международной ссылочной версии (IRV, International Reference Version) ISO/IEC 646 знаку с десятичным значением 36 соответствует знак \$ — DOLLAR SIGH (ДЕНЕЖНЫЙ ЗНАК ДОЛЛАРА).

Продолжение таблицы ДБ.1

Деся-	Шест-	Обозначен	ния знака	Наименование знака		
тичное значение	надца- теричное значение	Между- народное	Русское	Международное	Русское	
56	38	8	8	DIGIT EIGHT	ЦИФРА ВОСЕМЬ	
57	39	9	9	DIGIT NINE	ЦИФРА ДЕВЯТЬ	
58	3A	•	•	COLON	ДВОЕТОЧИЕ	
59	3B	•	•	SEMICOLON	ТОЧКА С ЗАПЯТОЙ	
60	3C	<	<	LESS THAN SIGN	МЕНЬШЕ	
61	3D	=	Ш	EQUALS SIGN	PABHO	
62	3E	>	^	GREATER THAN SIGN	БОЛЬШЕ	
63	3F	?	?	QUESTION MARK	ВОПРОСИТЕЛЬНЫЙ ЗНАК	
64	40	@	@	COMMERCIALAT	КОММЕРЧЕСКОЕ ЭТ	
65	41	Α	Α	LATIN CAPITAL LETTER A	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА А	
66	42	В	В	LATIN CAPITAL LETTER B	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА В	
67	43	С	O	LATIN CAPITAL LETTER C	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА С	
68	44	D	О	LATIN CAPITAL LETTER D	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА D	
69	45	E	Е	LATIN CAPITAL LETTER E	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА Е	
70	46	F	F	LATIN CAPITAL LETTER F	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА F	
71	47	G	O	LATIN CAPITAL LETTER G	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА G	
72	48	Н	Н	LATIN CAPITAL LETTER H	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА Н	
73	49	l	ļ	LATIN CAPITAL LETTER I	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА І	
74	4A	J	J	LATIN CAPITAL LETTER J	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА J	
75	4B	K	K	LATIN CAPITAL LETTER K	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА К	
76	4C	L	L	LATIN CAPITAL LETTER L	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА L	
77	4D	М	М	LATIN CAPITAL LETTER M	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА М	
78	4E	N	N	LATIN CAPITAL LETTER N	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА N	
79	4F	0	0	LATIN CAPITAL LETTER O	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА О	
80	50	Р	Р	LATIN CAPITAL LETTER P	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА Р	
81	51	Q	Ø	LATIN CAPITAL LETTER Q	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА Q	
82	52	R	R	LATIN CAPITAL LETTER R	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА R	
83	53	S	S	LATIN CAPITAL LETTER S	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА S	
84	54	Т	Т	LATIN CAPITAL LETTER T	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА Т	
85	55	U	U	LATIN CAPITAL LETTER U	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА U	
86	56	V	V	LATIN CAPITAL LETTER V	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА ${f v}$	

Продолжение таблицы ДБ.1

Деся-	Шест-	Обозначен	ния знака	Наимен	Наименование знака		
тичное значение	надца- теричное значение	Между- народное	Русское	Международное	Русское		
87	57	W	W	LATIN CAPITAL LETTER W	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА W		
88	58	Х	Х	LATIN CAPITAL LETTER X	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА Х		
89	59	Υ	Υ	LATIN CAPITAL LETTER Y	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА Ү		
90	5A	Z	Z	LATIN CAPITAL LETTER Z	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА Z		
91	5B	[[LEFT SQUARE BRACKET	КВАДРАТНАЯ СКОБКА ЛЕВАЯ		
92	5C	١	1	REVERSE SOLIDUS	ОБРАТНАЯ ДРОБНАЯ ЧЕРТА		
93	5D]]	RIGHT SQUARE BRACKET	КВАДРАТНАЯ СКОБКА ПРАВАЯ		
94	5E	۸	٨	CIRCUMFLEX ACCENT	ЦИРКЮМФЛЕКС УДАРЕНИЕ		
95	5F	_	_	LOWLINE	ПОДЧЕРКИВАНИЕ		
96	60	1	1	GRAVE ACCENT	СЛАБОЕ УДАРЕНИЕ		
97	61	а	а	LATIN SMALL LETTER A	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА а		
98	62	b	b	LATIN SMALL LETTER B	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА b		
99	63	С	С	LATIN SMALL LETTER C	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА с		
100	64	d	d	LATIN SMALL LETTER D	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА d		
101	65	е	е	LATIN SMALL LETTER E	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА е		
102	66	f	f	LATIN SMALL LETTER F	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА f		
103	67	g	g	LATIN SMALL LETTER G	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА g		
104	68	h	h	LATIN SMALL LETTER H	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА h		
105	69	i	i	LATIN SMALL LETTER I	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА і		
106	6A	j	j	LATIN SMALL LETTER J	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА ј		
107	6B	k	k	LATIN SMALL LETTER K	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА к		
108	6C	ı	I	LATIN SMALL LETTER L	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА І		
109	6D	m	m	LATIN SMALL LETTER M	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА m		
110	6E	n	n	LATIN SMALL LETTER N	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА n		
111	6F	0	0	LATIN SMALL LETTER O	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА о		
112	70	р	р	LATIN SMALL LETTER P	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА р		
113	71	q	q	LATIN SMALL LETTER Q	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА q		
114	72	r	r	LATIN SMALL LETTER R	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА r		
115	73	S	S	LATIN SMALL LETTER S	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА s		
116	74	t	t	LATIN SMALL LETTER T	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА t		
117	75	u	u	LATIN SMALL LETTER U	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА u		
118	76	٧	٧	LATIN SMALL LETTER V	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА v		
119	77	w	w	LATIN SMALL LETTER W	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА w		

Окончание таблицы ДБ.1

Деся-	Шест-			Наимен	нование знака	
тичное значение	надца- теричное значение	Между- народное	Русское	Международное	Русское	
120	78	х	х	LATIN SMALL LETTER X	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА х	
121	79	у	у	LATIN SMALL LETTER Y	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА у	
122	7A	z	z	LATIN SMALL LETTER Z	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА z	
123	7B	{	{	LEFT CURLY BRACKET	ФИГУРНАЯ СКОБКА ЛЕВАЯ	
124	7C	I		VERTICAL LINE	ВЕРТИКАЛЬНАЯ ЧЕРТА	
125	7D	}	}	RIGHT CURLY BRACKET	ФИГУРНАЯ СКОБКА ПРАВАЯ	
126	7E	~	~	TILDE	тильда	
127	7F	DEL	DEL	DELETE	ЗАБОЙ	

Примечание — Набор 7-битовых знаков ASCII (версия КОИ-7) состоит из набора знаков G0 по ISO/IEC 646 и C0 по ISO/IEC 6429, в котором знаки с десятичными значениями от 28 до 31 соответствуют знакам FS, GS, RS и US национальной версии США 1) соответственно.

ДБ.2 Графические знаки расширенного набора знаков ASCII (версия КОИ-8) по ISO/IEC 8859-1

В таблице ДБ.2 приведены графические знаки расширенного набора 8-битовых знаков ASCII (версия КОИ-8) по ISO/IEC 8859-1:1998 (латинский алфавит № 1) и соответствие международных и русских наименований и обозначений знаков. В связи с тем, что знаки указанного набора с десятичными значениями с 0 по 127 полностью совпадают с набором знаков ASCII (КОИ-7), в таблице ДБ.2 приведены 8-битовые графические знаки с десятичными значениями от 160 по 255 и их шестнадцатеричные значения.

Таблица ДБ.2 — Графические знаки расширенного набора 8-битовых знаков ASCII (версия КОИ-8) по ISO/IEC 8859-1

Деся-	Шестнадца-	Международ-	Наименование знака		
тичное значение	теричное значение	ное (русское) обозначение знака	Международное	Русское	
160	A0	NBSP (HΠP)	NO-BREAK SPACE	НЕПРЕРЫВАЮЩИЙ ПРОБЕЛ	
161	A1	i	INVERTED EXCLAMATION MARK	ПЕРЕВЕРНУТЫЙ ВОСКЛИЦАТЕЛЬ- НЫЙ ЗНАК	
162	A2	¢	CENT SIGN	ДЕНЕЖНЫЙ ЗНАК ЦЕНТА	
163	А3	£	POUND SIGN	ДЕНЕЖНЫЙ ЗНАК ФУНТА	
164	A4	¤	CURRENCY SIGN	ЗНАК ДЕНЕЖНОЙ ЕДИНИЦЫ	
165	A5	¥	YEN SIGN	ДЕНЕЖНЫЙ ЗНАК ЙЕНЫ	
166	A6	1	BROKEN BAR	ВЕРТИКАЛЬНАЯ ЧЕРТА С РАЗРЫ- ВОМ	
167	A 7	§	SECTION SIGN	ПАРАГРАФ	
168	A8		DIAERESIS	ДИЕРЕЗ	

¹⁾ Набор знаков по ANSI INCITS 4-1986 (R2007) Information Systems — Coded Character Sets — 7-Bit American National Standard Code for Information Interchange (7-Bit ASCII) (Информационные системы — Кодированные наборы знаков — 7-битовый американский национальный стандартный код для обмена информацией (7-битовый ASCII).

Продолжение таблицы ДБ.2

Деся-	Шестнадца-	Международ-	Наименов	ание знака	
тичное значение	теричное значение	ное (русское) обозначение знака	Международное	Русское	
169	A9	©	COPYRIGHT SIGN	ЗНАК АВТОРСКОГО ПРАВА	
170	AA	a	FEMININE ORDINAL INDICATOR	ЖЕНСКИЙ ПОРЯДКОВЫЙ ИНДИКАТОР	
171	AB	«	LEFT POINTING DOUBLE ANGLE QUOTATION MARK	ЗНАК ЛЕВОНАПРАВЛЕННОЙ ДВОЙНОЙ УГЛОВОЙ КАВЫЧКИ	
172	AC	7	NOT SIGN	ЗНАК НЕТ	
173	AD		SOFT HYPHEN	ГИБКИЙ ДЕФИС	
174	AE	®	REGISTERED SIGN	ЗНАК РЕГИСТРАЦИИ	
175	AF	_	MACRON	ЧЕРТА СВЕРХУ	
176	В0	0	DEGREE SIGN	ЗНАК ГРАДУСА	
177	B1	±	PLUS-MINUS SIGN	ЗНАК ПЛЮС-МИНУС	
178	B2	2	SUPERSCRIPT TWO	ВЕРХНИЙ ИНДЕКС ДВА	
179	B3	3	SUPERSCRIPT THREE	ВЕРХНИЙ ИНДЕКС ТРИ	
180	B4	,	ACUTE ACCENT	СИЛЬНОЕ УДАРЕНИЕ	
181	B5	μ	MICRO SIGN	ЗНАК МИКРО	
182	В6	¶	PILCROW SIGN	ЗНАК ПИ	
183	B7		MIDDLE DOT	СРЕДНЯЯ ТОЧКА	
184	B8	٠	CEDILLA	СЕДИЛЬ	
185	В9	1	SUPERSCRIPT ONE	ВЕРХНИЙ ИНДЕКС ОДИН	
186	BA	0	MASCULINE ORDINAL INDICATOR	МУЖСКОЙ ПОРЯДКОВЫЙ ИНДИКАТОР	
187	BB	»	RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK	ЗНАК ПРАВОНАПРАВЛЕННОЙ ДВОЙНОЙ УГЛОВОЙ КАВЫЧКИ	
188	ВС	1/4	VULGAR FRACTION ONE QUARTER	ПРОСТАЯ ДРОБЬ ОДНА ЧЕТВЕР- ТАЯ	
189	BD	1/2	VULGAR FRACTION ONE HALF	ПРОСТАЯ ДРОБЬ ОДНА ВТОРАЯ	
190	BE	3/4	VULGAR FRACTION THREE QUARTERS	ПРОСТАЯ ДРОБЬ ТРИ ЧЕТВЕРТЫХ	
191	BF	ن	INVERTED QUESTION MARK	ПЕРЕВЕРНУТЫЙ ВОПРОСИТЕЛЬ- НЫЙ ЗНАК	
192	C0	À	LATIN CAPITAL LETTER A WITH GRAVE	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА А СО СЛАБЫМ УДАРЕНИЕМ	
193	C1	Á	LATIN CAPITAL LETTER A WITH ACUTE	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА А С СИЛЬНЫМ УДАРЕНИЕМ	
194	C2	Â	LATIN CAPITAL LETTER A WITH CIRCUMFLEX	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА А С ЦИРКУМФЛЕКСОМ	

Продолжение таблицы ДБ.2

Деся-	Шестнадца-	Международ- ное (русское)	Наименов	ание знака
тичное значение	теричное значение	обозначение знака	Международное	Русское
194	С3	Ã	LATIN CAPITAL LETTER A WITH TILDE	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА А С ТИЛЬДОЙ
196	C4	Ä	LATIN CAPITAL LETTER A WITH DIAERESIS	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА А С ДИЕРЕЗОМ
197	C5	Å	LATIN CAPITAL LETTER A WITH RING ABOVE	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА А С КРУЖКОМ СВЕРХУ
198	C6	Æ	LATIN CAPITAL LETTER Æ	ПРОПИСНАЯ ЛАТИНСКАЯ ЛИГАТУ- РА Æ
199	C7	Ç	LATIN CAPITAL LETTER C WITH CEDILLA	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА С С СЕДИЛЕМ
200	C8	È	LATIN CAPITAL LETTER E WITH GRAVE	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА Е СО СЛАБЫМ УДАРЕНИЕМ
201	C9	É	LATIN CAPITAL LETTER E WITH ACUTE	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА Е С СИЛЬНЫМ УДАРЕНИЕМ
202	CA	Ê	LATIN CAPITAL LETTER E WITH CIRCUMFLEX	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА Е С ЦИРКУМФЛЕКСОМ
203	СВ	Ë	LATIN CAPITAL LETTER E WITH DIAERESIS	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА Е С ДИЕРЕЗОМ
204	СС	Ì	LATIN CAPITAL LETTER I WITH GRAVE	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА І СО СЛАБЫМ УДАРЕНИЕМ
205	CD	ĺ	LATIN CAPITAL LETTER I WITH ACUTE	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА І С СИЛЬНЫМ УДАРЕНИЕМ
206	CE	î	LATIN CAPITAL LETTER I WITH CIRCUMFLEX	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА І С ЦИРКУМФЛЕКСОМ
207	CF	Ϊ	LATIN CAPITAL LETTER I WITH DIAERESIS	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА I С ДИЕРЕЗОМ
208	D0	Ð	LATIN CAPITAL LETTER ETH	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА D СО ШТРИХОМ
209	D1	Ñ	LATIN CAPITAL LETTER N WITH TILDE	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА N С ТИЛЬДОЙ
210	D2	Ò	LATIN CAPITAL LETTER O WITH GRAVE	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА О СО СЛАБЫМ УДАРЕНИЕМ
211	D3	Ó	LATIN CAPITAL LETTER O WITH ACUTE	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА О С СИЛЬНЫМ УДАРЕНИЕМ
212	D4	Ô	LATIN CAPITAL LETTER O WITH CIRCUMFLEX	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА О С ЦИРКУМФЛЕКСОМ
213	D5	Õ	LATIN CAPITAL LETTER O WITH TILDE	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА О С ТИЛЬДОЙ
214	D6	Ö	LATIN CAPITAL LETTER O WITH DIAERESIS	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА О С ДИЕРЕЗОМ
215	D7	×	MULTIPLICATION SING	ЗНАК УМНОЖЕНИЯ

Продолжение таблицы ДБ.2

Деся-	Шестнадца-	Международ-	Наименова	ание знака
тичное значение	теричное значение	ное (русское) обозначение знака	Международное	Русское
216	D8	Ø	LATIN CAPITAL LETTER O WITH STROKE	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА О СО ШТРИХОМ
217	D9	Ù	LATIN CAPITAL LETTER U WITH GRAVE	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА U СО СЛАБЫМ УДАРЕНИЕМ
218	DA	Ú	LATIN CAPITAL LETTER U WITH ACUTE	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА U С СИЛЬНЫМ УДАРЕНИЕМ
219	DB	Û	LATIN CAPITAL LETTER U WITH CIRCUMFLEX	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА U С ЦИРКУМФЛЕКСОМ
220	DC	Ü	LATIN CAPITAL LETTER U WITH DIAERESIS	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА U С ДИЕРЕЗОМ
221	DD	Ý	LATIN CAPITAL LETTER Y WITH ACUTE	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА Y С СИЛЬНЫМ УДАРЕНИЕМ
222	DE	Þ	LATIN CAPITAL LETTER THORN	ПРОПИСНАЯ ЛАТИНСКАЯ БУКВА р (ФОРН)
223	DF	ß	LATIN SMALL LETTER SHARP S	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА ß (СДВОЕННАЯ s)
224	E0	à	LATIN SMALL LETTER A WITH GRAVE	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА а СО СЛАБЫМ УДАРЕНИЕМ
225	E1	á	LATIN SMALL LETTER A WITH ACUTE	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА а С СИЛЬНЫМ УДАРЕНИЕМ
226	E2	â	LATIN SMALL LETTER A WITH CIRCUMFLEX	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА а С ЦИРКУМФЛЕКСОМ
227	E3	ã	LATIN SMALL LETTER A WITH TILDE	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА а С ТИЛЬДОЙ
228	E4	ä	LATIN SMALL LETTER A WITH DIAERESIS	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА а С ДИЕРЕЗОМ
229	E5	å	LATIN SMALL LETTER A WITH RING ABOVE	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА а С КРУЖКОМ СВЕРХУ
230	E6	æ	LATIN SMALL LETTER AE	СТРОЧНАЯ ЛАТИНСКАЯ ЛИГАТУРА æ
231	E7	ç	LATIN SMALL LETTER C WITH CEDILLA	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА с С СЕДИЛЕМ
232	E8	è	LATIN SMALL LETTER E WITH GRAVE	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА е СО СЛАБЫМ УДАРЕНИЕМ
233	E9	é	LATIN SMALL LETTER E WITH ACUTE	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА е С СИЛЬНЫМ УДАРЕНИЕМ
234	EA	ê	LATIN SMALL LETTER E WITH CIRCUMFLEX	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА е С ЦИРКУМФЛЕКСОМ
235	EB	ë	LATIN SMALL LETTER E WITH DIAERESIS	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА е С ДИЕРЕЗОМ

Окончание таблицы ДБ.2

Деся-	Шестнадца-	Международ-		
тичное значение	теричное значение	ное (русское) обозначение знака	Международное	Русское
236	EC	ì	LATIN SMALL LETTER I WITH GRAVE	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА і СО СЛАБЫМ УДАРЕНИЕМ
237	ED	ĺ	LATIN SMALL LETTER I WITH ACUTE	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА і С СИЛЬНЫМ УДАРЕНИЕМ
238	EE	î	LATIN SMALL LETTER I WITH CIRCUMFLEX	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА і С ЦИРКУМФЛЕКСОМ
239	EF	Ϊ	LATIN SMALL LETTER I WITH DIAERESIS	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА і С ДИЕРЕЗОМ
240	F0	ð	LATIN SMALL LETTER ETH	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА ð
241	F1	ñ	LATIN SMALL LETTER N WITH TILDE	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА n С ТИЛЬДОЙ
242	F2	ò	LATIN SMALL LETTER O WITH GRAVE	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА о СО СЛАБЫМ УДАРЕНИЕМ
243	F3	ó	LATIN SMALL LETTER O WITH ACUTE	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА о С СИЛЬНЫМ УДАРЕНИЕМ
244	F4	ô	LATIN SMALL LETTER O WITH CIRCUMFLEX	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА о С ЦИРКУМФЛЕКСОМ
245	F5	õ	LATIN SMALL LETTER O WITH TILDE	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА о С ТИЛЬДОЙ
246	F6	Ö	LATIN SMALL LETTER O WITH DIAERESIS	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА о С ДИЕРЕЗОМ
247	F7	÷	DIVISION SING	ЗНАК ДЕЛЕНИЯ
248	F8	Ø	LATIN SMALL LETTER O WITH STROKE	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА о СО ШТРИХОМ
249	F9	ù	LATIN SMALL LETTER U WITH GRAVE	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА u СО СЛАБЫМ УДАРЕНИЕМ
250	FA	ú	LATIN SMALL LETTER U WITH ACUTE	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА u С СИЛЬНЫМ УДАРЕНИЕМ
251	FB	û	LATIN SMALL LETTER U WITH CIRCUMFLEX	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА u С ЦИРКУМФЛЕКСОМ
252	FC	ü	LATIN SMALL LETTER U WITH DIAERESIS	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА u С ДИЕРЕЗОМ
253	FD	ý	LATIN SMALL LETTER Y WITH ACUTE	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА у С СИЛЬНЫМ УДАРЕНИЕМ
254	FE	þ	LATIN SMALL LETTER THORN	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА р (ФОРН)
255	FF	ÿ	LATIN SMALL LETTER Y WITH DIAERESIS	СТРОЧНАЯ ЛАТИНСКАЯ БУКВА у С ДИЕРЕЗОМ

ДБ.3 Набор 8-битовых графических знаков (версия КОИ-8) по ISO/IEC 8859-5

В таблице ДБ.3 приведен набор 8-битовых графических знаков (версия КОИ-8) по ISO/IEC 8859-5:1999 (латинский/кирилловский алфавит) и соответствие международных и русских наименований и обозначений знаков.

В связи с тем, что знаки указанного набора с десятичными значениями с 0 по 127 полностью совпадают с набором 7-битовых знаков по ISO/IEC 646, в таблице ДБ.3 приведены 8-битовые графические знаки с десятичными значениями от 160 по 255.

Таблица ДБ.3 — Набор 8-битовых графических знаков (версия КОИ-8) по ISO/IEC 8859-5

Деся-	Шест-	Международ-			
тичное значение	надца- теричное значение	ное (русское) обозначение знака	Международное	Русское	
160	A0	NBSP (HΠP)	NO-BREAK SPACE	НЕРАЗРЫВАЮЩИЙ ПРОБЕЛ	
161	A1	Ë	CYRILLIC CAPITAL LETTER IO	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Ё	
162	A2	ਹ	CYRILLIC CAPITAL LETTER DJE	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Ђ	
163	А3	ŕ	CYRILLIC CAPITAL LETTER GJE	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Ѓ	
164	A4	E	CYRILLIC CAPITAL LETTER UKRAINIAN IE	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Є (УКРАИНСКИЙ ЯЗЫК)	
165	A5	S	CYRILLIC CAPITAL LETTER DZE	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА S	
166	A 6	-	CYRILLIC CAPITAL LETTER BYELORUSSIAN-UKRAINIAN I	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА І (БЕЛОРУССКИЙ И УКРАИНСКИЙ ЯЗЫКИ)	
167	A 7	Ϊ	CYRILLIC CAPITAL LETTER YI	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВАЇ	
168	A8	J	CYRILLIC CAPITAL LETTER JE	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА ${f J}$	
169	A9	љ	CYRILLIC CAPITAL LETTER LJE	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Љ	
170	AA	- Њ	CYRILLIC CAPITAL LETTER NJE	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Њ	
171	AB	Ћ	CYRILLIC CAPITAL LETTER TSHE	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Ћ	
172	AC	Ŕ	CYRILLIC CAPITAL LETTER KJE	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Ќ	
173	AD	SHY (ГД)	SOFT HYPHEN	ГИБКИЙ ДЕФИС	
174	AE	ў	CYRILLIC CAPITAL LETTER SHORT U	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Ў	
175	AF	Ţ	CYRILLIC CAPITAL LETTER DZHE	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Џ	
176	В0	Α	CYRILLIC CAPITAL LETTER A	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА А	
177	B1	Б	CYRILLIC CAPITAL LETTER BE	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Б	
178	B2	В	CYRILLIC CAPITAL LETTER VE	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА В	
179	В3		CYRILLIC CAPITAL LETTER GHE	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Г	
180	B4	Д	CYRILLIC CAPITAL LETTER DE	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Д	
181	B5	E	CYRILLIC CAPITAL LETTER IE	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Е	
182	B6	Ж	CYRILLIC CAPITAL LETTER ZHE	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Ж	
183	B7	3	CYRILLIC CAPITAL LETTER ZE	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА З	
184	B8	И	CYRILLIC CAPITAL LETTER I	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА И	
185	B9	Й	CYRILLIC CAPITAL LETTER SHORT I	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Й	
186	BA	К	CYRILLIC CAPITAL LETTER KA	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА К	

Продолжение таблицы ДБ.3

Деся-	Шест-	Международ-	Наименование знака		
тичное значение	надца- теричное значение	ное (русское) обозначение знака	Международное	Русское	
187	BB	Л	CYRILLIC CAPITAL LETTER EL	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Л	
188	ВС	М	CYRILLIC CAPITAL LETTER EM	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА М	
189	BD	Н	CYRILLIC CAPITAL LETTER EN	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Н	
190	BE	0	CYRILLIC CAPITAL LETTER O	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА О	
191	BF		CYRILLIC CAPITAL LETTER PE	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА П	
192	C0	Р	CYRILLIC CAPITAL LETTER ER	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Р	
193	C1	С	CYRILLIC CAPITAL LETTER ES	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА С	
194	C2	Т	CYRILLIC CAPITAL LETTER TE	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Т	
194	C3	У	CYRILLIC CAPITAL LETTER U	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА У	
196	C4	Φ	CYRILLIC CAPITAL LETTER EF	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Ф	
197	C5	Х	CYRILLIC CAPITAL LETTER HA	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Х	
198	C6	Ц	CYRILLIC CAPITAL LETTER TSE	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Ц	
199	C7	ч	CYRILLIC CAPITAL LETTER CHE	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Ч	
200	C8	Ш	CYRILLIC CAPITAL LETTER SHA	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Ш	
201	C9	Щ	CYRILLIC CAPITAL LETTER SHCHA	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Щ	
202	CA	Ъ	CYRILLIC CAPITAL LETTER HARD SIGN	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Ъ	
203	СВ	Ы	CYRILLIC CAPITAL LETTER YERU	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Ы	
204	CC	Ь	CYRILLIC CAPITAL LETTER SOFT SIGN	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Ь	
205	CD	Э	CYRILLIC CAPITAL LETTER E	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Э	
206	CE	Ð	CYRILLIC CAPITAL LETTER YU	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Ю	
207	CF	Я	CYRILLIC CAPITAL LETTER YA	ПРОПИСНАЯ КИРИЛЛОВСКАЯ БУКВА Я	
208	D0	а	CYRILLIC SMALL LETTER A	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА а	
209	D1	б	CYRILLIC SMALL LETTER BE	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВ А б	
210	D2	В	CYRILLIC SMALL LETTER VE	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА в	
211	D3	Γ	CYRILLIC SMALL LETTER GHE	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА г	
212	D4	Д	CYRILLIC SMALL LETTER DE	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА д	
213	D5	e	CYRILLIC SMALL LETTER IE	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА е	
214	D6	ж	CYRILLIC SMALL LETTER ZHE	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА ж	
215	D7	3	CYRILLIC SMALL LETTER ZE	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА 3	
216	D8	И	CYRILLIC SMALL LETTER I	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА и	
217	D9	й	CYRILLIC SMALL LETTER SHORT I	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА й	

Продолжение таблицы ДБ.3

Леся-	Деся- Шест-		Наименование знака		
тичное значение	надца- теричное значение	ное (русское) обозначение знака	Международное	Русское	
218	DA	К	CYRILLIC SMALL LETTER KA	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА к	
219	DB	л	CYRILLIC SMALL LETTER EL	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА л	
220	DC	М	CYRILLIC SMALL LETTER EM	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА м	
221	DD	н	CYRILLIC SMALL LETTER EN	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА н	
222	DE	0	CYRILLIC SMALL LETTER O	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА о	
223	DF	П	CYRILLIC SMALL LETTER PE	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА п	
224	E0	р	CYRILLIC SMALL LETTER ER	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА р	
225	E1	С	CYRILLIC SMALL LETTER ES	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА с	
226	E2	Т	CYRILLIC SMALL LETTER TE	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА т	
227	E3	у	CYRILLIC SMALL LETTER U	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА у	
228	E4	ф	CYRILLIC SMALL LETTER EF	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА ф	
229	E5	х	CYRILLIC SMALL LETTER HA	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА х	
230	E6	4	CYRILLIC SMALL LETTER TSE	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА ц	
231	E7	Ч	CYRILLIC SMALL LETTER CHE	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА ч	
232	E8	Ш	CYRILLIC SMALL LETTER SHA	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА ш	
233	E9	щ	CYRILLIC SMALL LETTER SHCHA	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА щ	
234	EA	Ъ	CYRILLIC SMALL LETTER HARD SIGN	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА ъ	
235	EB	ы	CYRILLIC SMALL LETTER YERU	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА ы	
236	EC	Ь	CYRILLIC SMALL LETTER SOFT SIGN	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА ь	
237	ED	Э	CYRILLIC SMALL LETTER E	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА э	
238	EE	ю	CYRILLIC SMALL LETTER YU	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА ю	
239	EF	Я	CYRILLIC SMALL LETTER YA	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА я	
240	F0	Nº	NUMERO SIGN	3HAK «HOMEP»	
241	F1	ë	CYRILLIC SMALL LETTER IO	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА ё	
242	F2	ħ	CYRILLIC SMALL LETTER DJE	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА ђ	
243	F3	ŕ	CYRILLIC SMALL LETTER GJE	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА f	
244	F4	ε	CYRILLIC SMALL LETTER UKRAINIAN IE	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА є (УКРАИНСКИЙ ЯЗЫК)	
245	F5	S	CYRILLIC SMALL LETTER DZE	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА s	
246	F6	i	CYRILLIC SMALL LETTER BYE- LORUSSIAN-UKRAINIAN I	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА і (БЕЛОРУССКИЙ И УКРАИНСКИЙ ЯЗЫКИ)	
247	F7	Ï	CYRILLIC SMALL LETTER YI	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА ї	
248	F8	j	CYRILLIC SMALL LETTER JE	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА ј	

Окончание таблицы ДБ.3

Деся-	Шест-	Международ-	Наименование знака		
тичное значение	надца- теричное значение	ное (русское) обозначение знака	Международное	Русское	
249	F9	љ	CYRILLIC SMALL LETTER LJE	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА љ	
250	FA	њ	CYRILLIC SMALL LETTER NJE	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА њ	
251	FB	ħ	CYRILLIC SMALL LETTER TSHE	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА ћ	
252	FC	Ŕ	CYRILLIC SMALL LETTER KJE	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА ќ	
253	FD	§	SECTION SIGN	ПАРАГРАФ	
254	FE	ў	CYRILLIC SMALL LETTER SHORT U	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА ў	
255	FF	Ų	CYRILLIC SMALL LETTER DZHE	СТРОЧНАЯ КИРИЛЛОВСКАЯ БУКВА 📭	

Приложение ДВ (справочное)

Сведения о соответствии ссылочных международных стандартов межгосударственным стандартам

Таблица ДВ.1

Обозначение ссылочного международного стандарта	Степень соответствия	Обозначение и наименование соответствующего межгосударственного стандарта
ISO/IEC 646	NEQ	ГОСТ 27463—87 «Системы обработки информации. 7-битные кодированные наборы символов»
ISO/IEC 15415	_	*, 1)
ISO/IEC 15424	IDT	ГОСТ ISO/IEC 15424—2018 «Информационные технологии. Технологии автоматической идентификации и сбора данных. Идентификаторы носителей данных (включая идентификаторы символики)»
ISO/IEC 19762-1	NEQ	ГОСТ 30721—2000/ГОСТ Р 51294.3—99 «Автоматическая идентификация. Кодирование штриховое. Термины и определения» ²⁾
ISO/IEC 19762-2	NEQ	ГОСТ 30721—2000/ГОСТ Р 51294.3—99 «Автоматическая идентификация. Кодирование штриховое. Термины и определения» ³⁾
ISO/IEC 24723	_	*

^{*} Соответствующий межгосударственный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта.

Примечание — В настоящей таблице использованы следующие условные обозначения степени соответствия стандартов:

- IDT идентичный стандарт;
- NEQ неэквивалентные стандарты.

¹⁾ В Российской Федерации действует ГОСТ Р ИСО/МЭК 15415—2012 «Информационные технологии. Технологии автоматической идентификации и сбора данных. Спецификация испытаний символов штрихового кода для оценки качества печати. Двумерные символы».

²⁾ В Российской Федерации действует ГОСТ Р ИСО/МЭК 19762-1—2011 «Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 1. Общие термины в области АИСД».

³⁾ В Российской Федерации действует ГОСТ Р ИСО/МЭК 19762-2—2011 «Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 2. Оптические носители данных (ОНД)».

Библиография

- [1] ISO/IEC 8859-1 Information technology 8-bit single-byte coded graphic character sets Part 1: Latin alphabet No. 1
- [2] Blahut, R.E. Theory and Practice of Error Control Codes, published by Addison Wesley, 1984, p. 260, etc.
- [3] AIM USA Uniform Symbology Specification PDF417, published by AIM USA, 1994
- [4] Europe Uniform Symbology Specification AIM PDF417, published by AIM Europe, 1994
- [5] ANSI X3.4, Coded Character Sets 7-bit American National Standard Code for Information Interchange (7-bit ASCII) (equivalent to the US national version of ISO/IEC 646)
- [6] AIM Inc. International Technical Standard: ITS/04-001, Extended Channel Interpretations Part 1: Identification Schemes and Protocols¹⁾
- [7] AIM Inc. ITS/04-001: International Technical Standard: Extended Channel Interpretations Part 2: Registration Procedure for Coded Character Sets and Other Data Formats Character Set Register

¹⁾ Опубликовано ассоциацией AIM Global, 125 Warrendale-Bayne Road, Suite 100, Warrendale, PA 15086, USA.

УДК 003.62:681.3.04:681.3.053:006.354

OKC 35.040

П85

ОКСТУ 4002

Ключевые слова: информационные, технологии автоматической идентификации и сбора данных, штриховой код, спецификация символики, PDF417, двумерные символы

БЗ 1—2018/131

Редактор *Е.А. Моисеева*Технический редактор *И.Е. Черепкова*Корректор *С.И. Фирсова*Компьютерная верстка *Л.А. Круговой*

Сдано в набор 25.04.2018. Подписано в печать 21.05.2018. Формат $60 \times 84^{1}/_{8}$. Гарнитура Ариал. Усл. печ. л. 13,02. Уч.-изд. л. 11,8. Подготовлено на основе электронной версии, предоставленной разработчиком стандарта