Министерство угольной промышленности СССР

НОРМЫ ТЕХНОЛОГИЧЕСКОГО ПРОЕЖТИРОВАНИЯ УГОЛЬНЫХ ШАХТ И ОБОГАТИТЕЛЬНЫХ ФАБРИК

Породний комплекс

Утверждены Минуглепромом СССР протоколом от 20.10.80

Раздел "Породный комплекс" норм технологического проектирования угольних шахт, разрезов и обогатительних фабрик разработан Воесомзими научно-исследовательским и проектным институтом "Центрогипрошахт" министерства угольной промишленность СССР.

С вводом в действие настоящего раздела ВНПІ утрачивает силу ряздел 30.00 "Породние отвали" "Основных направлений в норм технологического проектирования угольных щахт, разрезов в обогатительных фабрик" (Изд.1973 г.)

Редактор - инж. Шейнберг С.Д.

Министорство угольной промышленности СССР /Минуглепром

CCCPZ

Норми технологического проектирования угольных шахт , разрезов и обогатительных фабрик. Раздел "Породний комплекс" BHTTI 19-80

Минутлепром СССР
Взамен раздела 30.00
Основних направлений и
ноги технологического проектирования утольних шахт,
разрезов и обогатительних
феорик /Изд. 1973 г./

I. Общие положения

- I.I. Настоящие нормы распространяются на разработку проектов породного комплекса новых и реконструируемых угольных /сланцевых/ шахт и обогатительных фабрик.
- 1.2. В состав породного комплекса шахти и обогатительной фасрики входят технологические процесси: транспорт породи от места видачи до погрузочних устройств; погрузка породи в транспортние средства; транспорт породи в отвал; отвалосоразование; разработка, погрузка и транспорт материалов для профилактических мероприятий против самовозгорания породи и мероприятия по охране окружающей среди.
- I.3. Выбор мест и способов размещения шахтной породы и отходов обогащения на поверхности и использования их для закладки выра о отанного пространства обосновываются проектом.

При наличии рекомендаций НИИ по использованию породы в промышленности ,строительстве и сельском хозяйстве, в проекте приводятся соответствующе предложения.

Внесени: Всесоюзным научноисследовательским и проектным институтом угольной промимленности "Центрогипрошахт"

Утверждены Минуглепромом СССР протоколом от 20.10.80 Срок введения в действие I марта 1981г. I.4. При проектировании породного комплекса следует применить технологические схехи с доставкой породи в отвал: автосамосвалами, железнодорожними рагонами, конвейсрами с разгрузкой непосредственно в отвал или с перегрузкой у отвала в автосамосвали, подвесной денатней дорогой и гипротранспортим.

По согласованию с заказчиком допускается прежусматривать в проектах технологические схеми с доставкой погоди в отвал самоходинии скреперами.

Вибор технологической охеми сбесновывается технико-экономическим сравнением вариантов.

- 1.5. Проект породного комплекса должен разрабативаться в соответствие с тресованиями глав СНиП, Правил безонасности к техлеческой эксплуатация, а также других нормативных документов, предусизтривать эффективные средства защити окружающей среды от загрязцения и мероприятия по использование плодородного слоя с площади участков земли, занимаемых сооружениями и устройстваны породного помилекса, в соответствия с письмом Минуглепрома СССР от 14.07.77г. и Д-131.
- 1.6. Проектирование породного комплекса должно вестись на основе толографических "горно-геологических и гидрологических материаков и асследований в объеме, требуемом гловой СНеП "Инженерные изискания для строительства. Основние положения".
 - 2. Режим работы и часовая производительность.
- 2.І. Режим работи породного комплекса следует принимать: при видивидуальном породном отвале шахти в режиме работи шахтного породного подъема, обогатительной фабрики в режиме ее работи; при центральном породном отвале сооружения и устройства породного комплекса на промилошацках работают в режиме работи предприятия, псродний отвал работает в наиболее продолжительном из режимов угольных предприятий, внеозяцих породу в отвал.

 При технико-экономическом обоснования допускается применение односменного и двухсменного режима работи породного комплекса.
- 2.2. Расчетная часовая производительность принимается: мехажизмов транспортиров-ния породы к погрузочноку бункеру на жактежо максимальной производительности породного подъема, на обогатитель-

ной фабрике - по расчетному выходу порода с учетом коэффициента неравномерности;

механизмов погрузки породи в транспортные средства — при автомобильном транспорте в зависимости от качества породы и грузоподъемности автосамосвала, при железнодорожном транспорте в зависимости от весовой ногми состава, но не менее 500 то/час, при конвейерном транспорте, подвесной канатной дороге и гидротранспорте по максимальной производительности породного подъема на шахтах, по расчетному выходу породы с учетом коэфйициента неравномерности на обогатительных фабриках;

механизмов, работающих на отвалообразования, — при индивидуаль ном отвале — равной среднечасовому поступлению породи, при центральном отвале — равной среднечасовому поступлению породы с коэффициентом неравномерности, определяемым по графику /Рис. I/

3. Погрузка породы в транспортные средства

- З.І. Погрузку шахтной породы в транспортные сосудя при перевозке ее автомобильным, железнодорожным и конвейерным транспортом, скреперами и подвесной канатной дорогой предусматривать либо непосредственно из приемного бункера породного подъема, либо из отдельного бункера, расположенного у границы промплощадки. Выбор варианта производится на основания технико-экономических расчетов с учетом местных условий.
- 3.2. Погрузку породы обогатительных фабрик в транспортные сосуды при всех указанных в п.З.І. видах транспорта предусматривать из отдельного бункера.
- 3.3. Предусматривать в комплексе с погрузочным бункером устройства по обработке кузовов транспортных средств и породы для предотвращения ее прилипания, примерзания, а также смервания при транспортировке.

Расход материалов для указанных целей принимать по рекомендациям НИИ с учетом климатических условей района и свойств породн.

3.4. При погрузке породы в транспортные средства непосредственно из приемного бункера породного подъема должны предусматриваться меры, исилючающие загрязнение породой промілющацки.

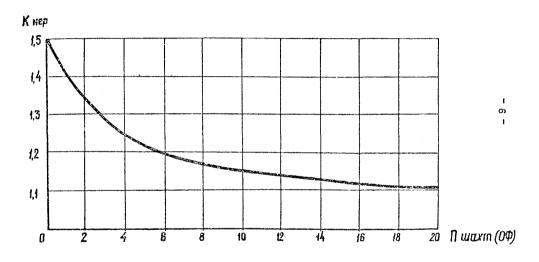


Рис. 1. Грифик изменения козфициента неравномерности поступнения парады в центральный отвал в зависимости от числа предприятий, выбазящих в него пораду.

- 3.5. При транспортировке породи конвейерным транспортом рассматрявать целесообразность предварительного ее дробления с включением в комплекс погрузочного бункера дроблиьно-сортировочной установки.
- 3.6. При невозможности применения одного вида транспорта породн от шахти /ОФ/ до непосредственного места силадирования, у породного отвала предусматрявать устройство пунктов перегрузки технологическая схема которих принямается: при перегрузке с железнодорожного транспорта на автомобильний разгрузку думпкаров с пмонерной насипи или эстакаци на погрузочную площадку; погрузку породи в автосамосвали экскаватором. При соответствующем обосновании разгрузку думпкаров на разгрузочной яме, а погрузку автосамосвалов через погрузочние воронки емкостью не менее трех их грузоподъемностей;
- при перегрузке породи с конвейерного транспорта на автомобильний погрузка породи в автоммосвали через погрузочные воронки емкостью не менее трех их грузоподъемностей.
- 3.7. Породние погрузочние бункери, как правило, должни бить железобетоние с футеровкой. При аккумулировании мокрой породи предусматривать устройства для отвода из ячеек капежных вод в канализацию шахти /00/ и в зависимости от климатических зон утепление бункера. Емкость ячейки принимается в пределах до 400 тс с углом наклона стенок конусной части 60-70° в зависимости от крупности и влажности поряды.
- 3.8. Транспорт породы на погрузочные бункеры и воронки принимать денточным конвейером с шириной денти не менее 1000 мм.
- 3.9. Механизми погрузочно-разгрузочних пунктов должны бить оборудовани устройствами по локализации пилеобразования в соответствии с требованиями раздела Норм технологического проектирования "Комплекс обеспиливания".
- 3.10. Площадку пункта погрузки породи в транспортные средства, проезди и подъезди и ней проектировать с твердым покритием в соответствии с требованиями раздела Норм технологического проектирования "Генеральные плани угольных предприятый" и главы СНиП "Генеральные плани промышленных предприятый".

- З.ІІ. Методики расчета емкости погрузочно-разгрузочных устройств приведены в приложениях І, 2,3,4.
 - 4. Транспорт перода в отвал Автемобильный транспорт.
- 4.1. Перевозку породы в отвам предусматривать изгосомосвадами грузоподъемностью до I2 тс. Тип и грузоподъемность автосамосвалов выбираются на основании сравнения технико-экономических показателей конкурентоспособных вармантов.

Рекомендуемые для предварительных расчетов сбласть применения автосамосвалов различной гругоподъемности приведени в приложении 5. Методика расчета потребного количества автосамосвалов приведена в краножении 6.

- 4.2. Проектирование автомобильной дороги к породному отвелу и штрыеру инертных материалов производить в спотьетствии с главой ЗНей "Автомобильные дороги. Нормы проектирования".
- 4.3. В проекте предусматревать обеспиливание дорожних покритей путем их поливки, посыпку песком в зимней перчод, а текже очестку от нусора и снега.

Вибор средсть обеспьянвания /нодой, раствором клористого кальция и др./ производить исходя из их неличия в районе расположения породного отвала.

Расход средств обесныявания, а также неряодичность посники песком в очестки от мусора и снега, для определения погресных механизмов, принамать на основании опита эксплуатации и данних НЛИ по аналогичным автомобальным дорогам.

Выполнение указанних выше расот предусматридать комбинированмими полнвочнеми мачинами, а в необходимых случаях, в зависимости ст местных условий, в комплексе с другими механизмами, предназваченными для этих пелей.

Методика расчета потребного числа комбинарованных поливочных машин приведена в приложения 167.

Транспорт самоходними скреперами.

4.4. Для перевозки породы в отвал предусматривать самоходине

скреперы с емкостью ковша до 8 м⁸. При расстояниях свыше 5 км скреперная доставка не рекомендуется. Одновременно необходимо предусматривать использование скреперов: для разработки грунта в карьере с транспортировкой его в породный отвел; для снятия растительного слоя и доставки его к местам складирования; на других работах связанных со строительством породного комплекса.

4.5. Количество рабочих скреперов определяется исходя из их сменной производительности по методике, приведенной в приложении 10. Количество резервных скреперов принымается в размере 25% числа рабочих машин.

Железнодорожный транспорт.

- 4.5. Доставку породы в отвал желе́знодорожным транспортом нормальной колев /1524 мм/ принимать составами самораэгружающихся вагонов /думпкаров/ грузоподъемностью 60 тс с тепловозной татой.
- 4.7. Весовая норма составов и потребное их количество определяются на основании тяговых расчетов, методых которых приведена в приложении 9.
- 4.8. Проектирование железнодорожного подъездного пути производить в соответствии с разделом норм технологического проектирования "Внешний транспорт".

Конвейерный транспорт.

- 4.9. Для транспортирования породы в отвал следует применять ленточные и канатно-ленточные конвейеры.
- 4.10. Проектирование конвейерного транспорта производится в соответствии с требованиями глави СНиП "Промишленный транспорт". Вибор ширины конвейерной ленти производится на основании технико-экономического сравнения вариантов транспортирования породы в рядовом или дробленом видах.

Скорость ленти конвейера принимать в соответствии с требованиями раздела норм технологического проектирования "Комплекс обеспыливания".

Подвесные канатные дороги.

4.II. Перевозка породы подвесными канатными дорогами предусматривается дорогами кольцевого типа с прямоугольным односторонним или двухсторонним породным отвалом в зависимости от количества складируемой породн. В случае невозможности размещения прямоугольного отвала, принимать подвесние канатные дороги с разделительной станцией и двумя отвальными лучами. Как правило, следует применять типовне проекти канатных дорог, разработанные институтами.
"Совзпроммеханизация". Проектирование канатных дорог должно вестись в соответствии с требованиями главы СНиП "Проммиленный транспорт".

Гидравлический транспорт.

4.12. Гидравлический транспорт породи проектированы в соответствии с требованиями "Отраслевой инструкции" по проектированию и экснлуатации систем гидравлического транспорта отходов флотации и возврата оборотной воды на углеобогатительных фабриках Минуглепрома СССР /"Центрогипрошахт", 1980г./, "Норм технологического проектирования предприятий промишленности нерудних строительных мамиси териалов." /Сорзгипронеруд и РЕМПИИ стройсирые 1977г./, методики у приведенной в приложении I2.

5. Породине отвали.

- 5.1. Выбор площадок под породный отвал, карьер для добичи инертного грунта для профилактических мероприятий против самовез-горания породы, а также подготовка этих илощадок к использованию, производится в состветствии с разделом норм технологического проектировании "Генеральные планы угольных предприятый" и главой СНий "Генеральные планы промышленных предприятый".
- 5.2. Вновь закладиваемие породние отвали принимаются плоской формы с послойным складированием породы. При реконструкции существующих породних комплексов с коническими отвалеми допускается ком-

бинированная их форма.

Пожаробезопасную толимну слоя и схему профилантики самовозгорания определять по методике МакНИИ, а для объектов, проектируемых в новых районах — по инструкции к ПБ шахт.

При гидравлическом транспорте породы предусматры еть устройство гидроотвала, проектирование которого производить в соответствие с "Нормами технологического проектирования предприятий промышленности нерудных строительных материалов".

- 5.3. Плоский и комбинированный отваль в зависимости от физикомеханических свойств породы могут иметь откосыбез уступов и с уступами. Откосы без уступов принимаются при угле их наклона менее 30°.
- 5.4. Емкость и высота породного отвала определяется с учетом остаточного козффиймента разрыхления и осадки пород, приведенных в табл. I.

Таблица I. Краффициент разрыхления и осадки пород в отвале

Наименование поро	ды Коэффици Начальный	нт разрихления Остаточний	Осадка отвала %	
песок и гравий	I,I -I, I5	1,01-1,015	9-I3,5	
Суглинки	1,2-1,25	I,02-I,04	I8-2I	
Мергель	1,25-1,30	I,04-I,05	21-25	
Твердая глина	I,3-I,35	I,06-I,07	24-28	
Скальние	I,35-I,40	1,08-1,15	25-27	

Разрешается вместе с породой складировать отходы флотации.

5.7. Способы отвалообразования принимаются:

бульдозерный - при складировании породы, склонной к самовоз-горанию;

эк скаваторный - пры складировании породы, не склонной к самовозгоранию.

Отвалообразующий транспорт принимается в зависимости от основного вида транспорта с учетом местных условий (толографических, гидро-

логических, висоты породного отвала, свойств породы и и по $_{\bullet}/_{\bullet}$

При комбинированном отвале основным отвалообразующим транспорток является узкоколейней колеп 900 мм с уклоном откаточного пути 20-25° и откаткой транспортных сосудов без квостового каната.

5.8. Карьер для добичи грунта, используемого против самовозгорания породы, как правило, закладывается на площадке под породный отвал с последуждим заполнением виработанного пространства породой. При непригодности грунтов допускается закладка карьера вне площадки, отведенной под породный отвал.

При наличии в районе расположения породного отвала других материалов, которые могут использоваться для профилактических мероприятий против самовозгорания породы, выбор их в сравнении с грунтом из карьера производится на основании технико-экономических расчетов.

- 5.9. Количество механизмов, работающих на отвалообразовании, определяется расчетами, методика которых приведена в приложеннях 6,8,11.
- 5.10. Проектирование автомобильной дороги по породному отвалу производится в соответствии с требованиями главы СНиП "Автомобильные дороги. Нормы проектирования".

Для обеспечения безопасности движения автотранипорта на участке автодороги в пределах прохождения по откосу породного отвала, с полевой ее сторони, предусматривать устройство сигнальных столбиков на расстоянии 2.5 м друг от друга.

5.II. Отвод ливневых и такых вод с берм и поверхности отвада производится путем придания им уклона в сторону бистротоков, устраиваемых на откосах ствалов. От подощви отвала ливневие и талие воды отводятся водоотводными канавами, устраиваемыми по его периметру, в водосборные отстойники с последующим сбросом из них чистой воды.

Количество ливневых и талых вод, размерн водоотводных канав и отстойников определяются расчетом.

Отвод поверхностного стока с водосоорной площади, прилегающей к отвалу , предусматривается нагорными канавами со соросом воды за его пределы.

При проектировании отвада ливневих и таких вор руководствоваться главаме СниП "Канализация. Наружиме сети и сооружения. Норми проектирования". Сооружения мелисративних счотем. Нарми проектирования" "Временной инструкцией по проектированию сооружений для очистки поверхностных сточных вод, "Правилеми охрани поверхностных вод от загрязнения сточными водеми."

- 5.12.По контуру породного отвама предусматривается механическая защитная зона размером в соответствии с требованиями "При» выя безопасности в угохрних и сланцевих-махтал".
- 5.13. На границе механической защитной зоны отвала предусматривается, при несоходимости, помецение для технология и профилектического режента механизмов и назеса для их столики с помещением для отдиха и обогрева трудициса.
 - 5.14. Наружное освещение предусматривается:
- породкого отважа променторана замивающего света, устанавляваеменя на мачтах;
- автодороги в пределах ее прохожнения не откосу отвала электро-

приложения

Приложение %Т

Методика расчета емкости погрузочного бункера и числа его ячеек при автомобильном транспорте породи в отвал.

I. Потребная емкость погрузочного бункера определяется по формуле /I/ как разность между количеством породы, выдаваемой из шахти на поверхность за время работи подъема в течение смени, и количеством породы, вывозимой автотранспортом за тот же период. При этом принимается, что порода выдается с коэфлициентом неравномерности, равным:

в одну половину каждой смени К= 1,5

в другую половину каждой смены К=1,0

$$V_0 = 10^6 \frac{\Omega_{tr}}{n \cdot n_1} / 1.25 - \frac{t_2}{t_2} /$$

где V_{σ} - емкость бункера, тс;

 Q_n - количество породы, подлежащей вивозу в отвал млн. тс/год;

n - число рабочих дней в году;

 π_{\star} - число рабочих смен в сутки;

 t_z' - число часов работы подъема за смену, ч;

 t_3 - число часов работи автотранспорта за смену, ч.

2. Потребная емкость погрузочного бункера на обогатительной фабрике определяется по аналогичной формуле /I/ при коэффициентах неравномерности соответственно I.I5 и I.O.

$$V_6 = \frac{10^6 \, Q_R}{\pi \cdot n_{\varphi}} / 1,075 - \frac{t_{\varphi}}{t_z} / ,$$

tφ - продолжительность работи ОФ в смену, ч.

З. Потресное число ячеек для погрузки автосамосвалов опредежлется исходя из пропускной способности одной ячейки, определяежой по формуле:

$$i = \frac{Q_n \cdot 10^5}{\Pi_c \cdot n \cdot n_i \cdot t_3}$$

где $\Pi_{\rm c}$ — пропускная способность одной ячейки, тс/ч; $\Pi_{\rm c} = \frac{q \cdot 60}{{}^{\rm T}_{\rm tt}}$

q - грузоподъемность автосамосвала, тс; $T_{\rm LL}$ - продолжительность одного цикла погрузки, мин;

Величина T_{II} принимается в зависимости от грузоподъемности автосамосвалов равной:

грузоподъемность	Q,	, TC	Продолжительность пикла
	,		T _{II} , MUH.
4,5			5,3
7,0			5,5
12,0			6,4

Методика расчета емкости погрузочного бункера и числа его ячеек при транспортировке породы в отвал железнодорожным транспортом.

I. Емкость погрузочного бункера определяется их условия загрузки одного состава думпкаров по формуле:

где G сос - масса одного состава /нетто/, тс; - коэффициент неравномерности выдачи породы.

2. Число ячеек погрузочного бункера определяется исхода из емкости бункера, конструктивной емкости ячейка не более 400 тс, требуемой производительности погрузки и возможности ее обеспечения погрузочными устройствами.

Приложение 3

Методина расчетов погрузочно-разгрузочных устройств пунктов перегрузки породы с основного вида транспорта на транспорт отвалообразования

Основным ядляется транспорт для перезовии породы от шахт /СТ/ до породного ствала, транспорт отвалообразования - средства доставжи породы от пункта перегрузки с основного вида транспорта к местам складирования.

а/ разгрузка думикаров с пионерной насыпи или эстакади. Пионерная насыпь предусматривается в подпорных стенках. Емкость склада породы принимается в зависимостя от местных условий, но не менее двух составов.

Расчетными величинами ивляются: высота пионерной насыпи или эстапады, ширина и длина площедки.

Візота пионерной насыпи или эстакады /Н/ определяется по формуле:

 $H = \sqrt{\frac{2n_c \cdot G_{coc}}{\ell_{coc} \cdot t_q \cdot \varphi \cdot \gamma}},$

где Л. - число породных составов подлежащих складированию;

 ℓ_{coc} - илина состава.м:

- угол естественного откоса породы;
 - объемный вес породы /разрыхленной/,тс/мЗ

Наибольная ширина площадки для складирования породы и погрузки 60 в автосамосвали, определяется по формуле:

$$d = \frac{H}{tg \varphi} + b_g$$
, M

где b_g - потребная ширина площадии для прохода экскаватора и проседа автосамосвана, м

Длина пионерной насыпи определяется:

$$\mathcal{L}_n = \ell_{coc} + 5$$
, M

б/ разгрузка думпкаров на разгрузочной яме.

Пункт перегрузки породы состоит из ями для разгрузки думпкаров и пункта погрузки породы в автосамосвалы. Емкость разгрузочной ямы определяется по формуле:

$$V_{g} = \kappa_{\rm m} G_{\rm coc}$$
, To

Погрузочный пункт состоит из погрузочных воронок, число которых определяется по "Методике расчета емкости погрузочного бункере 2 потребного числа ячеек при автомобильном транспорте породы в отвал", а емкость их принимается по конструктивным соображениям, но не менее трех грузоподъемностей обращающихся автосамосвалов.

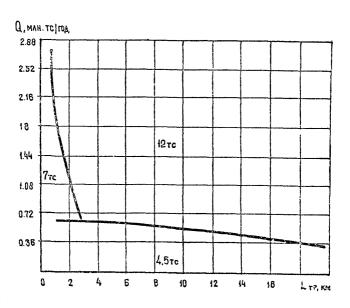
Коэффициент неравномерности работы жел. дор. транспорта принимается І.2.

2. Пункт перегрузки породы с конвейерного транспорта и подвесной канатной дороги на автомобильный транспорт состоит из погрузочных воронок, число и емкость которых определяется аналогично принятому для пункта перегрузки породы с келезнодорожного транспорта на автомобильный.

Приложение 4.

Методика расчета смкости погрузочного бункера и числа его ячеек при транспорте породи в отвал подвесной канатной дорогой или ленточным конвейстом.

І. Емкость погрузочного бункера определяется по формуле:


$$V_{\rm d} = \frac{\kappa_{\rm H}}{n} \frac{Q_{\rm R}}{n} \frac{10^6}{n} / \frac{n_1 \cdot t_2}{n_{\rm K} \cdot t_{\rm KZ}} - 1/,$$

где n_{κ} – число смен работи подвесной канатной дороги /ленточного конведера/в сутки ;

 $t_{\rm KZ}$ - нормативная продолжительность смены работы подвесной канатной дороги /ленточного конвейера/,ч;

К, - коэффициент, принимаемый для шахт 1,25, для 0Ф 1,075.

2. По ребное число ячеек погрузочного бункера определяется исхоля из максимальной их емкости не более 400 тс.

Орментировочные области рационального применения абтосамосвалов грузоподъёмностью: 4,5; 7; 12 тс

Методика расчета количества автосамосвалов для транспорта породи в отвал.

І. Количество автосамосвалов рабочего парка определяется по dopurate:

 $A = \frac{10^6 \cdot Q_n \cdot t_{pc} \cdot \kappa_y \cdot \kappa_n}{T_1 \cdot t_3 \cdot Q \cdot \kappa_n \cdot \kappa_y \cdot \kappa_n},$

где $K_{_{\!\!\!m V}}$ - козфрицент увеличения продолжительности рейса "учитывардий работу в ночные смены, сезонность ,состояные дороги и т.д. /принимается I.2/:

 K_n - коэффициент неравномерности перевозок /принимиется I,I/; Тт - номинальный годовой фонд времени работы автосамосвала при односменной работе, принямается разным 2050 часам при 41 -часовой рабочей неделе с двуми выходными инями и 0.3 часа в смену. затрачиваемых на подготовительно-закимчительные работи /уход за автомобилем в гараке, заправка машини, оформление документов и т.п./

 \mathcal{Q}_{r} - грузоподъемность автосамосвала, тс; \mathcal{K}_{r} - коэффициент кспользования грузоподъемности автосамосвала:

К, - коэффициент использования парка, принимается 0,85;

Сос продолжительность рейса, ч;

$$t_{pc} = 2 / \frac{\ell_4}{v_i} + \frac{\ell_2}{v_z} / + t_{np}$$

где ℓ_4 - расстоянке перевозки породн от шахти /ОФ/ до породного отвала. км:

 ℓ_2 - расстояние перевозки породы по породному отвалу, км; V_4 - скорости движения автосямосвалов от шахты до породного OTBAJA. KM. Y:

 \mathcal{U}_2 - то же по породному отвалу, принимается I6 км/час, Среднее технические скорости движения автосамосвалов по дорогам с усовершенствованным покрытием /км/ч/ принимаются по таблице 2:

Табляпа 2.

Грузоподъемность самосвала тс	Рельед Равкинный	местности Пересечен Нин	Горный
5 - 7	40	3I	I8
8 - 12	32	25	I8

Пурамечание: Скорости движения автосамосвалов на дорогах с покрытием переходного типа принимаются ниже приведенных в таблице на 20%, на дорогах с покрытием низших типов — на 25-30%

 $\mathcal{L}_{\mathrm{пр}}$ - средневзвещенное время простоя на один рейс под погружению-разгрузочными операциями

где $T_{\rm H}$ - продолжительность цикла погрузки, ч; Сра -продолжительность цикла разгрузки, принимается 0,05 ч;

2. Количество автосимосвалов инвентарного парка определяется по формуле:

 $A_{\underline{H}} = \frac{\underline{A}}{K_{\underline{T}}} ,$

тде $\mathbf{K}_{\mathbf{T}}$ — коэффициент технической готовности автомобильного парка Принимается:

Число смен работы	одна	две	три
Коэффициент тех-	0,85	0,80	0,70

Приложение 7

Методика расчета количества поливочних машин

Поливка автомобильных дорог, очистка от мусора и снега, посыпка леском в зимний период, а также увлажнение породы против самовоз-горания в отвале осуществляется комбинированной поливочной машиной типа ПМ-10 на шасси автомобиля ЗИЛ 164 с емкостью цистерны 6000 л.

Потребное число полимочных машин определяется по формуле:

$$A_{\rm H} = \frac{Q_3 \left(\frac{\ell}{V_{\rm f}} + \frac{\ell}{V_2} + t_{\rm M} + t_{\rm pa} + t_{\rm M}\right)}{60 \cdot T \cdot K_{\rm BH} \cdot q_{\rm fl}},$$

где Q_{α} - емкость цистерны, \mathbf{m}^3 ;

 $lpha_g^{'''}$ - общее количество жидкости, потребное для разлива, м 3 ;

К_{вп.} - коэффициент использования времени, принимается при односменной работе 0,8, при двухсменной - 0,75;

е – дальность возки жидкости, м;

V₄ - скорость движения груженой машини, принимается 300 м/мин;

 $\dot{\mathcal{V}_2}$ - скорость движения порожней машины, принимается 400 м/мин;

 $t_{\!\scriptscriptstyle H}^{\!\scriptscriptstyle -}$ - время наполнения цистерн, принимается 14 мин;

tpa - время разлива, определяется по формуле:

$$t_{\rho a} = \frac{6000 \cdot 60}{P \cdot 16000} = \frac{22,5}{P}$$
, MUH.

 $16000 - площадь полива в час , <math>m_*^2$;

 t_{M} - время маневрирования, принимается 3 мян;

Р - норма расхода жидкости /см.п.4.3./, м3.

Приложение 8

Методика расчета производительности самоходного скрепера с емкостью ковща по $8 \, \mathrm{m}^3$.

Сменная производительность скрепера, м3 / в плотном телегрунты. в рихлом - породы/ определяется по формуле:

$$\Pi_{\mathbf{c}} = \frac{3600 \cdot \mathcal{L}_{\mathbf{cM}} \cdot Q_{\mathbf{c}} \cdot K_{\mathbf{H}}}{K_{\mathbf{p}} \cdot T_{\mathbf{H}\mathbf{c}}}$$

где t_{CM} - продолжительность смены, ч;

 Q_{c} — геометрическая емкость ковша, м a ; K_{h} — коэффициент наполнения ковша, принимается по таблице 3; K_{p} — коэффициент разрыхления грунта, принимается по табли-

Таблина З Коэффициенти разрыхления /К и наполнания /К и

Наименование грунта	! Влажность! ! до % !	- K _p	! K _H
Порода шахт и ОФ песок:		1,0	1,2
сухой	-	1,1	0,6-0,7
влажный Растительный грунт	12 - 15 10	I,I5 I,2-I,25	0,7-0,9 I,I-I,2
Суглинок Глина	-	I,2-I,25 I,25-I,3	I,I-I,2 I,0-I,I

К, - коэффициент использования скрепера во времени, равний 0,85; T_{uc}^- продолжительность одного цикла работи, t:

а/ при транспортировке профилактических материалов против. самовозгорания породы.

$$T_{\rm HC} = \frac{\ell_{\rm f}^{\,c}}{V_{\rm f}^{\,c}} + \frac{\ell_{\rm g}^{\,c}}{V_{\rm g}^{\,c}} + \frac{\ell_{\rm g}^{\,c}}{V_{\rm g}^{\,c}} + \frac{\ell_{\rm g}^{\,c}}{V_{\rm g}^{\,c}} + \ell_{\rm nc} + 2\,t_{\rm p}^{\,\prime} \ ,$$

пути заполнения конпа скрепера, м

$$\ell_1^c = \frac{q_c \cdot K_H \cdot K_{BC}}{q_c + q_c \cdot h \cdot K_D}$$

К, - козфакциент, учитивающий потери групта при образовании валика,принимается равным 1,2;

 \tilde{h} — имрина полосе резания, равная 2,72 м; \tilde{h} — глубиег резания, принимается 0,3 м; — скорость скрепера при наборе грунта,принимается 0,6 м/с; — дальность транспортирования грунта,м; $V_2^{\rm C}$ — средняя скорость инименто 5.6 M/c:

2° - длина пути разгрузки грунта,м;

$$\ell_3^c = \frac{q_c \cdot K_H}{k \cdot q}$$

 $\mathcal{L}_{3}^{c} = \frac{g_{c} \cdot K_{H}}{6 \cdot \alpha}$ δ — средняя толщина слоя отсники ,м; \mathcal{U}_{3}^{c} — скорость движения при разгрузке грунта, принимается 3 м/с; \mathcal{L}_{4}^{c} — длина пути порожнего скрепера,м;

- скорость движения порожнего скрепера, принимается 7 м/с;

tnc - время переключения скоростей, принимается 6 с;

 t_p' - время одного разворота скрепера, принямается 15 с;

б / при транспортировке породы:

при транспортировке породи:
$$T_{\text{пс}} = \frac{\ell_2^c}{l_2^c} + \frac{\ell_3^c}{l_3^c} + \frac{\ell_4^c}{l_4^c} + t_{nc} + t_{\rho}' + t_3^c$$

 $\mathcal{L}_{\mathbf{x}}^c$ - продолжительность погрузки с учетом подготовительно заключительних операций, принимать в среднем - 250 с.

Приложенке 9

Метолика расчета веса /орутто/ железнодорожного породного состава и потребного числа обращающихся составов

І. Вес породного состава /орутто/ определяется по формуле:

$$G_{coe} = \frac{F_{T} - (W_{T} + i_{p}) \cdot P_{2}}{W_{q} + t_{p}}, \text{ TC },$$

где F_T — расчетная сила тяги тепловоза /кгс/ F_B — сцепной вес тепловоза ,тс; W_T — удельное сопротивление тепловоза,кгс/тс;

Lp - руководящий уклон подъездного пути, %;

Wq - удельное спиротивление думикара при трогании поезда с места повнимается 4 кгс/тс

При определение расчетной сили тяги тепловоза козфилменти сцепленыя принимать: при троганым с места - 0.3 при установившемся nbmxenum - 0.22

2. Требуемое число обращающихся составов определяется по формулам:

а/ при транспортировже без вихода на угольные пути.

$$c_o = \frac{Q_R \cdot T_o \delta}{n \cdot G_{coc} \cdot T_{Tp}},$$

где Тоб - время оборота одного породного состава, ч;

 T_{TD} — часло часов работи транспорта в течение суток /принимается равныя 2I ч/;

$$T_{od} = t_n + t_{xr} + t_p + t_{xn} + t_{m+} t_{np},$$

где t_{α} - время на погрузку одного состава, ч;

tуп - время кода в грузовом направления, ч /среднерейсовую скорость принимать 25 км/ч/;,

🕇 " - кремя на разгрузку состава, ч. Время на разгрузку одного думпкара принимается равным 2 мин;

Тил - время хода в порожнем направлении. ч /среднережновую скорость принимать 30 км/ч/:

t — время на маневровне операции на один оборот, ч; t пр - время простоя на раздельных пунктах, ч.

б/ при перевозке породе на отдельных участках по угольным путки:

$$C_{\text{oy}} = \frac{Q \text{ m} \cdot \text{Too}}{n \cdot G_{\text{coc}} T_{\text{Tp}} K_{\text{T}}} ,$$

Донецкий бассейн — 0,68 Кузнецкий — 0,65 Кераганданский— — 0,60 Подмосковный — — 0,72 Печорский — — 0,64 Львовско— Волинский — — 0,73

Месторождения:

 Урама
 - 0,74

 Сибири и Пальнего Востока
 - 0,70

 Средней Азия
 - 0,59

4. Инвентарный парк тепловозов и думпкаров определяется по расчетному парку, равному числу обращающихся составов и думпкаров и коэффициенту резерва для тепловозов — 1,2, для думпкаров — 1,15.

Приложение ІО

Методика расчета высоты и угла наклона откосов породного отвала /по методу ВНИМИ/

I. Исходными данными для расчета являются:

 χ - объемный вес породы, тс/м³;

p' – угол внутреннего трения по контактам поверхности ослабле-. HEGT.RNH

Или наиболее распространенных пород указанные величины принимаются в размерах. приведенных в табл.4.

Наименование горных пород	, T/M ³	ри ровной ! ! при ровной ! ! шероховатости	при неровной шероховатости
Глинистие сланцы	2,12	2I-23 ⁰	23-250
Песчаники	2,57	24-28 ⁰	28-31 ⁰
Алевролитн	2,13	22-25 ⁰	25–28 ⁰
Аргиллиты	2.02	2 I- 23 ⁰	23-25 ⁰
Известняки	2,44-2,6	7 2 3 25 ⁰	24-27 ⁰

Таблица 4.

Меньшие значения углов трения по поверхности ослабления принимаются при недостаточной изученности этих показателей.

К^I - спепление пород по контактам поверхностей ослабления, тс/м2 При отсутствии натурных испитаний принимается ориентировочно-2-5 TC/M2

7 - коэффициент запаса устойчивости откоса, принимается равным 1,2

2. Порядок определения параметров откоса породного отвала: а/ при необходимости определения высоты породного отвала 1:0 заданным K' , γ' , ρ' .

На основании опыта проектирования породных отвалов и по аналогии с действующими, устанавливается ориентировочное значение угла наклона откоса / с/:

определяют прочностные характеристики породы с учетом коэффициента запаса устойчивости откоса / $\frac{1}{4}$, $\frac{1}{4}$ /; определяется глубина трешини отрыва " $\frac{1}{4}$ 0" по формуле: $\frac{2}{7}$ Ctg / $\frac{1}{4}$ $\frac{1}{2}$

$$H_{30} = \frac{2 \text{ K}'}{T}$$
, Ctg / 450 - $\frac{D'}{2}$

По таблице 5, для принятого угда наклона откоса / с / и угла трения по поверхности ослабления, определяется условная высота откоса 用/:

По полученным величинам H_{90} и H^{I} определяется висота отвала "Н" по формуле:

 $H = H^{I} \cdot H_{QQ} \cdot M$

- 3. Если задана высота отвала /H/ и необходимо определить угол наклена откоса / \propto / , то сначала определяют величину $H^{\perp} = \frac{H}{H_{QQ}}$, а затем по расчетному значению \mathcal{P}' / с коэффициентом запаса/и H^{2} 8лученной величине Н по таблице 5 устанавливают искомый угол наклона OTROCA /d/
- 4. В случае если при расчете по прочностным жарактеристикам, получаются угин более технически допустимых, то необходимо предусматривать относи отвала с бермами, пирина которых назначается исходя из строительно-эксплуатационных требований, но не менее 3 м. В этом случае угол наклона откоса " попределяется проф. Б.П. Боголюбова:

 $\mathcal{L} = arctg \frac{\sum h_i}{\sum \alpha_i + \sum h_i \delta_i}$

Значения, входящих в формулу величин, показани на рис. 2.

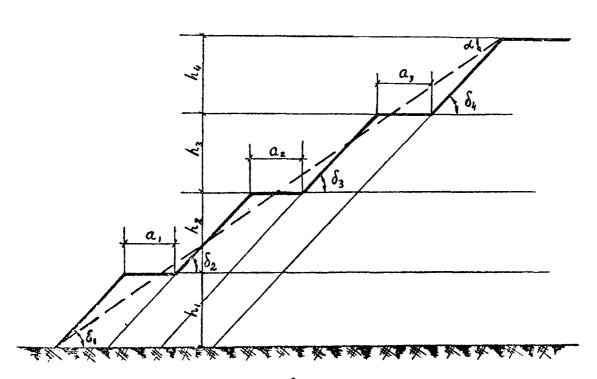
5. Высота отвала, отсыпаемого на наклонном основании, содер-

жащем слабне контакти, приближенно вичисляется по формуле:
$$H = \frac{2c' \cdot S(n, 2d \cdot Sin(\omega_n - \beta))}{\int Sin(d-\beta) \left[\frac{(1-\sin \beta') \cdot Sin(d-\beta)}{\cos(\frac{2}{3}\cos(-\omega_n - \beta))} - 2\cos \beta \cdot Sin(\omega_n - d)(tg\beta' - \cos\beta \cdot Sin\beta)\right]}, M$$
гле $\omega_n = 45^0 + \frac{1}{2}$;

В- угол наклона основания.

6. Примери расчета

а/ определение висоти отвала:


исходяме данные : $\gamma = 2$, I3 тс/м³ ; $tg \rho' = 0.4$ I; $\rho' = 23^{\circ}$; $\kappa^{I} = 3$ тс/м²; $\rho' = 1.2$

Принимаем величину заложения откоса 1:1,5 или $\propto = 33^{\circ}50^{\circ}$ Прочностные характеристике с учется коэффициента запаса

$$\frac{tg\,\rho'}{2} = \frac{0.4I}{I.2} = 0.34; \; \rho' = I9^{\circ} \; ; \; K' = \frac{3}{I.2} = 2.5 \; \text{Tc/M2} \; ;$$

$$H_{90} = \frac{2:25}{2.13} \cdot ctg$$
 /45- $\frac{19}{2}$ /= 2,36·ctg 35°30′=2,36·1,4=3,3 m

По таблице 5_углам ρ' =19° и $d=33^{\circ}50'$ соответствует $H^{I}=8$ м $H = H^{I} \cdot H_{90} = 8 \cdot 3.3 = 26.4 \text{ M}$

puc. 2

б / определение угла наклона откоса отвала при H=60 м $\chi = 2.13$ тс/м³; $t_0 p' = 0.41$; p' = 23 ; $K^I = 3$ тс/м²; t' = 1.2; $t_{90} = 3.3$ м ; $t_{10} = \frac{80}{3.3} = 18$ м по таблице 5, расчетному углу $p' = 19^{0}$ и $t_{10} = 18$ м соответствует $t_{10} = 19.8 + \frac{26.2 - 19.8}{5}$ / $t_{10} = 19.8 + \frac{6.4}{5} = 19.8 + 5.1 = 24.9^{0}$. Заложение откоса будет $t_{10} = 19.8$

Зависимость между условной висотой откоса / H^{I} /, углами трения поверхности ослабления / $\int f'/f$ и углами наклона откоса / $\int f'/f$

Таблица 5

Условная внсота		Угол трения	по по	верхнос	ти осла	бления	в град
CTROCA H•	0 1	5 1 10 1	I5 1	20_	1 25 1	30 1	35
	<u>і</u> Угол	наклона отко	oca B	градуса			
I I,5	90	90 90	90	90	90		90
	80,7	81,4 82,3	83,0	83,6	84,0	84,5	85,0
2,0	69,2	71,3 73,0	74,5	75,8	77,3	78,I	79,6
2,5	53,0	60,0 63,5	65,5	68,2	71,0	72,5	74,4
3,0		47,3 53,7	58,0	61, 8	65,2	68,0	70,2
3,5 4,0		37,0 46,I 28,0 39,5	5I,0 45,8	56,3 51,3	60,2 56,0	64,0 60,I	66,5 63,5
4,5		22,3 34,5	4I,6	47,2	52,5	56,9	60,9
5,0 5,5		I8,0 30,8 I4,7 27,8	38,0 35,0	44,0 41,4	49,6 47,0	53,9 51,7	58,5 56,6
6,0 6,5		I2,0 25,8 I0,0 24,0	32,7 30,9	39,I 37,3	45,0 43,4	50,0 48,5	54,8 53,4
7,0		8,0 22,5	29,4	35,8	41,9	47,I	52,2
8,0		20,1	27,2	33,6	39,3	45,2	50,2
9,0		18,4	25,6	31,7	38,0	43,9	48,6
10,0		17,1	24,2	30,3	36,7	42,6	47.4
11.0		I6,4 I5,8	23,4 22,7	29.7 29.0	35,7 35,0	41,6 40,7	46,4 45,6
14,0		14,6	21,4	27,9	34,0	39,2	44,3
16,0 18,0		14,2	20,8 19,8	26,8 26,2	33,0 32,3	38,3 37,7	43,0 42,7
20,0			19,2	25,5	31,7	37,I	42,I
24,0			-	24,7	30,3	36,5	40,9
28,0					29,7	35,7	40,3
	точные знач	иения величи	н р/	, H ^I m	d mp	NHMMAD	

Промежуточные значения величин ρ' , H^{\perp} и α принимаются путем интерполяции

Приложение II.

Методика расчета производительности бульдозера

I. Сменная производительность бульдозера в плоти теле при разработке грунта с перемещением, определяется по формуле:

 t_{cs} - продолжительность смены, ч; V_{r} - объем грунта в разрыхленном состоянии, перемещаемый

отвалом бульдозера;
$$M^3$$
: $\ell_5 \cdot h_5 \cdot \alpha_5$

sepa:

 ℓ_{5} - длина отвала бульдозера,м;

h 5 - висота перемещаемого отвалом грунта, принимается равной 2/2 высоты отвала бульдозера,м;

 a_5 - mupusayhepemensemoro rpyhta, m:

$$a_{5} = \frac{h_{5}}{7050}$$

 $a_5 = \frac{h_5}{tg\varphi}$ φ - угол естественного откоса грунта /породы/;

Куб- коэффициент, учитывахили уклон участка работи бульпо-

Коз - коэффициент .учитыварший унеличение производительности при работе бульнозера с открилками /отван димчного типа/,принимаercs I.I5:

Кль- коэффициент, учитывающий потери породы в процессе ее перемещения:

Киб= I + $\beta \cdot \mathcal{C}_2^5$ - расстояние транспортирования грунта /породы/, и;

В - коэффициент, развий для разрихлениих сухих пород -0.008, для мокрых пород - 0,004.

Каз - корффициент использования бульдовера во времени, принимаемый равным 0.8:

Кр - коэффициент разрыхления грунта /породы/:

Тиб — продолжительность одного пинда,с:

Тиб = $\frac{l_{s}^{5}}{v_{s}^{6}} + \frac{l_{s}^{6} + l_{s}^{5}}{v_{s}^{6}} + \frac{l_{s}^{6} + l_{s}^{5}}{v_{s}^{6}} + \frac{l_{s}^{6} + 2 t_{ps}}{v_{s}^{6}}$ е. – длина пути резембя, и; - скорость перемещения бульдозера при резамии.м/с: - расстояние транспортирования грунта,м; U_*^{5} - скорость движения бульдовера с грунтом, м/о; скорость холостого хода,м/с; ta - время переключения скоростей, с; t_{ps} - время одного разворота трактора, с; Значения расчетных величин приведены в таблице 6:

Таблина 6.

Мощность трактора		1 [5]	 7,5 !	лемет 725	THE THE	ī, ī	t _{ps}
108	Растительный, песок, суглинок Глина, гравий, щебень, дрес	5,0 1	0,0	1,2	-	9	10 10
	Скальные породы, предва- рительно разрыхленные			0,67	1,0	9	10
	Растительный, песок, суг- ленок	7,0 1	.0	I,4	I,7	9	10
140-180	Глина, гравий, щебень, дресва	10,00	67	1,2	I,6	9	IO
	Скальние породы, предва- рительно разрыхленные	13,0 0	,25	0,67	I,0	6	IO
300	Растительный, песок , суглинок	9,0 1	 .,0	1,5	2,0	9	10
	Глина .гравий, щебень; дресва	12,0 0	67	I,I	I,7	9	IO
	Скальные породы, предва- рительно разрыхленные	17,0	,30	0,67	1,0	6	IO

2. Производительность бульдозера при планировочных работах, определяется по формуле /19/

П пл= $\frac{3600 \cdot t_{c5} \cdot L(l_s Sind-c) \cdot K_{85}}{\left[n_s \left(\frac{L}{l_{F3}} + t_{\rho s} \right) \right]}$,м2 в смену, где L – длина планируемого участка,м;

∠ - угол установки отвала бульдозера к направлению его движения.град:

С - ширина перекрытия смежных проходов, м принимается в пределах 0,3-0,5 м;

 Π_E - число проходов бульдозера по одному месту, Π_E = I + 2:

 U_n^{δ} - средняя скорость движения бульдозера при планировке, м/с; /-соответствующая обично первой или второй передаче трактора/;

 $t_{
m PS}$ - время , затрачиваемое на развороти при каждом проходе, с.

Методика расчета напорного гидротранспорта рядовой шахтной породы по горизситальным трубопроводам.

Методика расчета напорного гидротранспорта рядовой шахтной пореды рекомендуется по горизонтальному трубопроводу диаметром Д = 200 + 500 мм, при консистенции гидросмеси, изменяющейся в при значениях средневзвешенной крупносдиалазоне $\frac{T}{A} = \frac{I}{30} + \frac{I}{A}$

ти частиц транспортируемого твердого материала d_{e} 0,25 + 50 мм. Методика разработана МИСИ им. В.В.Куйбышева на основе эксперементальных данных, выполненных в работе "Новые типы породных отвалов угольных шахт и обогатительных фабрик", утвержденной Минуглепромом СССР по согласованию с Госстроем СССР.

Целью гидравлического расчета является определение суммарных потерь напора по длине трассы трубопровода. Эти потери определяются по формуле:

$$H = h_1 + h_M + h_r + h_5 + h_3 + h_B$$

Значения входящих в формулу величин определяются:

a/ noteph ha Tpehue $/h_1/$

$$h_i = \ell_{nH} \cdot L$$
,

где L - длина магистрального трубопровода, м;

іли- удельние потери напора на трение при гидрогранспорте рядовой шахтной породы по незамленному стальному гадравлически гладкому горизонтальному трубопроводу определяется по формуле: $\dot{t}_{n\mu} = \dot{t}_o + \left(\dot{t}_{\kappa\rho} - \dot{t}_o \left(\frac{\dot{V}_{\kappa\rho}}{\dot{T}}\right)^2\right) \frac{\dot{V}_{\kappa\rho}}{\dot{V}} \triangle_o^{2.25} \ ,$

$$i_{nH} = i_0 + \left[i_{\kappa\rho} - i_0 \left(\frac{U_{\kappa\rho}}{U}\right)^2\right] \frac{U_{\kappa\rho}}{U_{\kappa\rho}} \Delta_o^{225}$$
,

где i_o - удельные потери напора при движении води по горизонтальному трубопроводу, со скоростью $\mathcal U$, определяется по формуле:

$$\dot{t_o} = \lambda \frac{v^2}{2g \cdot 2}$$

 $\dot{t_o} = \lambda \frac{v^2}{z_g \cdot \hat{y}}$ \mathcal{D} — диаметр трусопровода, м;

- коэффициент сопротивления трубопровода, который для гидравлически гладких трубопроводов определяется:

$$\lambda = \frac{0.31}{(l_2 R_e - 1)^2} \quad ,$$

где \mathcal{R}_{e} – число Рейнольдса ,определяемое по формуле:

$$R_e = \frac{v \cdot D}{v}$$

) - кинематический коэффициент вязкости воды.

 \dot{t} кр - удельные потери напора на трение при движении гидросмеси с критической скоростыю / \mathcal{U}_{KP} / , по горизонтальному трубопроводу, которые определяются:

 $i_{\kappa\rho} = 0.15 \frac{\sqrt{C_o \, \Upsilon_*}}{\sqrt{\mathfrak{D}}}$

С - деготвительная объемная консистенцая гидросмени

$$C_0 = \frac{\chi_{CM} - \chi_0}{\chi_{T} - \chi_0}$$

Усм, Утуб- соответственно удельный вес гапросмена, транспортируемого материала и води;

 $rac{\varphi_{\pi}}{\pi}$ - козфрициент транспортабельности однородного материала, принижаемый по теблице

Фракции грунта мм	0.25 0.50	0.50	I-2	2_3	3-5	15-10	10-20	20
<u> </u>							12,0 1	

В случае разнородного матерлаже вичисляется осредненчая величина по формуле:

 $Y_{*0} = \frac{\sum Y_{*i} \cdot P_i}{100}$

где Y_{i} - средняя величина для i -ой стандартной фракции;

 P_i - процентное содержание i -ой фракции по везу в составе про- он транспортируемого материала.

Однородным материал считается, когда отношение $d = \frac{dst}{ds} \le 3$ где $d = \frac{dst}{ds} = \frac{dst}{ds}$ гранизовать по кривой гранулометрического состава;

 d_{10} - диаметр частин, соответствующий ІСЯ содержанию фракций по той же криной.

 $V_{\kappa\rho}$ — критическая скорость движения гидросмеси определяется по формуле: $V_{\kappa\rho} = 8.3 \sqrt[3]{D} \cdot \sqrt[6]{C_{C} \cdot V_{\pi}} \qquad \text{м/c}$

 Δ_0 - показатель условной неоднородности транспортируемого материала. определяемий по формуле:

$$\Delta_o = \frac{3 \, d_{10}}{d_{90}}$$

При однородном материале поправка $\Delta_{\sigma}^{\it O25}$ не вводится. .

б/ потери на местные сопротивления в арматуре и фасонных частях магистрального трубопровода //м/:

 $h_{_{\mathcal{M}}} = \frac{\sum_{\xi} v^2 \rho_{_{\mathcal{O}M}}}{2q \cdot \rho_{_{\mathcal{S}}}}$, где $\rho_{_{\mathcal{O}M}}$, $\rho_{_{\mathcal{S}}}$ - соответственео объемный вес смеше и воды; ξ - коэффициент, учитивающий местине сопротивления в фасонных частях и арматуре. Принимается:

> Плавно очередний вход в трубу0, I-0,2 Суживающийся переход......О, І Распиряющийся переход...........0,25

в/ потери напора на преодоление геодезического подъема гидро-

CMECH /hr/:

 $h_r = \frac{\pm h_r \cdot \rho_{cm}}{\rho_a} ,$

где / разность геодезических отметок уровня гидрокомплекса к гипроствала. м:

г/ потери напора в плавучей бухте $/h_s/$

$$h_{\delta} = i_{nH} L_{\delta} + 10n$$

где 🕹 🗸 - длина плавучей бухти,и;

л - количество шарових соединений

ж./ потери напора в трубопроводах и арматуре, размещенных внутри корпуса земленого снаряда / h_{6} /: $h_{8} = \frac{\xi_{8} \cdot J^{2}}{2 g}$, где ξ_{8} - суммарный коэфумциент гидравлических сопротивнений в за-

висимости от концистенции пульпы и особенностей снаряда

ОГЛАВЛЕНИЕ

	•	crp.
τ.	Общие положения	3
	Режим работы и часовая производительность	4
	Погрузка породи в транспортные средства	5
	Транспорт породы в отвал	8
		[0
	- приложения	
_	·•	
I.	Методика расчета емкости погрузочного бункера и	
	числа его ячеек при автомобильном транспорте породы.	T.C
		16
۷.	Методика расчета емкости погрузочного бункера и	
	числа его ячеек при транспортировке породы в от-	18
2	вал железнодорожным транспортом	10
٥.	пунктов перегрузки породы с основного вида транспор-	
		18
1	Методика расчета емкости погрузочного бункера и	10
7.	числя его ячеек при транспорте породы в отвал	
	подвесной канатной дорогой или ленточным конвей-	
	epon	20
5.	Ориентировочные области рационального применения	
-	автосимосвалов грузоподъемностью 4.5:7 и 12 тс	21
6.	Методика расчета количества автосамосвалов для	
	транспорта породы в отвал	22
7.	Методина расчета количества комбинированных	
	поливочних машин	24
8.	Методика расчета производительности самоходного	
	скрепера с емкостью ковша до 8 м	25
9:	Методика расчета веса /брутто/ железнодорожного	
	породного состава	27
10.	Методика расчета высоты и угла наклона откосов	
	породного отвала /по методу ВНИМИ/	29
II.	. методика расчета производительности бульдозера	33
12.	Методика расчета напорного гидрогранспорта рядовой	
	шахтной породы по горизонтальным трубопроводам	36

Отпечатано ротапрянткой мастерской кн-та Центрогепрошахт ул. Петра Романова, 18. Заказ 17. Тираж 220. Подпесано в печать Л-87378 от 28.02.81. Ценя 0 р. 55 коп.