Госстрой СССР Главиромстройпроект Совзметаллостройницироект

Ордена Трудового Красного Знамени
Центральный научно-моследовательский и проектный институт
строительных металлоконструкций
примпроектстальконструкций

РУКОВОДСТВО

ПО ПРОЕКТИРОВАНИЮ СТАЛЬНЫХ КОНСТРУКЦИЙ ИЗ ГНУТОСВАРНЫХ ЗАМКНУТЫХ ПРОФИЛЕЙ

	Οτροιαι, ρ που- ποια, παίνπητα, Ιάορμηνια	Папочатано	атиб онжлоД
6 7	Рис. Ia Таблица 2 (значе 3 графа, 7 стр. снизу	ония h./б ⁷ 8 41,3	2 41,8
	снизу 4 грама, 9 стр. снизу 7 графа, 6 стр.	46,4	45,4
	сверху 8 графа, 6 стр. снизу	36,3 47,9	86,3 47.6
IO I4 п.	Рис.3 13 строка снизу	(выравнивание)	(вирывание)
3.2.I. 15 17	Рис.6,б I строка снизу	h., 2(8p/kp +1)	$\frac{h_{\beta}}{(8\rho/h_{\rho}+1)}$
17 п.3.2.6	Формула (24) ,а	h n	8,
до п.3.3.4,а	13 строка снизу	' φ'	" \$ " u " \$ p p"
20	Формула (29)	е	l,
23 п.4.2.3	Формула (35)	$M_1 = \frac{q_1 L^2}{\lambda}$	$M_{i} = \frac{9L^{2}}{10}$
25 n.4.2.9	Формула (39)	$\ell_{\it p}$	ℓ_c
26 п. 4.2.2 0	Межцу строками 12 к 13 снизу	пропуск	Остающаяся подкладка при установке прихва- тывается со стороны кромки элемента конст- рукции
32	Табл.4.1 гра- фа между I и 2 строчками снизу	пропуск	300
39 42	3 строка снизу 13 строка снизу	несколько тановые;	нескольких тановые; фенольно-фор-
42	Табл. 12.9 стр. снизу	•	мальдегидные; распыление
42	ІЗ строка снизу	AM,	AMr,

Pocerpon CCCP

Главпромстройпроект

Совзметаллостройниипроект

Ордена Трудового Красного Знамени научно-исследовательский и проектный институт строительных металлоконструкций инишироктстальконструкций

YTBEPKILAD:

Директор института

цимин.п. Мельников

"К" kas fed 1978 г

РУКОВОДСТВО

ПО ПРОЕКТИРОВАНИЮ СТАЛЬНЫХ КОНСТРУКЦИЙ ИЗ ГНУТОСВАРНЫХ ЗАМКНУТЫХ ПРОФИЛЕЙ

УЛК 624.0I4.2:69I.423 (08375)

Руководство составлено в дополнение к СНиП П-В.3-72 и отражает специймку конструкций из гнутосварных замкнутых проймлей, которые являются тонкостенными, обладают повышенными механическими свойствами материала в результате гнутья, имеют особенности в реботе узлович соеминений

имерт особенности в работе узловых соединений.
При разработке Руководства были использованы результаты технико-экономических расчетов, опытного проектирования и исследовании, выполненных в ЦНИ/проектстальконструкции, ВНИКТИ-стальконструкции, ИЭС им. Е.О.Патона, в Макеевском инженерностроительном институте и других организациях. В Руководстве использованы также зарубежные нормативные материалы.

В разработке Руководства принимали участие кандидаты техн. наук И.В. Левитанский, А.Г. Иммерман, Б.С. Цетлин, Т.А. Чач-ковский, Т.С. Волкова; инженеры В.В. Севригин, Б.Н. Емельянов,

В.М. Деренковский.

Все замечания и предложения направлять по апресу: 117393, г. Москва, Новые Черемушки, квартал 28, корпус 2, Отдел экспериментальных исследований.

I. OBIME YKASAHMA

I.I. Области применения профилей и номенклатура конструкций

- I.I.I. Гнутосварные профили (ГСП) рационально применять прежде всего в решетчатых фермах покрытий промышленных и сельскохозяйственных зданий с легютии кровлями по прогонам и беспрогонными, а также в связях п крытий промышленных зданий.
- I.I.2. ГСП могут найти применение в безраскосных фермах, связях по колоннам, а также в качестве прогонов под легкие кровли из неметаллических материалов (когда крепление кровли не обеспечивает развязки прогона из плоскости при $\ell/\beta \le 75$, где ℓ пролет, ℓ ширина сечения элемента), стоек конструкций вноотных стеллажей механизированных складов, элементов стержневых пространственных конструкций, рамных конструкций опор трубопроводов и линий электропередач, стоек фахверков, в элементах, работающих на кручение и др.
- I.I.З. Классийнкация конструкций из гнутосварных проймлей в зависимости от условий их эксплуатации должна соответствовать требованиям Приложения I СНиП П-В.3-72.
- I.I.4. ГСП из стали класса С38/23 с точки эрения снижения стоимости рационально применять:
- в сжатых элементах стержневых конструкций вместо спаренных уголков при гибкости последних более 60;
- в элементах стержневых конструкций, работающих на внецентренное сжатие, вместо спаренных уголков при гибкости последних до 70 (кроме случая малых эксцентриситетов) при замене двутавра — при гибкости более 90 (при любых эксцентриситетах).
- 1.1.5. Применение сталей повышенной прочности увеличивает эффективность применения гнутосварных профилей.
- I.I.6. Конструкции из гнутосварных профилей могут найти применение в отечественном строительстве так же, как аналоги конструкций из дебицитных круглых труб.
- 1.1.7. Области применения ГСП не должны ограничиваться указанной номенклатурой конструкции и будут расширяться с ростом выпуска ГСП.

I.I.8. До накопления опита проектирования и изготовления (основных) несущих конструкций с применением ГСП головные образцы массовых конструкций, не имеющие экспериментально обоснованных аналогов, должны подвергаться силовым испытаниям в соответствующих температурно-климатических условиях. Необходимость проведения испытаний определяется в проекте конструкций.

I.2. Сортамент

- I.2.I. При проектировании конструкций из ГСП следует руководствоваться ГОСТ I2336-66 "Профили замкнутне сварные квадратные и прямоугольные общего назначения. Сортамент" с учетом дополнений (см. приложение I) и номенклатурой профилей Молодечненского завода легких конструкций (см. приложение 2).
- 1.2.2. Череповецкий металлургический завод по заказам организаций выпускает ГСП, соответствующие техническим возможностям профилегиоочного стана: разверткой шириной 100+600 мм, тольшиюй 2+8 мм, что соответствует наисольшим гасаритам профилей по ГОСТ 12336-66: квадратных 160х160 мм, прямоугольных 180х125 мм.
- I.2.3. Профили изготовляются из малоуглеродистих и низколегированных сталей марок СтЗки, пс, сп,09Г2, I4Г2, что соответствует классам СЗВ/23. С44/29, С46/33.

І.З. Расчетные сопротивления стали

I.3.I. Расчетные сопротивления стали в конструкциях из гнутосварных профилей следует принимать по СНиП П-В.3-72. Допускается учет повышения предела текучести материала за счет упрочнения вон изгиба профили в соответствии с методикой, приведенной в п. 2.3.I.

2. РАСЧЕТ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ

2.1. Учет тонкостенности профилей

2.I.I. Расчет элементов конструкций производится по полному сечению согласно соответствующим разделам СНиП II-В.3-72 при выполнения для сжатых стенок гнутосварного проймля условия

$$\frac{h}{\delta} \le \frac{4870}{\sqrt{G_{cp}}},\tag{I}$$

где

b- высота стенки, принимаемая равной расстоянию межцу краями выкружек (рис. Ia,6);

 δ - толщина стенки;

 G_{ep} — напряжение в сжатой стенке элемента в кгс/см² (рис. Ів).

Значения h/δ при $G_{cp} = R$, когда стенка полностью включается в работу, представлены в табл. I.

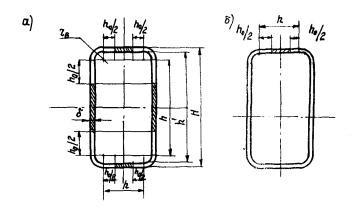
 Класс стали
 Расчетное сопротивление
 Значения h/s

 С38/23
 2100
 41

 С44/29
 2600
 37

 С46/33
 2900
 35

Таблица І


2.1.2. При $\frac{h}{\delta} > \frac{1870}{\sqrt{G_{cp}}}$ в качестве расчетной для каждой сжатой стенки сечения принимается висота $h_0 < h$, с учетом которой вичисляются геометрические карактеристики приведенного сечения. Значения h_0 определяются в соответствии с указаниями п. 2.2.

2.2. Проверка устойчивости стенок сжатых и изгибаемых элементов

2.2.І. Наибольшая расчетная висота h_0 центрально сжатых стенок элементов при условии $\frac{h}{\delta} > \frac{4870}{G_{\rm Cb}}$ (см.п.2.І.2) определяется из формулы (2) или по данным Табл.2.

$$\frac{h_0}{\delta} = \frac{2755}{\sqrt{G_{max}}} \left(1 - \frac{600}{\sqrt{G_{max}}} \cdot \frac{\delta}{h} \right), \tag{2}$$

где G_{max} имеет размерность кгс/см 2 и определяется последовательным приближением, начиная от G_{gg} (см.рис.Ів).

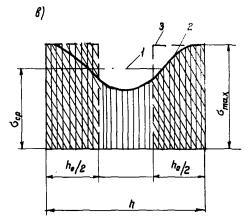


Рис.І. Приведенное сечение при центральном сжатии (а); приведенное сечение при изгибе в одной плоскости (б); распределение напряжений в сжатой стенке (в):

1 — фактическое, при выполнении условия (І);

2 — фактическое в гибких стенках;

3 — приведенное в гибких стенках

Таблица 2 Значение $h_{\rm o}/\delta$ при различных уровнях напряженности сжатых стенок

Smax, 2				h/δ	<u>~</u>				
CTC/CM ²	40	50	60	70	80	90	100	120	I40
500	_	_	=	_	_	36,3	90,0	95,5	99,5
1000	-	l	59,5	63,4	66,4	68,7	70,5	73,3	75,3
IIOO	_	-	57,9	61,5	64,2	66,3	68,0	70,5	72,3
1200	_	_	56,5	59,5	62,2	64,2	65,7	68,0	69,0
I300	-		55,I	58,2	60,4	62,2	63,6	65,7	67,3
I400	_	49,9	53,9	56,7	58,8	60,4	61,8	63,7	65,I
I5 0 0	_	49,0	52,7	55,3	57,3	58,8	60,I	61,9	63,2
I600	_	48,I	51,6	54,I	55,9	57,3	58,5	60,2	61,4
I700	-	47,2	50,2	52,9	54,6	56,0	57,0	58,7	59,8
1800	_	46,5	49,6	51,8	53,4	54,7	55,7	57,2	58,3
I900	_	45,7	48,6	50,7	52,3	53,4	54,5	55,9	56,9
2000	_	45,0	47,8	49,7	51,2	52,4	53,3	54,7	55,7
2100	-	44,3	46,9	48,8	50,2	51,3	52,2	53,5	54,4
2200	39,9	43,7	46,2	48,0	49,3	50,3	51,2	52,4	53,3
2300	39,4	43,0	46,4	47,I	48,4	49,4	50,2	5I,4	52,3
2400	39,0	42,4	44,7	46,3	47,6	48,5	49,3	50,5	5I,3
2500	38,5	41,3	44,0	45,6	46,8	47,7	48,4	49,6	50,3
2600	38,I	41,3	43,4	44,9	46,0	46,9	47,9	48,7	49,5
2700	37,7	40,7	42,8	44,2	45,3	46,2	46,9	47,9	48,6
2800	37.3	40,2	42,2	43,6	44,6	45,5	46,I	47,I	47,8
2900	36,9	39,7	41,6	43,0	44,0	44,8	45,4	46,4	47,0
3000	36,5	39,2	4I,I	42,4	43,4	44,I	44,8	45,7	46,3
3500	34,7	37,0	38,6	39,8	40,6	4I,3	1	42,6	43,I

2.2.2. Наибольшее значение отношений $\frac{h_{\rho}}{g}$ для стенок внецентренно сжатых и изгибаемых элементов определяется в SABICIMOCTI OT BEJINTEH

 $\mathcal{L} = \frac{G - G'}{G} u \frac{T}{G},$

где G, G' и $\mathfrak T$ определяются п.6.II СНиП 11-В.3-72. При $\mathcal L<0.5$ немоольшее значение отношения h_η/δ принимается как для стенок центрально сжатых эдементов (п.2.2.1).

При d > 0.5 наибольшее значение отношения h_0/δ опре-

пеляется по формуле

$$\frac{k_0}{\delta} = 100 \sqrt{\frac{2K_0}{6[2-d+\sqrt{L^2+4\beta^2}]}},$$
 (3)

THE $\beta = 0.98 \text{ K}_3 \text{T/G}$ (G u T $\tau e/e M^2$);

К. - коэффициент, определяемый по графику (рис.2) в зависимости от величины &. .

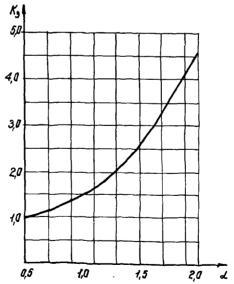


Рис. 2. График для определения коэффициента К

2.3. Центрально-растявутне и центрально-скатие элементи

2.3. І. Прочность элементов, подверженнях центральному растяжению или скатию силой N . вроверяется по формуже

$$\frac{N}{F} \leq R \cdot K_1 \,, \tag{4}$$

TEM F = FHT - площедь сечения нетто для растянутых и сматых, удовлетворяющих условию 2.1.1. элементов, или $F = F_{nn}$ иможень приведенного сечения сжатых элементов при выполнения **УСЛОВИЯ** П. 2.I.2.

$$F_{np} = \delta \left[\Re \left(2z + \delta \right) + \sum_{i=1}^{4} k_{ni} \right], \tag{5}$$

где 7 - внутренний раднус гиба;

 h_{ai} - определяется по формуле (2):

 K_{i} — коэффициент упрочнения материала. Упрочнение материала ($K_{i} \ge \frac{1}{i}$) допускается учити вать при выполнении следующих условий:

- а) если ГСП изготовиен на пробилегиосчном стане:
- 6) HOW BEJENSHIP $z \leq 5$ %
- в) при удовлетворении условия п.2.1.1.

Значение коэффициента упрочнения материала определяется по формуле

$$K_{i} = I + \beta_{i} \left(d_{i} - I \right), \tag{6}$$

где 🕹 - относительное упрочнение, определяется по грайику на рис.3:

β, – отпосительная площадь упрочненной зоны

$$\beta_1 = \frac{\mathcal{I}(2z + \delta)\delta}{F_{HT}}.$$
(7)

2.3.2. Устойчивость центрально-сжатых элементов проверяется по формуле

$$\frac{N}{g_{F}F_{np}} \leqslant R, \tag{8}$$

 $F_{\rm np}$ - площадь приведенного сечения, вичисляется по LIG формуле (5);

 $\mathcal{G}_{\mathtt{r}}$ — коэффициент продольного изгиба, принимаемый по приложению 4. таол.53 СНиП. П-В.3-72 в зависимости от приведенной гибкости элемента $\mathcal{J}_{\scriptscriptstyle E}$;

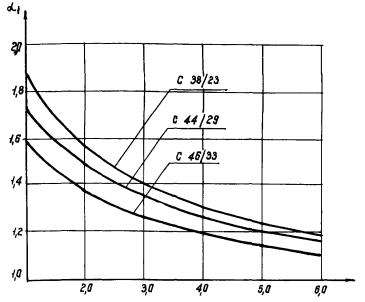


Рис.3. График для определения коэ ϕ ициента \mathcal{L}_{I}

$$\hat{J}_{F} = \hat{\mathcal{A}}^{3} \sqrt{\frac{F_{np}}{F}} , \qquad (9)$$

где F – площадь полного сечения элемента брутто; $\beta = \ell/i$ – наибольшая гибкость проверяемого элемента; ℓ – расчетная длина элемента;

 $\dot{\iota}$ - радиус инерции действительного сечения.

2.4. Изгибаемые элементы

2.4.I. Прочность при изгибе в одной из главных плоскостей элемента проверяется по формуле

$$\frac{M}{W_{\rm F}} \le R$$
, (I0)

где *М* - изгибающий момент;

 $W_{\mathbf{r}}$ - момент сопротивления приведенного сечения.

- 2.4.2. Проверка общей устойчивости балок не производится, если $\frac{6}{H} > 0.4$ и $\ell/6 < 75$ (6 и H ширина и высота сечения. ℓ пролет).
 - 2.5. Внецентренно-сжатие элементи
- 2.5.1. Прочность сжатых с одноосным экспентриситетом элементов проверяется по формуле

$$\frac{N}{F_{np}} \pm \frac{M}{W_F} \le R \,, \tag{II}$$

где N и M — продольная сила и изгибающий момент; $F_{n\rho}$ и W_F — площадь и момент сопротивления приведенного сечения.

2.5.2. Устойчивесть внецентренно-скатых элементов в плоскости действия изгибающего момента проверяется по формуле

$$\frac{N}{g^{g_H}F_{HB}}$$
, (I2)

где $F_{\pi\mu}$ - илощадь приведенного сечения, вычисляемая по формуле (5);

формуле (5); φ_F^{BH} — формуле (5); — коэффициент продольного изгиба, определяемый по таблице 60 СНиП П-В.3-72 в зависимости от $\mathcal{A} = \mathcal{A}_F$ (формула 9) и $m * m_F$. Относительный эксцентриситет приведенного сечения m_F внчисляется по формуле

$$m_F = \sqrt[3]{\left(\frac{F_{np}}{F}\right)^2} \,. \tag{I3}$$

- 2.6. Местная устойчивость стенок при сосредоточенных нагрузках
- 2.6. Г. Если плоскость действия нагрузки совпадает с плоскестью стенки (опирание по типу рис. 4, б и т.п.), наибольшая величина сосредоточенной нагрузки или реакции в опорном сечении, действующей на каждую стенку, определяется по формулам:
- а) реакция крайней опоры, нагрузка на конце консоли и на участках длиной не более I,5 h (где h = H^-2S , см. рис. Ia), прилегающих к опорам,

$$\rho_{1} = \delta^{2} R \left(7.4 + 0.93 \sqrt{\frac{2}{\delta^{2}}} \right);$$
 (14)

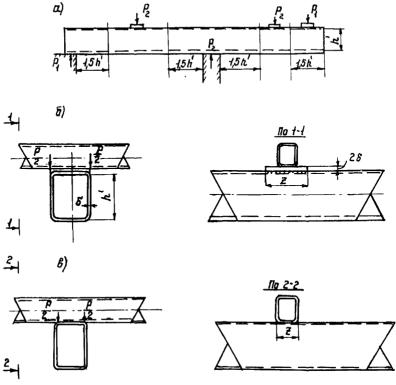


Рис. 4. Виды расположения сосредоточенных нагрузок при проверке местной устойчивости стенок

б) реакция промежуточной опоры и опоры консоли, нагрузка на участках расположенных на расстоянии более I, 5 h_i от опор

 $P_{Z} = \delta^{2} R \left(H_{i} I + 2 A I \sqrt{\frac{Z}{\delta}} \right)$ (I5)

2.6.2. Если плоскость действия нагрузки не совпадает с плоскостью стенки (опирание по типу рис. 4.в), то

$$P_{i} = 5 \cdot 10^{-3} \delta^{2} R \left(980 + 42 \frac{z}{\delta} - 0.22 \frac{zh'}{\delta^{2}} - 0.11 \frac{h'}{\delta} \right) \beta_{1}, \tag{I6}$$

$$\rho_{2} = 5 \cdot 10^{-3} \delta^{2} R \left(3050 + 23 \frac{z}{\delta} - 0.09 \frac{zh'}{\delta^{2}} - 5 \frac{h'}{\delta} \right) \rho_{2} , \qquad (17)$$

где β_1 и β_2 - коэффициенты. $\beta_1 = \left(4.45 - 0.45 \frac{2}{K}\right) \left(4.33 - 0.33 \frac{R}{2400}\right), \tag{18}$

$$\int_{2}^{Q} = \left(4,06 - 0,06 \frac{2}{\delta} \right) \left(4,22 - 0,22 \frac{R}{2100} \right).$$
(19)

В формулах (I4-I9) δ - толщина стенки, измеряемая в см; χ - условная длина распределения давления сосредоточенного груза должна быть не более высоты стенки h, см;

 $\mathfrak l$ – внутренний радиус закругления не должен превышать $4\,\delta$, см; $\mathfrak R$ – расчетное сопротивление, кгс/см 2 .

з. РАСЧЕТ СОЕЛИНЕНИЙ И УЗЛОВ

3.1. Сварные соединения

3.I.І. Сварные шви, выполняемые при помощи ручной и полуавтоматической сварки, воспринимающие продольные и поперечные силы, расположенные на закруглениях профилей с наружным радиусом, равным 3 δ , где δ — толщина стенок профиля, рассчитывается на срез по формуле

$$\frac{N}{06 \cdot \beta_{m} \cdot \ell_{m}} \leq R_{y}^{aB} , \qquad (20)$$

гле

 $\theta_{\rm ui}$ - ширина шва (рис. 5);

N - расчетная сила, действующая на соединение ;

ной длине за вычетом 10 мм; k_y^{cs} расчетное сопротивление углового шва, принимаемое по табл. 5 СНиП П-В.3-72.

- 3.1.2. Односторонние сварные шви, выполненные при наличии установочного зазора "а", равного 0,5-0,7 толщини стенки при-мыкающего элемента (см. рис.5) с полным проплавлением стенки профиля, рассчитываются как стыковые по п.9.2. СНиП П-В.3-72.
- 3.1.3. Угловне шви на закруглениях, прикрепляющие элемент, на который одновременно действуют растягивающие усилия и изги-

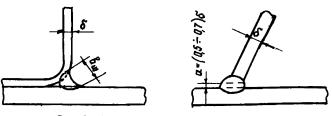


Рис. 5. Параметры сварных швов

бакщий момент, рассчитываются в соответствии с п.9.6 СНиП П.В.3-72 при значениях расчетных моментов инерции швов с учетом уменьшения площали поперечного сечения шва $f_{\mu\nu}$ = $0.6 \cdot \delta_{\mu\nu} \ell_{\mu\nu}$.

3.І.4. Ширину сварных фланговых швов δ_{ii} рекомендуется принимать не более І,5 δ_{min} , лобовых — І,2 δ_{min} , где δ_{min} — наименьшая толшина соединяемых элементов.

3.2. Бесфасоночные узлы решетчатых конструкций

- 3.2.І. Бесфасоночные узлы решетчатых конструкций из гнутосварных профилей (рис.6), состоящие из пояса и примыкающих к нему элементов решетки, проверяются следующими расчетами:
- а) на продавливание (выравнивание) участка стенки пояса, контактирущего с элементом решетки;
- б) на несущую способность участка стенки пояса, параллельной плоскости узла, под сматым элементом решетки;
- в) на несущую способность элемента в зоне примыкания к поясу;
- г) на прочность сварных швов прикрепления элементов решетки к поясу.
- 3.2.2. В случае одностороннего примикания к поясу нескольких элементов решетки (см. рис.6а, б, в) при $\delta_{\rho}/\delta_{\pi} \leq 0.9$ и $0 \leq c/d \leq 0.25$ несущая способность пояса на продавливание проверяется для каждого элемента по отдельности по формуле

$$\rho \leq \frac{m \cdot R \cdot \delta_n^2 \left(d + c + \sqrt{2 \delta_n \varepsilon} \right)}{\left(04 + 1.8 \, c/d \right) \cdot \varepsilon \cdot \sin d},$$
(21)

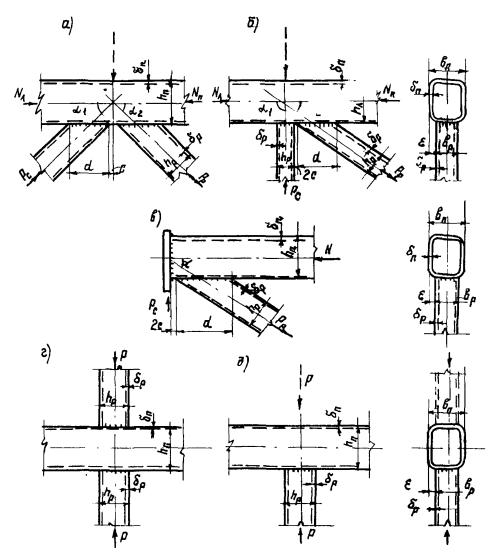


Рис.6. Типн бесфасоночных узлов

р - усилие в примикающем элементе:

т - коэбіжшиент, равный

I,0 - при растяжении в поясе и при сжатии. ec.mx N/FR €0.5;

 $1.5 - \frac{N}{FR}$ npm $\frac{N}{FR} > 0.5$:

№ - продольное усилие в поясе со стороны растянутого элемента решетки:

F - площадь поперечного сечения пояса:

R - расчетное сопротивление материала пояса:

 δ_n - толщина стенки пояса:

d - длина участка линии пересечения элемента решетки с поясом в направлении оси пояса $d = \frac{k_{\beta}}{\sin d}$

С - половина расстояния между смежными стенками соседних элементов решетки или поперечной стенкой раскоса и опорным ребром; $\xi^{\frac{6n-6p}{2}}$ — полуразность ширины пояса и элемента решетки;

— угол примыкания элемента решетки к поясу.

3.2.3. Несущая способность пояса на продавливание крестообразных и Т-образных узлов (см. рис.6 г.д), а также элементов, указанных в п.3.2.2, при c/d > 0.25 проверяется по формуле

$$\rho \leq \frac{m \cdot R S_n^2 \left(d + \sqrt{8 \beta_n \mathcal{E}} \right)}{\mathcal{E} \sin d} .$$
(22)

3.2.4. При проверке несущей способности пояса на вырывание в правые части формул 21 и 22 вводится коэффициент 1.15.

3.2.5. Несущая способность участка стенки пояса в плоскости узла в месте примыкания сматого элемента решетки при $0.85 < \delta_p / \delta_n$ проверяется по формуле

$$\rho < \frac{2m \cdot KR\delta_n \cdot h_p}{\sin^2 \alpha}, \tag{23}$$

где K — коэффициент, принимаемый в зависимости от отнои расчетного сопротивления стали по графику HA DEC. 7.

Для соотношений $h_n/\delta_n\gg 25$ в правую часть формулы (23) дополнительно вводится коэффициент 0,8.

3.2.6. Снижение несущей способности элементов решетки в зоне примикания к поясу при $\delta_0 = h_0$ учитывается при про-

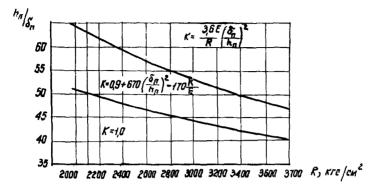


Рис. 7. Области значений коэффициента К

верке их прочности умножением значения расчетных сопротивлений на коэффициент условий расоти m :

а) для сжатых раскосов при углах примыкания $\lambda = 40-50^{\circ}$ и $c/d \le 0.25$

 $m' = \frac{K}{1 + 0.013 h_n / \delta_n}, \qquad (24)$

б) для тех же раскосов при l/d > 0.25 и сжатых стоек ($d = 90^{\circ}$)

$$m' = \frac{K}{1 + 0.01(3.4 + 4.8 \, \delta_p / \delta_R - 0.12 \, h_p / \delta_g) \cdot \delta_R / \delta_R}$$
 (25)

Коэффициент К определяется, как и в п.3.2.5, но с заменой характеристик пояса характеристиками элемента решет-ки.

Для аналогичных элементов при растяжении коэффициенты увеличиваются в I, 15 раза.

3.2.7. При расчете сварных швов, прикрепляющих раскоси (при отношении $\ell/d > 0.25$) и стойки к поясам, в расчет вводятся участки сварных швов, прикрепляющих продольные стенки, при $\ell/d \le 0.25$ — продольные стенки и одну поперечную со стороны смежного элемента.

Неквадратность сечения элемента решетки $\beta_p \neq h_p$ учитывается умножением правых частей формул 24 и 25 на коэффициент 2 $(\delta_p/h_p + 1)$.

3.3. Уэлы связей

- 3.3.1. Расчетная несущая способность элементов связей (рис. 8.а) принимается равной наименьшей величине, определяемой из следующих условий:
- а) прочности и устойчивости элемента в нелом с учетом экспентриситета, равного полусумме толшин фасонки связи и фасонни (поясного уголка) фермы согласно п.п. 4.18-4.24 СНиП II-B. 3-72:
- б) прочности и устойчивости элементов узла и примыкающей к узлу зоны профиля:
- в) прочности сварных соединений, (толщину угловых щвов крепления всех деталей к основному пройнлю связи принимать равной 1,2 толщини его стенки);
- г) прочности болтового крепления элементов связи к фасонке фермы.
- 3.3.2. Расчетная несущая способность при растяжении элементов связей из условия б) п.З.З.І определяется по формулам:
 - а) для узлов "Ф" по формуле

$$N = F \cdot R \cdot K_{B}, \qquad (26)$$

rne

глощать сечения профиля;

R – расчетное сопротивление стали профиля растяжению по временному сопротивлению (для класса СЗ8/23 - -2600 kmc/cm^2 :

$$K_{B} = 0.14 \, \beta \leq 0.8;$$

$$\beta = 1000 \, \frac{\alpha \cdot \delta \cdot \delta_{co}}{\beta^{3}} ;$$

 $K_{B} = 0.14 \, \beta \le 0.8;$ $\beta = 1000 \, \frac{a \cdot b \cdot b_{m}}{b_{m}^{3}} ;$ a, b — размери элемента в направлении вдоль и поперек

плоскости крепежной фасонки;
$$0.75 \leq \frac{b}{a} \leq I,I;$$

$$b_{\varphi} = \frac{a+b}{2};$$

 δ — толщина стенки профиля; $\delta_{\mathbf{p}}$ — толщина фланца.

б) для узлов " $\Phi_{\rm H}$ " — по формуле (26) с принятием

$$\beta = 1000 \frac{\alpha \delta \cdot \delta_{m}}{\delta_{m}^{3}} \left(1 + 0.3 \frac{\delta_{y}}{\delta}\right), \quad K_{B} = 0.14.5 \le 1.0$$

 б. – толщина накладки, усиливающей стенки профиля. где

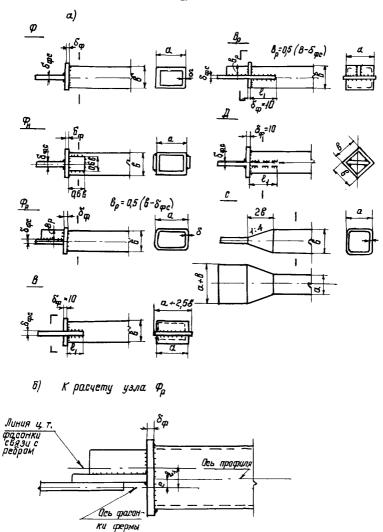


Рис. 8. Рекомендуемые тишы узлов связей

В этом случае накладки должны быть приварены к фланцу отыковым швом

в) для узлов "В" - по формуле

$$N = F \cdot R \cdot K_{\perp} , \qquad (27)$$

 F – площадь поперечного сечения профиля l'iie

$$K_1 = 0.512 \frac{l_1}{6}$$
 + 0.18 при $0.8 \le \frac{l_1}{6} < 1.6$; $k_1 = 1$ при $\frac{l_1}{6} > 1.6$; $l_1 = 1$ при $\frac{l_2}{6} > 1.6$; $l_2 = 0.8 + 1.1$;

$$\frac{6}{\alpha} = 0.8 + 1.1$$

г) для узлов "С" - по формуле

$$N = F \cdot R \cdot m, \qquad (28)$$

т - коэффициент условий работы, равный 0,5.

- 3.3.3. Несущая способность на растяжение узла "Д" определяется из условий в) и г) п. 3.3.I. При этом длина. 🧜 пуска фасонки вглубь профиля из условия возможности наложения швов должна бить не более I,2 β . Минимальная длина ℓ_{\prime} = IOO MM.
- 3.3.4. Расчетная несущая способность при сжатии элементов связей из условия б) п. 3.3.1 определяется по формулам:
- а) для узлов "Ф" она является наименьшей из величин, определяемых по формулам:

I. (26) со значением $R = 2100 \text{ krc/cm}^2$ для стали клас-

ca C38/23
2.
$$\frac{N}{F_{qpc}} + \frac{Ne}{W_{qpc}} \le R$$
. (29)

$$3. \quad \frac{N}{F} + \frac{N\dot{e}}{W} \le R \cdot m, \tag{30}$$

в - расстояние от осевой плоскости фасонки фермы до оси где профиля (рис. 8б);

F. W - площаль и момент сопротивления профиля относительно оси, лежащей в плоскости фасонки связи;

 $F_{\varphi_{\mathcal{C}}}, W_{\varphi_{\mathcal{C}}}$ площадь и момент сопротивления сечения фасонки связи (с учетом ребра при его наличии):

— коэффициент условий работи, равный 0.6.

Формула (30) справедлива для $h_0/\delta \le 47$ при стали клас h_n – расчетная высота стенки большей стороны профиca C38/23; ля. принимаемая равной расстоянию между краями выкружек;

- б) для узлов "Д" наименьшей из величин, получаемых по формулам (29 и 30);
- в) для узлов "Вр" наименьшей из величин, определжених по формулам (30 и 31);

$$\frac{N}{F_{opc}} \pm \frac{Ne_i}{W_{opc}} \le R , \qquad (3I)$$

е, - расстояние от осевой илоскости фасонки (полки погде ясного уголка) фермы до центра тяжести таврового сечения фасонки связи с ребром (рис. 86):

3.3.5. Расчетные сопротивления сварных швов присоединения элемента связи и фасонки связи к фланцу, а также самой фасонки понижаются умножением на коэффициент условий работи 0.8.

Фланцы толшиной более I2 мм должны быть проверены на отсутствие расслоя стали, фланцы толшиной более 25 мм применять не рекоменичется.

4. УКАЗАНИЯ ПО ПРОЕКТИРОВАНИЮ КОНСТРУКЦИЙ

4.I. IIporonn

4.І.І. Прогоны из гнутосварных профилей, применяемые в кровлях с уклоном, рекомендуется рассчитывать с учетом закруглений ребер профиля по формуле

$$K \cdot G_{\chi} + G_{y} \leq R, \qquad (32)$$

где
$$G_X = \frac{M_{\infty}}{W_{\infty}}$$
; $G_y = \frac{M_y}{W_y}$, (33)

- изгибающие моменти в двух главных плоскостях: - соответствующие моменты сопротивления сечения;

$$K = 1 - \frac{2z_H}{h} \left(1 + Z - \sqrt{1 + Z^2} \right),$$

7_н - радмус наружного закругления;

$$Z = \frac{h G_y}{\delta G_x},$$

h, b — высота и ширина профиля; G_x , G_y — компоненти напряжения, вычисляемые по формулам (33). Для профилей с наружным раджусом закругления $\tau_n = 3\delta$ б - толимна стенки профиля, расчет можно выполнять также с помощью таблицы (см. приложение 3).

4.1.2. Верхний сжато-изогнутий пояс 12-метровых треугольних решетчатих прогонов рекоменцуется рассчитывать с учетом влияния продольных сил на изгиб в пролетах панелей и развития пластических деформаций в узлах пояса в случаях, если $\frac{h}{\delta}$ < 70, $\frac{8}{\delta}$ < 25, где h и θ – высота и ширина пояса, δ – толщина стенки.

Условия прочности записнваются следующим образом:

$$\frac{n_{t} M_{y3}}{W \cdot R} + \frac{N}{F \cdot R} \leq 1$$

$$\frac{n_{z} \cdot M_{np}}{0.9 W_{nn} R} + \left(\frac{N}{F \cdot R}\right)^{2} \leq 1$$
(34)

- N максимальный пролетный и узловой изгибащие моменты и продольная сила в рассматраваемой панели пояса, полученные из расчета прогона с неразрезным верхним поясом, жестими опорвыми узлами и шарнирным примнканием средних рас-ROCOB:
 - п., п., коэффициенти, учитивающие влияние продольных сил. при расчетных нагрузках на прогон 0,61-1,3 тс/м $n_l = 1.09$ $n_s = 1.12$.
- 4.1.3. При использовании гнутосварных профилей в качестве верхних исясов 12-метрових треугольных решетчатых прогонов peromenaverca:

центрировать опорные узлы (еще более благоприятен наружный экспентриситет пересечения осей поясов);

длину средней панели верхнего пояса принимать 4500-4800мм: в случае, когда несущую способность прогона определяют сечения в панедях, иля увеличения несущей способности применять предварительное напряжение верхнего пояса, осуществляемое при изготовлении приданием ему обратного выгиба.

4.2. Фермы с бесфасоночными узлами

- 4.2.І. При проектировании ферм следует использовать схемы с разреженной решеткой, как с восходящими, так и с нисходящими опорными раскосами. Рекомендуется применение схем, при которых в уздах к поясам примыкает не более двух элементов рещетки.
- 4.2.2. При выборе конструктивных скем покрытий рекомендуется применение ферм с беспрогонным опиранием кровли.
- 4.2.3. Для определения изгибающих моментов в верхнем поясе фермы под беспрогонную кровлю его следует рассматривать как многопролетную балку на упруго проседающих опорах (с учетом прогибов узлов фермы).

Допускается упрощенное определение изгибающих моментов: пролетний момент крайней панели

$$M_1 = \frac{9 L^2}{2}; \tag{35}$$

пролетный момент промежуточных панелей

$$M_2 = \frac{\eta L^2}{12}; \tag{36}$$

узловие моменти

$$M_3 = \frac{9L^2}{48},\tag{37}$$

где

Q — величина распределенной нагрузии; L — длина паноли.

При использовании панелей различной длини для определения изгибающих моментов берется соответствующая длина. Узловой момент в этом случае определяется как средняя величина узловых моментов соседних панелей.

4.2.4. Устойчивость внецентренно-сжатого пояса ферми в плоскости действия момента в случае загружения равномерно-распределенной нагрузкой проверяется в соответствии с п.4.20 СНиП П-В.3-72. Расчетное значение изгибающего момента для внисления эксцентриситета принимается равным наибольшей величине в пролете расчетной панели.

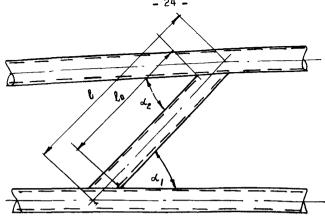
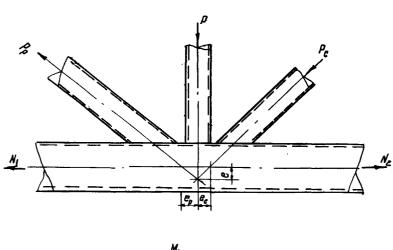
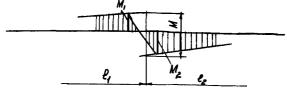


Рис. 9. Расчетные длины раскосов

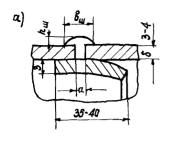
При соотношении значений распределенной нагрузки в тс/м и продольного усилия в поясе в тс $q/N_n \ge 1/150$ расчетная длина рассматриваемой панели в плоскости фермы принимается равной 0,7 L (длины панели верхнего пояса).

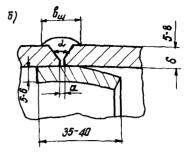

- ℓ_n 4.2.5. Расчетные длины при определении гибкости раскосов в плоскости и из плоскости фермы (исключая опорные раскосы) следует принимать равными расстоянию между вершинами острых углов примыкания элемента к поясам, спроектированному на его ось (рис.9).
- 4.2.6. Коэффициенты расчетной длины LIR CTOCK в плоскости и из плоскости ферми принимаются равными 0.9. исключая стойки со сплоценными концами, для которых $\mu = I$.
- 4.2.7. При преверке прочности сжатых и растянутых элементов решетки значения расчетных сопротивлений определяются без учета упрочнения (см. п. 2.3.1) и уменьшаются умножением на коэффициенты условий работы, указанные в п. 3.2.6.
- 4.2.8. Узловые эксцентриситеты, величины которых не превышают 0,25 высоты пояса, не учитываются при расчете.
- 4.2.9. При наличии экспентриситета в узле более 0.25 узловой момент "М" воспринимается поясом


$$M_1 = M \cdot \frac{L_1 - e_p}{L_1 + L_2} \cdot \frac{L_2}{L_1}$$
, (38)

$$M_2 = M \cdot \frac{L_2 - e_p}{L_1 + L_2} \cdot \frac{L_1}{L_2}$$
 (39)

Обозначения в формулах 38, 39 см. на рис. 10.


- 4.2.10. Отношение высоты поясов к толщине стенки следует принимать не более 45, для элементов решетки не более 60.
- 4.2.II. Размеры элементов решетки по ширине δ (из плоскости конструкции) следует принимать наибольшими, но они не должны превышать величины δ -3 (δ_n + δ_p) по условив наложения продольных сварных швов.



Puc.IO. Распределение изгибающих моментов в узлах при наличии экспентриситета

- 4.2.12. Для слабонагруженных элементов решетки поперечный размер в рекомендуется принимать не менее 0,6 поперечного размера пояса В.
- 4.2.13. Узлы ферм рекомендуется выполнять без фасонок. При этом углы примыкания раскосов к поясу должны быть не менее 30°. При меньших углах следует принимать меры для обеспечения плотности участка сварного шва со стороны острого угла.
- 4.2.14. При конструировании узлов рекомендуется стремиться к солижению смежных элементов решетки на уровне пересечения с поясом. Расстояние между смежными элементами должно быть достаточным для наложения двух сварных швов.
- 4.2.15. В узлах следует избегать пересечения элементов решетки во избежание двойной резки концов элементов.
- 4.2.16. В местах передачи на пояс значительных поперечных нагрузок допускается местное усиление стенок пояса путем установки накладок, ребер, диафрагм и т.п.
- 4.2.17. Для обеспечения развязки верхнего статого пояса фермы из плоскости при непосредственном опирании на него стального профилированного настила крепление настила к поясу самонарезными болтами следует осуществлять с шагом не более 400 мм.
- 4.2.18. Опорные ребра рекомендуется выполнять со срезанными углами, чтобы ширина опирания не превышала I20-I50 мм.
- 4.2.19. В длинномерных элементах следует избегать косых резов концов стержней.
- 4.2.20. Заводские стыки элементов, как правило, рекомендуется выполнять сваркой встык на остающейся подкладке (рис.II). Размещение таких стыков в растянутых элементах с расчетным напряжением выше 0,86 R не рекомендуется.
- 4.2.21. Монтажные узлы рекомендуется выполнять фланцевыми на болтах. При выполнении стыков сварными, на накладках, рекомендуется ставить заглушки для предотвращения попадания внутры профилей влаги при транспортировке и хранении.
- 4.2.22. В одном проекте, как правило, не должны применяться профили одного типоразмера, отличающиеся маркой стали, а также профили одинаковых размеров сечения, отличающиеся толщинами стенок менее чем на 2 мм.
- 4.2.23. Толщину стенок элементов несущих конструкций рекомендуется принимать не менее 3 мм.

Обаэначение (мм)	Ручі	भव. म		Полуавл	помоличес	Kas
δ	3-4	5-6.	7-8	3-4	5-6	7-8
α		2 ± 1			2±1	
6,,,	7±1	9±1	20 ± 2,0	7 ± 2,0	12 ± 2,0	141 2,0
hш		1,5±1		1,5±0,5	1,5±0,5	2±1,0
d	_	<i>90</i> ° ±	5°		60 °.	t5°

Рис. II. Параметры заводских стыков элементов

4.3. Связи

- 4.3.І. Рекомендуемые с точки зрения технологичности выполнения и удовлетворительной несущей способности типы узлов связей показани на рис. 8а.
- 4.3.2. Для элементов, работающих на растяжение при $\frac{N}{FR} \leqslant 0.5$ 0.8 (растяжек), следует применять типы Φ , В, Д (возможно также применение типа C), при $0.8 < \frac{N}{FR} \leqslant 1.0$ Φ н. Для элементов, работающих на сжатие, для распорок, раскосов, а также для элементов, работающих на знакопеременные усилия, следует применять узлы типа Φ_{ρ} , β_{ρ} .

4.4. Антикоррозионная защита

4.4.І. Антикоррозионная защита конструкций из гнутосварних профилей должна осуществляться в соответствии со СНиП П-28-73 "Защита строительных конструкций от коррозии", извлечения из которого дани в приложении ІУ. приложения

Приложение І

лополнение к сортаменту

замкнутых сварных квадратных и прямоугольных профилей по ГОСТ 12336-66

А. Профили квадратные

Таблина 3

Раз	меры	мм	Площадь сечения		очные вели сейх-хи		Масса I м плины
6	δ	The He Oojee	F, cm ²	J _x = J _y , _{CM} 4	W _x ≃ W _y , cm ³	ἰχ≕ίy, CM	профиля, кг
	8	18	65,2	3828	382,80	7,66	52,2
	10	20	71,6	4133	413,30	7,60	56,2
200	4	8	33,9	2607	237,0	8,78	26,6
	6	12	49,8	3736	339,7	8 ,6 6	39,I
	8	16	65,0	4750	341,8	8,55	51,0
	10	20	79,6	5547	513,3	8,44	62,5
220	4	8	38,7	3867	309,3	10,00	30,4
	5	10	47,9	4740	379,0	9,95	37,6
	6	12	57,0	5575	466,0	9,89	47,4
	7	I4	65,9	6373	509,8	9,84	51,7
	8	16	74,6	7133	570,7	9,78	58,6
250	9	18	83,2	7856	628,5	9,72	65,3
	10	20	91,6	8512	683,3	9,66	71,9
	12	24	107,9	9800	784,0	9,53	84,7
	6	12	69,0	9828	655,2	II,97	54,20
	8	16	90,6	12672	844,8	II,82	7I,I
300	IO	20	III,6	15300	1020,0	II,7I	87,6
	12	24	131,9	17712	1180,8	II,59	103,5

Формулы для определения геометрических характеристик прямоугольных профилей:

площадь поперечного сечения $F = 2\delta (\beta + h) - \delta$, 292 δ^2 ; момент инерции относительно оси x-x

$$\mathcal{I}_{x} = \frac{\delta}{6} \left(h - 6 \delta \right)^{3} + \frac{\delta}{2} \left(6 - 6 \delta \right) \left(h - \delta \right)^{2} + 51,064 \delta^{4} + 15,74 \delta^{2} \left(\frac{h}{2} - 1,386 \delta^{2} \right),$$

Б. Профили прямоугольные

Pa	змер	ЭН, 1	MOM	Площаль сечения,	Cı	правочные х-х	величины	для осей	у-у		Macca I м
h	В	δ	₹ _{вн.}	1 6 '	Ј _ж , 4 см ⁴	W _{x/3}	i _{x,}	$J_{y})_{\underline{A}}$ cm	CM ₃	iy, CM	профиля, кг
63	32 45	3 4	6 8	4,95 7,3I	25,23 4I,03	8,09 I3,02	2,26 2,37	8,I9 22,29	5,I2 9,90	I,29 I,74	3,89 5,74
70	36 50	3 4	6 8	5,6I 8,27	32,97 52,3I	9,42 I4,94	2,42 2,5I	II,I4 3I,47	6,I9 I2,59	I,4I I,95	4, 4 0 6, 4 9
80	40 56	4 5	8 01	8,27 II,53	6I,4I 93,17	I5,35 23,29	2.72 2,84	2I,35 45,4I	I0,67 I6,22	I,6I I,98	6,49 9,05
90	45 63	4 5	8 10	9,47 I3,23	90,75 137,79	20,17 30,62	3,09 3,23	3I,36 80,38	I3,94 25,52	I,82 2,46	7,43 10,39
100	50	5	IO	12,93	I49,83	29,97	3,40	52,13	20,85	2,00	10,15
IIO	80	6	12	19,82	313,19	56,94	3,97	I54,57	38,64	2,79	I5,56
I2 5	63 90	5 7	I0 I4	I6,73 26,04	3I4,83 527,4	50,37 84,38	4,34 4,50	252,3	30,38 56,06	2,39 3,II	I3,I3 20,44
I40	70 100	6 8	I2 I6	22,22 33,09	517,51 835,92	73,93 II9,42	4,82 5,03	I53,4 390,I2	43,83 78,02	2,63 3.43	17,44 25,97
I60	08 011	6 8	I2 I6	25,82 37,89	800,99 1258,5	I00,I2 I57,3I	5,57 5,76	275,6 562,79	68,9 102,32	3,27 3,85	20,27 29,74
200	I00 I40	8 9 I0	I6 I8 20	42,69 54,48 59,7I	2 05 0,5 2886,8 3II7,6	205,05 288,68 3II,76	6,93 7,28 7,23	593,24 1677,3 1814,1	II8,65 239,6I 259,I6	3,73 5,55 5,5I	33,5I 42,77 46,87
220	160 160	8 10	I6 20	47,49 67,7I	2797,5 4393,I	254,32 399,38	7,67 8,05	I07I,3 2708,3	I94,78 338,54	4,75 6,32	37,28 53,I5

Продолжение табл.4

Pa	змерь	I, M	М	Площадъ		правочные 1	еличины	для осей			Macca I м
h	в	δ	г вн	сечения F, см ²	J _{x,4}	(–x W _{x,} cm³	i _x , CM	J _y , см	с м М ^я ,	iy, CM	длины про- филя, кг
	125	9	18	42,78	4629.7	370,38	I0.40	I337, 5	214.0	5,59	33,58
250	[9	18	70,68	6067,2	485,37	9,26	3677,3	408,58	7,2I	55,48
	180	10	20	77,71	6884,3	550,74	9,41	3994,9	443,88	7,17	61,00
	1	12	24	9 I,2 6	756 I,9	604,95	9,10	4590,I	510,01	7,99	71,61
	160	8	16	68,29	7914,4	527,63	10,76	3014,4	376,8	6,64	53,60
	220	8	16	77,89	9969,5	664,03	II,3I	6213,3	564,84	8,93	61,14

Примечание. Дополнение включает профили, не вошедшие в сортамент ГОСТ 12336-66. По сравнению с сортаментом увеличени максимальные габарити и толщини профили д включени прямоугольные профили с соотношением $h/\xi=3$. Необходимость таких дополнений выявлена в процессе экспериментального проектирования конструкций из ГСП.

32

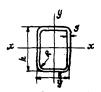

Приложение П

Таблица 5

Таблица 5 Сортамент профилей Молодечненского завода легких конструкции

'a3	меры,		R не бо-	Площадь сечения	_ x-	очные вел -х: у-у	д, инири		Масса кг/м
	в	S	лее		J _x = J _{y,4} CM	CM3,	i _x =i _y , CM	$S_{x} = S_{y},$ CM^{3}	K:/M
		3	6	8,85	85,3	21,30	3,10	12,60	6,95
	80	4	8	II,50	100,7	26,60	3,05	16,00	9,01
_		5	10	13,90	124,0	31,10	2,99	19,00	10,90
		3	6	11,30	173,0	34,60	3,92	20,20	8,83
	TOO	4	8	14,70	219,0	43,90	3.87	26,00	II,50
	100	5	10	17,90	260,0	52,00	3,8I	31,20	14,10
Ø.		6	12	21,00	296,0	59,10	3,75	36,00	I6, 50
		3	6	13,70	293,0	48,8	4,64	27,9	10,75
9	I20	4	8	17,90	382,0	63,7	4,63	36,0	I4,05
읉		5	10	21,90	467,0	77,7	4,62	44,I	17,20
		6	12	75,80	545,0	90,8	4,58	52,2	20,30
разверткой		3	6	16,10	496,0	70,80	5,56	40,9	12,60
BG.		4	8	21,10	638,0	91,10	5,50	53,I	I6,50
8		5	IO	25,90	769,0	110,0	5,45	64,6	20,40
S	I40	6	12	30,60	890,0	127,0	5 ,3 9	75,5	24,00
Ħ		7	14	35,10	999,0	143,0	5 ,33	85,6	27,60
Профили		8	16	39,60	1099,0	157,0	5,27	95,I	31,00
ğ		4	8	24,30	969,0	121,0	6,32	70,3	19,10
		5	10	29,90	[[74,0	I47,0	6,26	85,8	23,50
	I60	6	12	35,40	1365,0	171,0	6,21	101,0	27,80
		7	14	40,70	[542,0	193,0	6,15	115,0	32,00
		8	16	45,90	[705,0	213,0	6,09	128,0	36,00
		4	8	27,50	1399,0	I55 , 0	7,14	89,9	21,60
		5	10	33,90	702,0	189,0	7,08	110,0	26,60
	I80	6	12	40,20	1986,0	221,0	7,03	129,0	31,60
		7	14	46,30	2252,0	250,0	6,97	148,0	36,40
		8	16	52,30 2	2500,0	278,0	6,91	165,0	41,10

_	Pa	меры	, MM		Шло-	Cm	они рочние	велич	ины для	oce#		·		Macca,
	h	в	S	не ^R бо- лее	см2 ния селе-	<i>Ј_x</i> см ⁴	х-х W _ж см ³	l _{sc}	<i>5</i> _х см ³	<i>Ј_у</i> см ⁴	у-у см ³	cm cm	<i>5</i> , см ³	KT/M
ğ	1 100	2 60	<i>3</i>	4	<i>்</i> 8 , 85	<i>6</i> 117,0	23,40	д 3,64	9 14,4	/0 5I,0	// 17.0	12 2,40	<i>13</i> 9,60	14 6,95
9			4	8	II,50	I45,0	29,10	3,56	19,0	65,0	21,60	2,38	12,4	9,01
			5	10	I3,90	I69,4	33,90	3,49	21,70	77,0	25,7	2,36	15,2	10,90
õ	100	80	3	6	10,10	145,0	29,00	3,79	17,3	103,0	25,7	3,19	I4,6	7,89
*			4	8	13,10	182,4	36,50	3,74	21,4	129,0	32,30	3,14		10,30
разверткой			5	IO .	I5,90	214,6	42,90	3,67	26,5	I52,0	38,0	3,09	22,2	12,50
[9g			6	12	I8,60	243,0	48,60	3,60	30,3	171,9	43,00	3,04	27,2	14,60
8	120	60	3	6	10,10	178,0	29,7	4,2I	18,20	61,0	20,3	2,46	II,2	7,89
ပ	i		4	8	13,10	119,0	38,2	4,18	23,80	78,0	26,0	2,44	I4,6	10,30
X			5	IO	15,90	279,0	46,5	4,18	32,30	93,0	31,0	2,42	17,6	12,50
Профили			6_	12	18.6	325,0	54,2	4,17	34,10	105,0	35,0	2,38	20,3	14,60
ရို	120	80	3	6	II,30	214,0	35,7	4,34	21,60	II4,0	28,5	3,18	16,2	8,83
-		(4	8	14,70	278,0	46,3	4,33	28,10	147,0	36,7	3,16	21,1	II,50
			5	IO	17,90	337,0	56,2	4,33	34,20	178,0	44,5	3,15	25,7	14,10
			6	12	21.00	396,0	66,0	4,33	40,3	206,0	51,5	3,13	30,I	16,50
	140	60	3	6	II,30	270,0	38,6	4,89	24,5	69,0	23,0	2,47	I2,7	8,83
			4	8	14,70	342,0	48,8	4,83	31,4	88,0	29,3	2,45	I6,5	11,50

I	2	3	4	5	6	7	8	2	IO	ŢΙ	12	13	<u>I4</u>
	1 1	5	10	17,90	404,0	57,8	4,75	37,6	I 0 5,0	35,0	2,42	20,I	14,10
		6	12	21,00	459,0	65 ,6	4,68	42,8	121,0	40,3	2,40	23,5	16,50
I40	100	3	6	13,70	383,0	54,70	5,30	32,70	230,0	45,90	4, I0	26,00	10,70
	1 1	4	8	17,90	490,0	69,99	5,24	42,20	293,0	58,60	4,05	33,50	14,00
	'	5	10	21,90	587,0	83,80	5,17	51,10	350,0	70,00			17,20
		6	12	25,80	674,0	96,30	5,II	59,40	402,0	80,40	3,95	47,30	20,30
160	80	3	6	I3,70	454,0	56,70	5,76	35,10	I56,0	39,10		21,80	10,70
		4	8	17,90	580,0	72,50	5,70	45,30	199,0	49,80	3,34	28,10	14,00
		5	IO	21,90	694,0	86,70	5,62	54,80	237,0	59,30	3,29	34,00	17,20
	(6	12	25,80	796,0	99,50	5,55	63,70	265,0	66,20	3,20	38,20	20,30
		7	14	29,50	886,0	IIO,8	5,48	71,70	299,0	74,80	3,18		23,20
	1 _	8	16	33,10	965,0	120,7	5,40	79,30	331,0	82,6	3,16	48,80	26,00
I60	120	3	6	16,1	602,0	75,3	6.II	44,60	364,0	60,7	4,75	34,20	12,60
		4	8	21,1	775,0	97,0	6,07	57,80	472,0	78,80	4,72	44,10	16,50
		5	10	25,9	934,0	116,8	6,02	70,40	576,0	96,I	4,70	54,90	20,40
		6	12	30,6	1080,0	135,0	5,97	82,10	678,0	112,9	4,68	64,80	24,00
		7	14	35,I	1214,0	I52,0	5,90	93,20	768,0	I28,I	4,68	74,60	27,60
		8	16	39,6	1380,0	173,0	5,90	102,50	860,0	143,2	4,65	84,70	31,00
180	60	4	8	17,9	656,0	72,8	6,05	47,60	65,7	21,9	I,92	20,50	14,00
		5	10	21,9	781,0	86,7	5,97	57,60	79,2	26,4	1,90	25,00	17,20
		6	12	25,8	893,0	99,2	5,88	66,70	93,6	31,2	I,90	29,30	20,30
	}	7	14	29,5	994,0	110,3	5,81	74,60	106,2	35,4	1,90	33,40	23,20
		8	16	33,I	1079,0	119,9	5,72	82,30	118,8	39,6	I,89	37,10	26,00
180	100	4	8	21,1	904.0	100,4	6,54	61,70	368.0	73,6	4,18	_	16,50
		5	IO	25,9	1089.0	121,0	6,49	75,10	431.0	86,2	4,12		20,40
		6	12	30.6	1259,0	140.0	6,42	87.60	508,0		4,08	1 '	24,00
		7	14	35,I	1413.0	I57,I	6,35	98,90	669.0	1	4,02		27,60
		8	16	39,6	1553,0	172,8	6,28	109,80					
	į	10	10	39,0	1500,0	11/2,0	0,40	1 103,80	622,0	124,3	3,96	12,00	(3I.00

Профили с разверткой до 600 им

1

7,									Z											
h	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	I,0
0,048	0,996	0,991	0,987	0,983	0,979	0,975	0,972	0,969	0,966	0,963	0,961	0,956	0,956	0,954	0,952	0,950	0,948	0,917	0,945	0,944
0,052	0,935	0,990	0,886	0,901	0,977	0,973	0,970	0,986	0,983	0,960	0,967	0,955	0,952	0,950	0,948	0,946	0,944	0,942	0,94I	0,939
0,056			0,984									0,951	0,949	0,946	0,944	0,942	0,940	0,938	0,936	0,934
0,060	0,994	0,989	0,983	0,978	0,974	0,969	0,965	0,961	0,958	0,954	0,951	0,948	0,945	0,942	0,940	0,938	0,935	0,933	0,932	0,930
0,064	0,994	0,988	0,982	0,977	0,972	0,967	0,963	0,959	0,955	0,961	0,948	0,944	0,941	0,939	0,936	0,934	0,931	0,929	0,927	0,925
0,068	0,993	0,987	0,981	0,975	0,970	0,965	0,960	0,956	0,052	0,948	0,944	0,941	0,938	0,935	0,932	0,929	0,927	0,925	0,922	0,920
0,072			0,980			, ,						0,938	0,934	0,931	0,928	0,925	0,923	0,920	0,918	0,916
0,076			0,979									0,934	0,930	0,927	0,924	0,921	0,918		0,913	0,911
0,080			0,973									0,931	0,927	0,923	0,920	0,917	0,914	0,911	0,909	0.906
0,084	1 '		0,977	-	-							0,927	0,923	0,919	0,916	0,913	0,910	0,907	0,904	0,902
0,088			0,976									0,924	0,920	0,916	0,912	0,909	0,905	0,902	0,900	0,897
0,092			0,974									0,920	0,916	0,912	0,908	0,904	0,901	0,898	0,895	0,892
0,096			0,972									0,913	0,909	0,904	0,900	0,896	0,892	0,889	0,886	0,883
0,100			0,972									0,913	0,909	0,904	0,900	0,896	0,892	0,889	0,886	0,883
0,104	1 -		0,971				1 -		1 -			0,910	0,905	0,900	0,896	0,892	0,888	0,885	0,881	0,878
0,108	1 *		0,970		1 -		1 -	1				0,906	0,901	0,896		0,888	0,884	0,880	0,877	0,973
0,II2 0,II6	1 1		0,969									0,903	0,898	0,893	0,888	0,884	0,880	0,976 0.87I	0 ,8 72	0,869 0,864
0,110			0,967									0,896	0,891	0.885	0,880	0.875	0.871	0,867	0.863	0.859
0,124			0,966									0.892	0.887	0,881	0,876	0,871	0,867	0.862	0.858	0.855
0,128	1 '	1 -	0,964		1 -		1					0,889	0.883	0,877	0,872	0,867	0.862	0,858	0,854	0,850
0,132	1 -		0,963				1 -					0,885	0.879	0,873		0.863	0,858	0,854	0.849	0,845
0,136		1 -	0,962			1 1		1 '		1 '	-	0,882	0.876	0.870		0,859	0,854	0.849	0.845	0.841
0,140	1		0,961	1 -	1 *		, -			1 '		0.879	0.872	0.866	0.860	0.855	0,849	0.845	0.840	0,836
-	1 -	1 -	1 -		4 -	1 '	1 -			1 -		0.875				, .		1 ''	•	0.831
0,144	0,986	0,973	0,960	0,948	0,937	0,926	0,916	0,907	0,898	0,800	0,882	0,875	0,868	0,862	0,856	0,850	0,845	0,840	0,836	0,831

Продолжение табл. 6

I	2	3	4	5	6	7	8	9	IO	II	I2	13	I4
TON	140	4	8	24,3	1151,0	I27,9	6,87	75,80	786,0	112,2	5 69	65 M	19.10
100	+3V		ì	1 1	•	ſ '	1 '	, ·	· ·	1	1	, ,	•
		5	IO	29,9	1395,0	155,0	6,82	92,60	1 .	136,0			23,50
		6	12	35,4	1622,0	I80,I	6,77	Ĭ	1105,0	157,9	Ī	£ 1	27,80
		7	14	40,7	1832,0	203,6	6,72	· ·	1247,0	•)	104,70	
		8	16	45.9	2027.0	225,2	6,65	I37,30	1379,0	197,0	5,48	116,40	36,00
200	I20	4	8	24,3	1325,0	132,5	7,38	80,50	568,0	94,6	4,84	53,10	19,10
		5	IO	29,9	1606,0	I60,6	7,32	98,20	693,0	115,5	4,81	64,80	23,50
	}	6	12	35,4	1866,0	186,6	7,24	116,30	819,0	136,6	4,80	77,40	27,80
	}	7	14	40,7	2108,0	210,8	7,18	131,50	931,0	I65,I	4,78	89,10	32,00
	<u> </u>	8_	16	45,9	2329,0	232,9	7,11	146,70	1034,0	172,2	4,75	99,90	36,00
200	160	4	8	27,5	1633,0	163.3	7,70	96,10	1164.0	145,6	6,50	82,80	21,60
		5	IO	33,9	1986.0	198.6	7,65	117,80	1415.0		, -	101,30	
	}	6	12	40,2	2318,0	231,8	7,58	137.70	1650,0	1	1	118,80	_
	}	7	I4	46,3	2628,0	262,8	7,52	158.50	1870,0	t .		136,30	
		8	16	52,3	2919,0	291,9	7,45	1	1075,0	,	} `	151,80	I -
220	100	6	12	35,4	2089,0	190,1	7,70	120,60	614,0	122,8	4,17	69,90	27,80
		7	14	40,7	2356,0	214,2	7,62	137,60	691,0	138,2	4.12	79,40	32,00
	<u> </u>	8	16	45,9	2601,0	236,3	7,53	154,20	743,0	148,6	1 -	_	36,00
220	140	6	12	40,2	2638,0	239,8	8,08	146,20	1071.0	153,0	5,15	90,40	31,60
	}	7	14	46,3	2991,0	272.0	8,04	1	1207.0	} -	1 '	103,30	,
	ł	8	16	52,3	2231,0	302,0	7,97	1	1333,0	j.	1	II4,80	1

% 1

Приложение 4

Антикоррозионная защита конструкций из гнутосварных профилей

- І. Степень агрессивного воздействия атмосфери воздуха на стальные конструкции определяется зоной влажности по карте, приведенной в главе СНиП П-А.7-71, или относительной влажностью воздуха внутри отапливаемых зданий, газовой средой, характеристикой солей, аэрозолей и пыли. Данные о степени агрессивного воздействия окружающей среды на стальные конструкции, находящиеся внутри отапливаемых и неотапливаемых зданий или на открытом воздухе, приведены в табл.8.
- 2. Строительные конструкции зданий и сооружений, запроектированные из углеродистой стали марок ВСТЗсп5, ВСТЗпс6, ВСТЗкпп2, а также из низколегированной стали марок 09Г2, 09Г2С, І4Г2, независимо от состояния поставки должны быть защищены в средах с любой степенью агрессивного воздействия. Конструкции здания производств с неагрессивными средами, запроектированные из стали перечисленных марок, должны быть защищены от коррозии на период транспортировки, хранения и монтажа.
- 3. Не допускается проектировать стальные конструкций из стали марок 09Г2 и I4Г2 для производственных зданий со средне-агрессивными и сильноагрессивными средами или сооружений, подвер-гамщихся воздействию этих сред, а также сооружений, находящихся в слабоагрессивных средах, содержащих сернистый ангидрид или сероводород по группе газов Б.
- 4. Применение конструкций из гнутосварных замкнутых профилей с незащищенной внутренней поверхностью в неагрессивной, слабоагрессивной и среднеагрессивной средах допускается при условии полной обварки торцевых сечений элементов, отсутствии прорезей, отверстий и т.д.

При эксплуатации таких конструкций на открытом воздухе в слабоагрессивной среде необходимо предусматривать устройство дренажных отверстий в местах, исключающих попадание воды внутры алемента.

5. Проектировать здания из легких металлических конструкций для производств с сильноагрессивными средами не допускается. 6. Конструкции зданий и сооружений для производств со слабоагрессивными, среднеагрессивными или сильноагрессивными средами должны проектироваться с учетом зависимости скорости коррозии от типа сечения элементов и их расположения в пространстве (табл. 10,11).

При проектировании стальных конструкций зданий и сооружений для производств со среднеагрессивными средами произведение коэффициентов $K_{\rm I}$ х $K_{\rm 2}$ (см. табл. IO, II) любого элемента конструкций должно бить менее 2,0.

При проектировании стальных конструкций, состоящих из элементов с различными типами сечений, величины коэффициента $K = \frac{K_1 \times K_2}{\delta}$ (где δ — толщина профиля) для отдельных элементов не должны отличаться друг от друга более, чем в I.5 раза.

7. Способ защиты элементов от коррозии выбирается в зависимости от агрессивности среды (см. табл.12).

Относительная влажность воздуха помещений в %.	Группы газов		вного воздействия ср ий, находящиеся	еди на части
Зона влажности (по главе СНиП II-А.7-71)	по табл.9	внутри отапливае- мых зданий	внутри неотаплива- емых зданий или под навесами	на откритом воздухе
<u>≤ 60</u>	А Б В Г	неагрессивная слабоагрессивная среднеагрессивная	неагрессивная среднеагрессивная среднеагрессивная	слабоагрессивная слабоагрессивная среднеагрессивная смльноагрессивная
<u>77+16</u> канал _с амдон	A B B T	неагрессивная слабоагрессивная среднеагрессивная среднеагрессивная	слабоагрессивная среднеагрессивная сильноагрессивная	слабоагрессивная среднеагрессивная среднеагрессивная сильноагрессивная
<u>> 75</u> влажная	А Б В Г	сласоагрессивная среднеагрессивная среднеагрессивная среднеагрескивная	среднеагрессивная сильноагрессивная сильноагрессивная	среднеагрессивная среднеагрессивная сильноагрессивная сильноагрессивная

Примечание: І. При определении стецени агрессивного воздействия среды на части конструкций, находящихся внутри зданий, принимаются показатели относительной влажности воздуха в помещениях, а для частей конструкций, находящихся как отпрытом воздухе — зоны влажности.

- 2. Для конструкций зданий с мокрым режимом (с относительной влажностью воздуха в помещениях более 75%), на которых допускается образование конденсата, степень агрессивного воздействия среды устанавливается как для неотапливаемых зданий, проектируемых для влажной зоны.
- 3. При наличии в атмосфере воздуха несколько агрессивных газов степень агрессивного воздействия среды определяется по более агрессивной группе газов, которой соответствует концентрация хотя бы одного газа из находящихся в атмосфере.

Таблица 9

Группы агрессивных газов в зависимости от их вида и концентрации

Группа газов	Наименование	Концентрация, мг/м ³
A	Углекислый газ Аммиак Серимстый ангидрид Фтористый водород Сероводород Окислы азота Хлор Хлористый водород	€1000 €0,20 <0,50 <0,02 <0,01 <0,10 <0,10 <0,05
Б	Аммиак Сернистый ангидрид Фтористый водород Сероводород Окислы азота Углежислый газ Ілор Ілористый водород	≥0,2 0,5-I0 0,02-5 0,0I-I0 0,I-5 >1000 0,I-I 0,05-5
В	Сернистый ангидрид Фтористый водород Сероводород Окислы азота Хлор Хлористый водород	II-200 5, I-I0 II-200 5, I-25 I, I-5 5, I-I0
Г	Сернистий ангидрид Фтористий водород Сероводород Окисли азота Хлор Хлористий водород	201-1000 11-100 201-2000 26-1000 5,1-10 11-100
Д	Сернистий ангидрид Фтористий водород Сероводород Окислы азота Улор Хлористий водород	>1000 >100 >2000 >100 >100 >100

Таблица IO Коэффициенты K, влияния типа сечения элементов на скорость коррозии стальных конструкций

Тип сечения Материал конструкций	Трубы	Замкнутое корооча— тое сече— ние	Одиночный прокат или гнутый х) профиль х, лист	Составной профиль ^{XX})
Углеродистая сталь Ниэколегированная сталь	I,0 I,0	I,I I,3	I,4 2,0	2,0 2,5

Таблипа II

Коэфициенты K, влияния угла наклона к горизонтам на скорость коррозии элементов стальных конструкций

Тип сечения Угол наклона	Тр у бы	Замкнутое коробча- тое сече- ние	Сдиночный прокат или гнутый х) профиль лист	Составной ирофиль хх)
_				
0	I,C	1,0	1,0	1,0
4 5	0,6	0,6	0,7	0,8
90	0,4	0,4	0,5	0,6

х) Кроме гнутого профиля незамкнутого коробчатого сечения.

хх) Тавровые сечения из двух уголков, крестовые сечения из четырех уголков, незамкнутые коробчатые, двугавровые сечения из швеллеров.

Степень агрессивного воздействия среды на конструкции	Способы защиты от коррозии несущих конструкций из углеродистой и низко- легированной стали
Неагрессивная	Окраска лакокрасочными материалами группы I (см. примечание)
Слабоагрессивная	а) горячее цинкование (6 =60+100мкм) б) металлизация распылением; (6 = 120+180 мкм) в) окраска лакокрасочными материа- лами групп 1,11,ш.
Среднеагрессивная	 а) горячее цинкование (δ =60+100 мкм) с последущей окраской лакокрасочными материалами групп П и Ш; б) металлизация напылением (δ =120+180 мкм) с последущей окраской лакокрасочными материалами групп П, Ш и ІУ;
	в) окраска лакокрасочными материалами групп ії, ії и ІУ; г) металлизацья расінлением (() =200+250 мкм для пинка) (() =250+300 мкм для алюминия)

Примечания: І. Для нанесения металлических покрытий применяется:

пянк марок ЦО, ЦІ, ЦЗ, цЗ, алиминий марок А5, А6, А7, АДІ, АМ, АМц.

2. Для защиты конструкций от коррозии применяются лакокрасочные материалы (грунтовки, краски, эмали, лаки):

группы І – глифталевне, пентафталевне, алкидностирольные, масляные, маслянобитумные, эпоксиэфирные;

группы II — фенольно-формальдегидние, хлоркаучуковие, перхлорвиниловие и на сополимерах винилхлорида, поливинилоутиральные, акриловие;

грушны II — хлоркаучуковые, эпоксидные, кремнийорганические, перхлораиниловые и на сополимерах винилхлорида, полиуретановые:

группы IV - перхлорвиниловые и на сополимерах винилхлорида, эпоксилные.

СОДЕРЖАНИЕ

I.	Оощие	хазания	3
	I.I.	Области применения профилей и номенклатура конструкций	3
	I.2.	Сортамент	4
	I.3.	Расчетные сопротивления стали	4
2.	Расчет	элементов конструкций	4
	2.I.	Учет тонкостенности профилей	4
	2.2.	Проверка устойчивости стенок сжатых и изги- баемых элементов	5
	2.3.		-
		элементы	9
	2.4.	Изгибаемые элементы	IO
	2.5.	Внецентренно-сжатие элементи	II
	2.6.	Местная устойчивость стенок при сосредото- ченных нагрузках	II
3.	Расчет	соединений и узлов	13
	3.I.	Сварные соединения	13
	3.2.	Бесфасоночные узлы решетчатых конструкций	I 4
	3.3.	Узлы связей	18
4.	Указані	ия по проектированию конструкций	21
	4.I.	Прогоны	21
		Фермы с бесфасоночными узлами	23
		Связи	27
		Антикоррозионная защита	28
CBS	прило и хинов 336—66	ожение І. Дополнение к сортаменту замкнутых вадратных и прямоугольных профилей по ГОСТ	30
			J U
		ожение П. Сортамент профилей Молодечненского гких конструкций	33
чет		ожение Ш. Таблица коэффициентов К для рас- онов из гнутосварных профилей	36
गामा	NEMONIA .	ожение ІУ. Антикоррозионная защита конструк-	37

Ответственный за выпуск В.В.Севрюгин Редактор Н.П.Івелева Техн.редактор Л.А. Пыжова

Л-68267. Подписано в печать I2/XII-78 г. Объем 2,75 п.л. Формат 60х84/I6. Тираж 500 экз. цена 40 коп. Зак. 145