

СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ КОЛОННЫ ОДНОЭТАЖНЫХ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ

РАБОЧИЕ ЧЕРТЕЖИ

Серия КЭ-01-06

Выпуск І

СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ КОЛОННЫ ОДНОЭТАЖНЫХ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ

РАБОЧИЕ ЧЕРТЕЖИ

Серия КЭ-01-06

Выпуск 1

Разработан

Государственным проектным институтом Промстройпроект
Министерства строительства предприятий металлургической и химической промышленности

СОДЕРЖАНИЕ

														Стр.		Листы
Пояснительная	3	anı	исі	(a		•								3 Тисті	Колонна КІ-15	
Колонна КІ-1							-							1	Детали колонн и закладных элементов	. 17
Колонна КІ-2 Колонна КІ-3														3	Закладные элементы M11, M12, M13 в колоннах: K1-2 ³ , 4 ³ , 6 ³ , 8 ⁴	,
Колонна КІ-4 Колонна КІ-5								-						4 5	10 ^a , 12 ^a , 14 ^a . 16 ^a	. 19 . 20
Колонна КІ-6					. '									6	Ключ к вертикальным связям по колоннам. Примерный схематиче	
Колонна КІ-7 Колонна КІ-8														8	ский план цеха с размещением вертикальных связей Вертикальные связи по колоннам М15 и М16	. 22
Колонна КІ-9 Колонна КІ-10									•					9 10	Вертикальная связь по колоннам M17	
Колонна КІ-11														11	Колонны КІ-19, КІ-20, К1-21 и КІ-22	. 25
Колонна КІ-12 Колонна КІ-13														12 13	Колонны КІ-23, КІ-23 ⁶ , КІ-24, КІ-24 ⁶ , КІ-25 Колонны ҚІ-26, ҚІ-27, ҚІ-27 ⁶ и КІ-28	. 27
Колонна КІ-14														14	Нагрузки на фундаменты	, 28 ,

исправление ошибок допущенных проектой организацией в рабочих чертежах серии кэ-01-06, вып. 1

Лист	Наименование или местоположение	Строка	Стол- бец	Напечатано	Следует читать	Лист	Наименование или местоположение	Строка	Стол-	Напечатано	Следует читать
1	2	3	4	5	6	1	2	3	4	5	6
13	Сечение 3—3			(70) 3 № 16 r	(70) 4 № 16 r	28	KI-11		6	-6,76	-6,76 +0,30
				<u> </u>		28	KI-11		7	2,1	-2,1 -1,0
13	-	11 сверху	l i	3	4	28	KI-13		3	- 3,7	-0,40
13	•	11 .	7	6,1	8,1	28	KI-13	1	4	0,5	+0,70
15	Сечение 3-3			70 3 № 16 r	70 4 № 16 r	28	КІ-13		6	+14,4	-5,3 +7,7
15	Спецификация	11 .	6	3	4	28	KI-13		7	+ 3,06	-3.0 -0.9
15 24	Расчетная схема	11 . KI-18	7 5	· 6,1	8,1 -0,08	28	KI-14		6	±15,2 ± 2,8	$\frac{\pm 16,2}{\pm 3,8}$
1	КІ-17 и КІ-18					28	KI-15		3	-1,1	+0,5
28	КІ-9		6	-5,0	-5,0	28	KI-15		4	-0,5	₹0 ,6
28	КІ-9		7	-2,3	+3,25 2,3	28	. КІ-15		6	-7,93	$\frac{+8,9}{+3,9}$
28	КІ-9		9	$\frac{+2,8}{-2,5}$	$ \begin{array}{r} -0.9 \\ +2.3 \\ \hline -2.1 \end{array} $	28	KI-15		7	-2,8	$\frac{-2.8}{-1.0}$

ЦЕНТРАЛЬНЫЙ ИНСТИТУТ ТИПОВЫХ ПРОЕКТОВ
СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ КОЛОННЫ
ОДНОЭТАЖНЫХ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ

Рабочие чертежи *СЕРИЯ КЭ-01-06 Выпуск 1*

Государственное издательство литературы по строительству и архитектуре Москва, Третьяковский пр., 1

Редактор издательства А.П.Горшков Технический редактор М.Н.Персон

Сдано в набор 1/III-1956 г. Подписано в печать 10/IV-1956 г. Т – 03083
Бумага 60 × 92 1/2 = 8 бумажных — 16 печатных листов (20,70 уч.-изд. л.), Заказ № 546.
Подписано в печать 10/IV-1956 г. Т – 03083
Тираж 3 000 экз. Цена 20 р. 70 к.

Типоглафия № 1 Государственного издательства литературы по строительству и архитектуре,

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

1. ОБЩАЯ ЧАСТЬ

В настоящем выпуске І даны рабочие чертежи железобетонных сборных колони прямоугольного сечения для применения в одноэтажных производственных зданиях с пролетом от 6 до 24 м и шагом колонн 6 м, с мостовыми кранами или с подвесным транспортным оборудованием, с внутренним или наружным отводом воды с кровли, с жестким покрытием из железобетонных или армопенобетонных плит или панелей

Габариты и типы колонн приняты в соответствии с номенклатурой и типоразмерами унифицированных сборных железобетонных изделий для промышленного строительства, утвержденных Государственным комитетом Совета Министров СССР по делам строительства.

В данном выпуске помещены колонны, рассчитанные на ветровую нагрузку для І района

Колонны, рассчитанные на ветровую нагрузку для II района, даны в выпуске II

2. НАГРУЗКИ И РАСЧЕТ КОНСТРУКЦИЙ

При расчете колони приняты следующие нагрузки

- 1. От покрытия
- а) нормативная 560 кг/м².
- расчетная 670 $\kappa c/m^2$; б) нормативная 330 $\kappa c/m^2$,
- расчетная 400 $\kappa c/m^2$:
- в) наименьшая нормативная 175 кг/м2;
- расчетная 195 кг/м2
- Примечание. В нагрузку включен полный вес кровельного покрытия со снегом номинальной интенсивности для I—IV районов (без снеговых мешков).

(См примечание.)

- 2. В крановых пролетах принята нагрузка от двух кранов тяжелого режима работы со стальными подкрановыми балками, или от двух кранов среднего режима работы с железобетонными подкрановыми балками. Нагрузка от кранов принята по ГОСТ 3332-54
- 3. В бескрановых пролетах нагрузка от подвесного транспорта: нормативная 120 $\kappa e/m^2$; расчетная 156 $\kappa e/m^2$.
- 4 Ветровая нагрузка для I географического района по СНиП
- Снеговая нагрузка для I—IV районов по СНиП

Расчет колонн произведен в соответствии с ч. II СНиП и «Нормами и техническими условиями проектирования бетонных и железобетонных конструкций» (НиТУ 123-55)

Подбор сечений колони произведен по расчетным сопротивлениям

Колонны длиной 11 750 мм и более рассчитаны на краны грузоподъемностью 10, 20 и 30 т

Колонны длиной 9 550 мм рассчитаны на краны грузоподъемно-

Крановые колонны и бескрановые колонны сечением 400×400 приняты для пролетов от 12 до 24 м, с фонарями и с внутренним отводом воды

Колонны сечением 300×300 приняты для бескрановых бесфонарных пролетов от 6 до 12 м с наружным отводом воды с кровли.

Для расчета колони на ветер приняты следующие габариты:

а) высота балок и ферм, включая кровлю

для	пролетов	ОТ	6	до	12	M				h =	1.8	м
-	77			•						h =	2,9	

б) высота фонарей, включая кровлю

для	пролетов	12	И	1	5	м	ţ							h=2.75.	M
•	•	18	м												•
		24	19			٠					•			h=4,	,

Для пролетов разной величины при одинаковой высоте колони и оди наковой грузоподъемности кранов принят один тип колонн.

При определении усилий колонны рассчитаны как стойки трехпролетной рамы в предположении полной заделки их на уровне верха фундамента и шарнирного соединения на уровне низа ферм или балок При этом принималось, что в каждом пролете имеется фонарь; здания с наружным отводом воды принимались без фонарей. В расчетах учтена пространственная работа каркаса здания при жестком покрытии.

При расчете на крановые нагрузки верхняя опора колони принималась несмещаемой.

Расчетная длина колонн принималась:

- А В плоскости несущих конструкций покрытия:
- 1) в бескрановых цехах 1.25H;
- 2) в цехах, оборудованных кранами;
- а) для подкрановой части при учете крановой нагрузки—И,
- б) для подкрановой части без учета крановой нагрузки 1.25 Н,
- в) для надкрановой части $2.5H_{\rm B}$.
- Б. В плоскости, нормальной к плоскости несущих конструкций по-
- 1) в бескрановых цехах 1,25H;
- 2) в цехах, оборудованных кранами, при наличии вертикальных связей в продольных рядах:
 - а) для подкрановой части $H_{\rm H}$
- б) для надкрановой части $1,25H_{\rm B}$, где H — высота колонны;
- $H_{\rm H}$ высота подкрановой части колонны:
- $H_{\rm B}$ высота надкрановой части колонны.
- В соответствии с принятой расчетной схемой колонны могут приме-

няться для зданий с числом пролетов не менее трех при наличии покрытий из железобетонных или армопенобетонных плит

Они могут применяться для зданий или их частей с другой расчетнои схемой или с другими нагрузками по сравнению с принятыми, а именно-

- а) для зданий с количеством пролетов менее трех (4 колонны);
- б) при наличии менее трех пролетов (четырех колонн) в крайнем отсеке, отделенном температурным швом от остальных пролетов здания, в) для зданий с наименьшей нормативной нагрузкой от покрытия ме-
- Hee $175 \kappa s/m^2$. г) на участках зданий, где имеется перепад высоты кровли и возмож-
- но образование спеговых мешков.

Для зданий с другими габаритами и нагрузками возможность применения типовых колонн должна быть проверена расчетом с учетом фактических нагрузок и габаригов

3. КОНСТРУКТИВНАЯ ЧАСТЬ

Колонны запроектированы в предположении возможности изготовления их как на заводе, так и непосредственно на площадке

Для всех колонн, кроме четырех, принят бетон марки 200; для колонн KI-10, KI-12, KI-14, KI-16 принят бетон марки 300.

Для рабочей арматуры колонн применена горячекатанная арматура периодического профиля из стали марки Сг. 5 Для этих колони может быть применена также арматура из стали 25ГС с соответствующим пересчетом количества и диаметров стержней и соблюдением конструктивных требований.

Для хомутов и закладных деталей принята сталь марки Ст 3 Бескрановые колонны армированы сварными каркасами с применением точечной сварки Крановые колонны армированы вязаными каркасами

- В колоннах предусмотрены следующие закладные детали:
- а) стальной лист и анкеры для крепления ферм или балок покрытия,
- б) стальные листы и анкеры для крепления подкрановых балок Колонны, расположенные по наружным продольным рядам, имеют

стальные элементы для крепления к ним наружных стен, разбивка элементов крепления выполнена для стеновых блоков высотой 1 200 мм. В крановых колоннах внутренних рядов, устанавливаемых у торцовых стен здания, заложены стальные элементы для крепления к ним торцовых

стен, эти колонны имеют дополнительный индекс «а», например: KÎ-4⁴. В крановых колоннах внутренних и наружных рядов, устанавливаемых в панелях, где расположены вертикальные связи, заложены стальные элементы для крепления стальных связей; эти колонны имеют дополни-

тельный индекс «б», например. KI-46 Крепление на монтаже ферм, балок покрытия, а также подкрановых железобетонных и стальных балок к колоннам осуществляется при помощи анкерных болтов. предусмотренных в колоннах.

В тех случаях, когда отверстия в опорных плитах ферм и балок не совпадают с разбивкой анкеров, крепление их к колоннам осуществляется посредством дополнительных стальных подкладок.

Для выверки колонн и примыкающих к ним конструкций на поверхности всех колонн должны быть предусмотрены вертикальные риски разбивочных осей в виде треугольных канавок глубиной 5 мм

Риски должны быть в следующих местах:

- а) в уровне верха фундаментного стакана на всех четырех гранях;
- б) на верхнем конце колонны на всех четырех гранях:
- в) на двух боковых гранях подкрановой консоли. Местоположение рисок указано на чертежах колонн.

Колонны должны быть выполнены в соответствии с требованиями ч. III СНиП и «Технических условий на производство и приемку строительных и монтажных работ».

Выбор колонн для конкретного здания производится в соответствии с ключом, помещенным в альбоме

Нагрузки на фундаменты от колонн приведены в таблице на листе 28. В этой таблице даны максимальные нормативные нагрузки, которые были приняты для расчета колонн. Поэтому в каждом конкретном случае указанные в таблице нагрузки на фундаменты должны быть скорректированы с учетом фактических значений нагрузок.

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ КОЛОНН

- 1. Помещенные в данном выпуске колонны запроектированы для следующих производственных зданий:
- а) для зданий без мостовых кранов, с наружным отводом воды, при высоте от уровня чистого пола до низа несущих конструкций покрытий крайних пролетов 4 и 5 м,
- б) для зданий без мостовых кранов, с внутренним отводом воды, при высоте от уровня чистого пола до низа несущих конструкций 5, 6 и 7 м;
- в) для зданий с внутренним отводом воды, с мостовыми кранами грузоподъемностью от 5 до 30 τ , при отметке головки рельса ~ 6 , ~ 8 и ~ 10 м.

Высота Н, надкрановой части колони принята из условия применения сборных железобетонных подкрановых балок пролетом 6 м для кранов среднего режима работы.

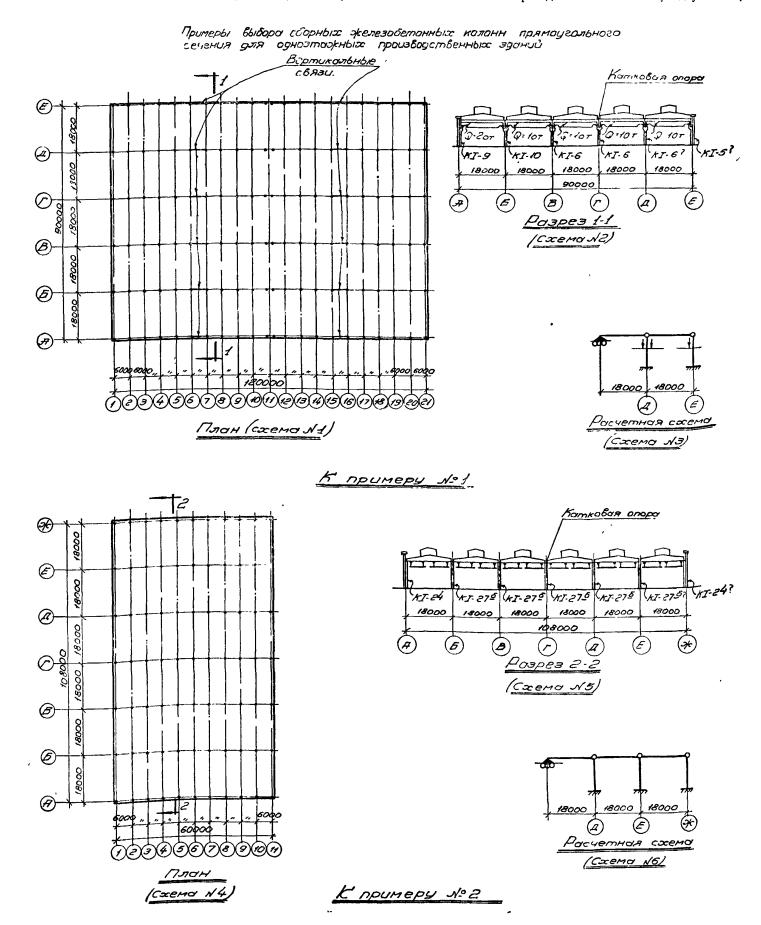
Общая высота подкрановой балки с рельсом принята 1 050 — для кранов грузоподъемностью 5 и 10 т и 1 250 — для кранов грузоподъемно-

2. Колонны по наружным продольным рядам запроектированы из условия совмещения наружной грани колонн с разбивочной осью продольного ряда (нулевая привязка); внутренняя грань стены совпадает с наружной гранью колони.

3. Крановые колонны для кранов грузоподъемностью 10 г с отметкой головки рельса ~ 8 м запросктированы в двух вариантах

1-й вариант: КІ-3 и КІ-4 с отметкой верха колонн 10 200 — применяется в зданиях с пролетами одинаковой высоты при наличии во всех пролетах кранов грузоподъемностью 10 т,

2-й вариант KI-5 и KI-6 с отметкой верха колони 10 600 — применяется в зданиях с пролетами одинаковой высоты при наличии в части пролетов кранов грузоподъемностью 10 т, а в остальных пролетах — грузоподъемностью 20 т.


В этих зданиях для пролетов с кранами грузоподъемностью 10 г применяются колонны KI-5 и KI-6, для пролетов с кранами грузоподъемностью 20 т применяются колонны КІ-9 и КІ-10.

Во всех остальных случаях для зданий или отдельных участков зданий с пролетами одинаковой высоты при наличии в разных пролетах кранов различной грузоподъемности применяются колонны одинакового габарита. Отметка уровня подкранового рельса для пролетов с кранами меньшей грузоподъемности понижается на величину, равную разности высот подкрановых балок (с учетом рельса) под краны различной грузоподъемности.

4 Заглубление колонн от уровня чистого пола принято 1 550 мм, а заглубление фундаментов соответственно 1 750—1 800 мм.

При необходимости принимать большие заглубления фундаментов по условиям промерзания, заложения близрасположенных фундаментов или по каким-либо другим причинам рекомендуется следующее:

- а) устраивать подушки под фундаментами,
- б) устраивать фундаменты с высокой шейкой;
- **УДЛИНЯТЬ** КОЛОННЫ.
 - 5. В местах перепадов высоты между двумя параллельными

пролетами рекомендуется применение отдельных колони для пониженных и повышенных пролетов.

Наружные грани колони повышенной части здания следует совмещать с разбивочной осью продольного ряда (нулевая привязка).

6. Поперечные температурные швы осуществляются на двойных ко-

7. При устройстве в одноэтажных зданиях продольных температурных швов с применением для конструкций катковых опор длины колонн могут быть соответственно уменьшены.

8. В случаях удлинения колони необходимо их рассчитать с учетом фактических габаритов и нагрузок.

b колонн, несущих крано-Размеры прямоугольных сечений вую нагрузку, рекомендуется принимать такими, чтобы отношение $H_{\scriptscriptstyle \rm B}$: aбыло не более 12, а отношение $H_{\rm H}:b$ — не более 25.

Размеры сечений бескрановых колони рекомендуется принимать такими, чтобы H:a и H:b было не более 25.

9. Для обеспечения жесткости здания все стропильные балки (фермы) и подкрановые балки должны быть приварены к опорным листам; в каждом продольном ряду, в середине температурного отсека, должны быть поставлены вертикальные стальные связи.

10. При применении колонн для одноэтажных производственных зданий надлежит руководствоваться «Основными положениями по унификации конструкций производственных зданий», а также серией TC 02-01 (типовые стыки и узлы конструкций промышленных зданий и сооруже-

Пример I

Здание имеет 5 пролетов по 18 м с кранами среднего режима работы грузоподъемностью $20\ \tau$ (с двумя крюками) в пролете A-B и грузоподъемностью по 10 т, с одним крюком в остальных пролетах.

Отметка головки подкранового рельса ~ 8 м; подкрановые балки железобетонные.

Габариты и профиль здания приведены на схемах 1, 2 и 3.

Полная нормативная нагрузка от покрытия с учетом снега (без учета мешков), фонарей и стропильных балок 500 кг/м².

Поперечный температурный шов осуществлен на парных колоннах, продольный температурный шов осуществлен с применением катковой опоры на оси Γ для балки пролета $\Gamma — \mathcal{I}$.

В связи с наличием продольного температурного шва по ряду Γ , здание разделено на два участка: 1-й участок — от оси A до оси Γ включительно — представляет собой трехпролетное здание (4 колонны).

В соответствии с указаниями, приведенными в пояснительной записке, для зданий с числом пролетов не менее 3 (4 колонны) могут быть применены колонны данного выпуска. Колонны 1-го участка выбираются согласно ключу, а именно:

по ряду \mathcal{B} — KI-10;

по рядам B и Γ — KI-6.

Верхушка колонны по ряду Γ в связи с наличием катковой опоры должна быть соответственно переконструирована.

2-й участок — от оси $\mathcal I$ до оси E — представляет собой двухпролетное здание с двумя колоннами (см. схему № 3). Число колони менее 4, поэтому возможность применения колонн KI-6 для ряда $\mathcal I$ и KI-5 для ряда $\mathcal E$ должна быть проверсна расчетом с учетом фактических нагрузок и габаритов.

Нормативные нагрузки на фундаменты

Колонна КІ-9 по ряду A,

а) От покрытия и собственного веса колонны

$$N = 0.5 \cdot 6 \cdot \frac{18}{2} + 8.3 = 27 + 8.3 = 35.3 m;$$
 $M = +0.4 \text{ mm} \text{ (по таблице)};$
 $Q = +0.7 \text{ m} \text{ (по таблице)}.$

б) От кранов

Нагрузка принимается по таблице на листе 28 (в которой приведены нагрузки от кранов пролетом L_{κ} =22,5 м) с поправочным коэффициентом k_1 , равным отношению давления колеса на подкрановый рельс при $L_{\kappa} = 16,5$ м к давлению колеса при $L_{\kappa} = 22,5$ м.

$$k_1 = \frac{19.5}{22} = 0.89;$$

 $N = 51 \cdot 0.89 = 45.5 \text{ m};$
 $M = -5 \cdot 0.89 = -4.45 \text{ mm};$
 $Q = -2.3 \cdot 0.89 = -2.05 \text{ m}.$

в) От ветра — принимается по таблице:

I.
$$M = +19.1 \text{ mm}$$
; $Q = +2.8 \text{ m}$

или

II.
$$M = -18.4 \text{ mm}$$
; $Q = -2.5 \text{ m}$.

2. Колонна KI-10 по ряду Б.

а) От покрытия и собственного веса колонны

$$N = 0.5 \cdot 6 \cdot 18 + 9.9 = 63.9 \ m; \ M = 0;$$

 $Q = 0.$

б) От кранов

$$k_1 = \frac{19.5}{22} = 0.89$$
 (см. выше).
1. $N = 51 \cdot 0.89 = 45.5$ m ;
 $M = \pm 12.55 \cdot 0.89 = \pm 11.7$ m м;
 $Q = \pm 4.72 \cdot 0.89 = \pm 4.2$ m

II.
$$N = 84,7 \cdot 0,89 = 75,4 m$$
;
 $M = \pm 5,9 \cdot 0,89 = \pm 5,25 m m$;
 $Q = \pm 1,9 \cdot 0,89 = \pm 1,7 m$.

Нагрузка II принята для случая, когда в пролете с одной стороны колонны краны грузоподъемностью 20 т, а с другой стороны — краны грузоподъемностью 10 т.

$$M = \pm 19.8 \text{ mm};$$

 $Q = \pm 1.7 \text{ m}.$

3. Колонна KI-6 по ряду В.

а) От покрытия и собственного веса колонны

$$N = 0.5 \cdot 6 \cdot 18 + 8.5 = 62.5 m.$$

б) От кранов

$$k_1 = \frac{12.5}{14.5} = 0.87.$$
1. $N = 33.7 \cdot 0.87 = 29.3 \text{ m};$
 $M = \pm 9.5 \cdot 0.87 = \pm 8.25 \text{ mm};$
 $Q = \pm 3.2 \cdot 0.87 = \pm 2.7 \text{ m}$

II.
$$N = 67.4 \cdot 0.87 = 58.6 \ m$$
;
 $M = \pm 1 \cdot 0.87 = \pm 0.87 \ m$ m;
 $Q = \pm 0.3 \cdot 0.87 = \pm 0.26 \ m$.

в) От ветра

$$M = \pm 12.8 \text{ mm};$$

 $Q = \pm 1.1 \text{ m}.$

4. Колонна KI-6 по ряду Γ (см. KI-6 по ряду B).

5. Нагрузки от колонн по рядам Д и Е принимаются из поверочного расчета этих колонн.

Пример II

Здание имеет 6 пролетов по 18 м, с фонарями и с подвесным крановым оборудованием, шаг колонн 6 м. Отметка верха колонн 6 м. Габариты и профиль здания показаны на схемах 3-6. Полная нормативная нагрузка от покрытия с учетом снега (без мешков), фонарей и стропильных балок — 500 кг/м² (расчетная 600 кг/м²).

Ветер для І района СССР

Нагрузка от подвесного транспорта 120 кг/м² (нормативная) или 156 кг/м2 (расчетная), принятая для расчета колонн, удовлетворяет фак-

Продольный температурный шов осуществлен с применением катковой опоры по оси Γ для балки пролета $\Gamma - \mathcal{A}$.

Продольным температурным швом здание разделено на два участка: I участок — от оси A до оси Γ включительно — представляет собой трехпролетное здание (4 колонны);

II участок — колонны по рядам Д, Е и Ж — представляет собой двухпролетное здание (3 колонны, см. схему 4).

Колонны І участка

Согласно указаниям, приведенным в пояснительной записке, колонны данного выпуска могут быть применены для зданий с числом пролетов не менее трех (4 колонны), поэтому для І участка колонны принимаются согласно ключу на стр. 3, а именно:

- по ряду *А* KI-24;
- по ряду *Б* KI-27° по ряду В — KI-27⁶
- по ряду Γ KI-27⁶.

Нормативные нагрузки на фундаменты

- 1. Колонна КІ-24 по ряду А.
- а) От покрытия собственного веса колонны

$$N = 0.5 \cdot 6 \cdot \frac{18}{2} + 3 = 30 m;$$

 $M = +0,75 \, m M$ (по таблице)

Q = + 0.31 m (по таблице);

б) От подвесного транспорта

$$N = 0,12 \cdot 6 \frac{18}{2} = 6,5 \ m.$$

в) От ветра

$$M = \pm 7.2$$
 mм (по таблице); $Q = \pm 1.37$ *m* (по таблице).

- 2. Колонны KI-27⁶ по рядам Б, В, Г.
- а) От покрытия и собственного веса колонны

$$N = 0.5 \cdot 6 \cdot 18 + 3.1 = 57.1 m$$

б) От подвесного транспорта

$$N = 0.12 \cdot 6 \cdot 18 = 13 m$$
.

в) От ветра

$$M = \pm 6.3$$
 mм (по таблице); $Q = \pm 0.88$ m (по таблице).

Колонны II участка

Число колонн в этом участке (см. схему 6) менее четырех, поэтому возможность применения колонны $KI-27^6$ по рядам $\mathcal I$ и $\mathcal E$ и колонны КІ-24 по ряду Ж должна быть проверена расчетом.

КЛЮЧ К ЖЕЛЕЗОБЕТОННЫМ КОЛОННАМ

(шаг колонн 6 м; ветровая нагрузка для I географического района)

КОЛОННЫ КРАНОВЫХ ПРОЛЕТОВ

(максимальный пролет $L=24 \, \text{м}$) Расчетная нагрузка от покрытия принята $q_{\text{max}} = 670^{\circ} \ \kappa z / \text{м}^2$; $q_{\text{min}} = 195 \ \kappa z / \text{м}^2$

Грузоподъ- емность крана в т	Головки подкранового рельса в мм	Полная длина колониы в мм	Колонны по наружным продольным рядам	Колонны по внутренним рядам	Примечания
5	~ 6 000	9 550	К1-1	КІ-2	
	~ 8 000	11 750	К1-3	K1-4	_
510	~ 8 000	12 150	КІ-5 ,	KI-6	Применяются при наличии в соседних пролетах кранов грузоподъемностью 20 m
	~ 10 000	13 750	К1-7	КІ-8	

Продолжение

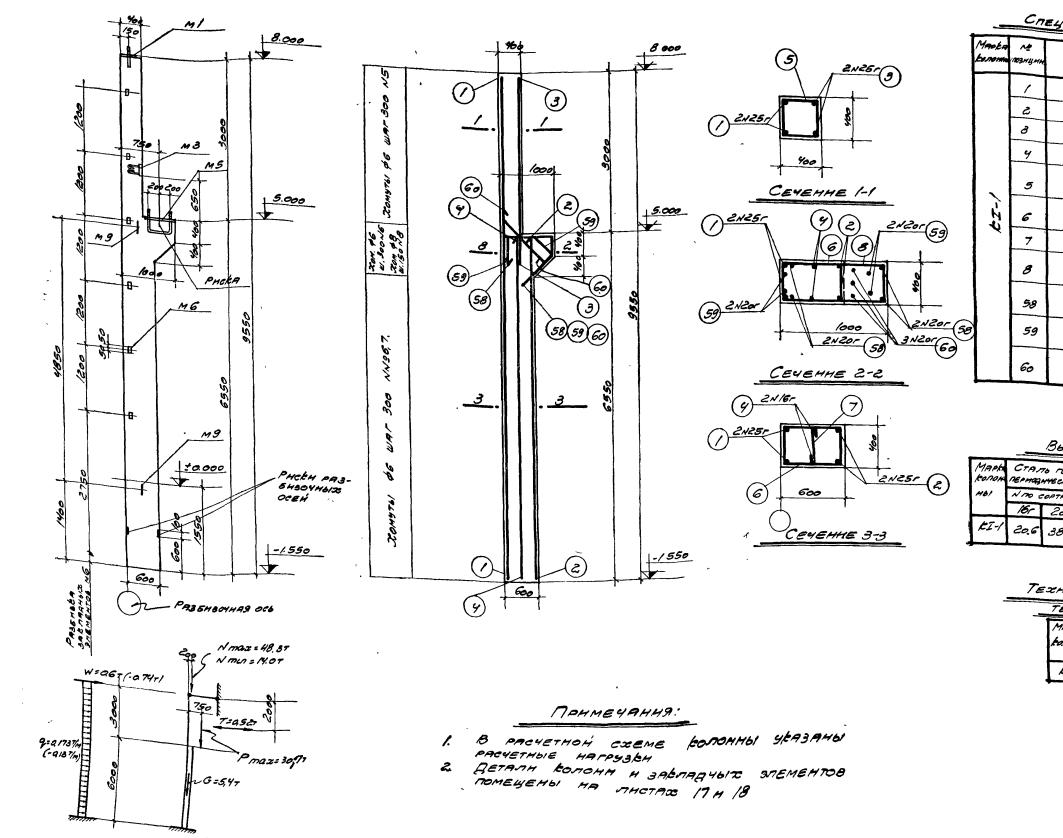
					тродолжение
Грузоподъ- емность крана в т	Головки полкранового рельса в мм	Полная длина колонны в <i>ж.ж</i>	Колонны по наружным продольным рядам	Колонны по внутрениим рядам	Примечания
	~ 8 000	12 150	КІ-9	KI-10	_
15—20	~ 10 000	14 150	KI-11	KI-12	****
	~ 8 000	12 550	KI-13	KI-14	
30	~ 10 000	14 550	KI-15	KI-16	

Колонны сечением 300×300 мм для бескрановых пролетов без фонарей, с наружным отводом воды с кровли, с подвесным транспо

Расположение колонн :	Отметка верха колонны в мм	Полная длина колонны в мм	$L = 6 \text{ M}$ $q_{\text{pacy}} = 670 \text{ Kg}$ $P_{\text{pacy}} = 156 \text{ Kg}$	$L = 12 \text{ м}$ $q_{\text{pacq}} = 400 \text{ кг}$ $P_{\text{pacq}} = 156 \text{ кг}$	
По наружным про-	4 000	5 550	KI-17	KI-17	
дольным рядам	5 000	6 550	KI-18	_	
	4 500	6 050	KI-19	_	
По внутренним	5 000	6 550	KI-20	KI-20	
рядам	5 500	7 050	KI-21		
	6 000	7 550	КІ-22	<u> </u>	

Колонны сечением 400×400 мм для бескрановых пролетов с фонарями, с внутренним отводом воды с кровли, с подвесным транспо

Расположение колонн	Отметка верха колонны в мм	Полная длина колонны в мм	L=12 ж q _{расч} =670 ка Р _{расч} =156 ка	L=18 м q _{расч} =670 ка Р _{расч} =156 ка	L=18 м q _{расч} =400 кг Р _{расч} =156 кг	L=24 м q _{pacu} =400 ка Р _{расu} =156 ка
По наружным рядам	5,000	0.550	KI-23	K1-23	KI-23	KI-23 ⁶
По внутрен- ним рядам	5 000	6 550	KI-26	KI-26	KI-26	K1-26
По наружным рядам			KI-24	KI-24	KI-24	KI-24 ⁶
По внутрен- ним рядам	6 000	7 550	КІ-27	KI-27 ⁶	KI-27	KI-27 ⁶
По наружным рядам			KI-25	_	KI-25	-
По внутрен- ним рядам	7 000	8 550	КІ-28	_	KI-28	_


Примечания. 1. При пользовании ключом для выбора колонн необходимо руководствоваться указаниями, приведенными в пояснительной записке.

2. В крановых колоннах, устанавливаемых в связевых панелях, должны быть заложены элементы для крепления вертикальных связей. Эти колонны имеют дополнительный индекс «б», например КІ-46. В крановых колоннах внутренних рядов, устанавливаемых в торцовых стенах здания, должны быть заложены элементы для крепления торцовых стен. Эти колонны имеют дополнительный индекс «а», на-

Дополнительные закладные элементы для колонн с индексами «а» и «б» помещены на листах 19, 20.

При заказе колони для определенного здания необходимо указать требуемое количество колонн с индексом «а» и с индексом «б», количество и марки вертикальных связей.

- 3. На дзином листе приняты следующие обозначения:
- q нагрузка от покрытия в $\kappa e/m^2$; P нагрузка от подвесного транспорта в $\kappa e/m^2$;
- L величина пролета.
- 4. Колонны пригодны только для зданий с покрытием из железобетонных и армопенобетонных плит или панелей.

PACHETHAS CREMA EI-/

Спецификация приятиры на / солонии 3cku3 9500 250 6500 251 Z 6500 130 3750 251 3750 7.5 6500 160 6500 г 13.0 1600 11 17.6 550 450 2000 23 46.0 500 10.5 BALMUTS NO MESTY 8 2800 6 168 20r 2480 5.0 2or 2320 ٦ 4.6 201 1930 Э

Выборка стали на одну волонну (сг)

	rernas.	MME COOK	WE BATI O NOOPM	94199 198 CT-5	CTA	9076 P	79 C	6.697A	RAH	CTAL	76 M	.2	-
,,,		OPTAME				Ø, ,	MM			neo	Anna	Ī	BCE CTA.
47.1		207	25/	HTOR	6	8	12	Lo	Hrono	8=8	L. GOXG	Hrora	
K27	20.6	38.0	152.2	210.8	16,5	6,6	4,8	14.7	42,6			_	

Texanto-stonomayectue notasa-

BWGOPER BAKMARHU STEMENTOS HA ORMY COTTONE

5.8

TEAH HA ORHY KONOHHY Bec EI-1 5.4 200

_				2770
	MARKA BA- ENAQHORO BITEMENTA	Area	~	
		1	MICH	
	M3	-		
		<u> </u>		
	M 5	1	18	
	ME	6		
	M9	2		
-				L

1955

KONOHHA EI-1

E3-01-06 Bunyck [STHOT

W=±/29T				PHMEY	AHH9
3000	1.	B	PACYETHOM	cxeme	KONOH

- 1. B PACHETHON COME KONOMM YEASAMON PACHETHONE MATPYSEN
- 2 детали волони и завлядных элементов гомещены на листах $17 \, \mu$ 18

PACYETHAS CXEMA ET-2;

~ N MOX =4837 N MLM=14F

7=0529

PMax = 30,7"

NMA2=4837 NMLD=145

Pmax=30,7

T=0.527

MAPER	Nº T	пецификация арматуры	HH //	ONOM	MY	
tonen- HU	поэнции	Эc bnз	PHAH N POTAMEN	Длина мм	tan-sa ut.	OSWAD AJHHA M
	-	9500	251	9500	4	38,0
	6	350 550 450	6	2000	27	54,0
	7	_350_	6	500	27	13,5
	9	9500	160	9500	٤	19,0
d)	10	350 7 3APHYTS 350 700 70 MECTY	8	3400	14	47.6
61-c	61	Se and the	2or	5230	3	15,7
	62	27 1/23	201	48/0	æ	9,6
	63	570	2or	4280	3	128
		780				
•						

BUSOPER CTANH HA ORHY CONOHHY (Br)

CTAND TOTALERTAHA NEPHORMYECTORO NOO- PANS CT-5				CTANG TOFGUEERTAHRS RPYINAS CT. 3						CTANS NOBATHAS CT 3			Beero	
	N no cortaments Nor 250			6 8 12 20 H					Нтого	1700 MANG		Hroro	CTAN	
			270,7			_			6/,4	0-0	2000	_	387.	

TENH HA ONLY CONOHHY

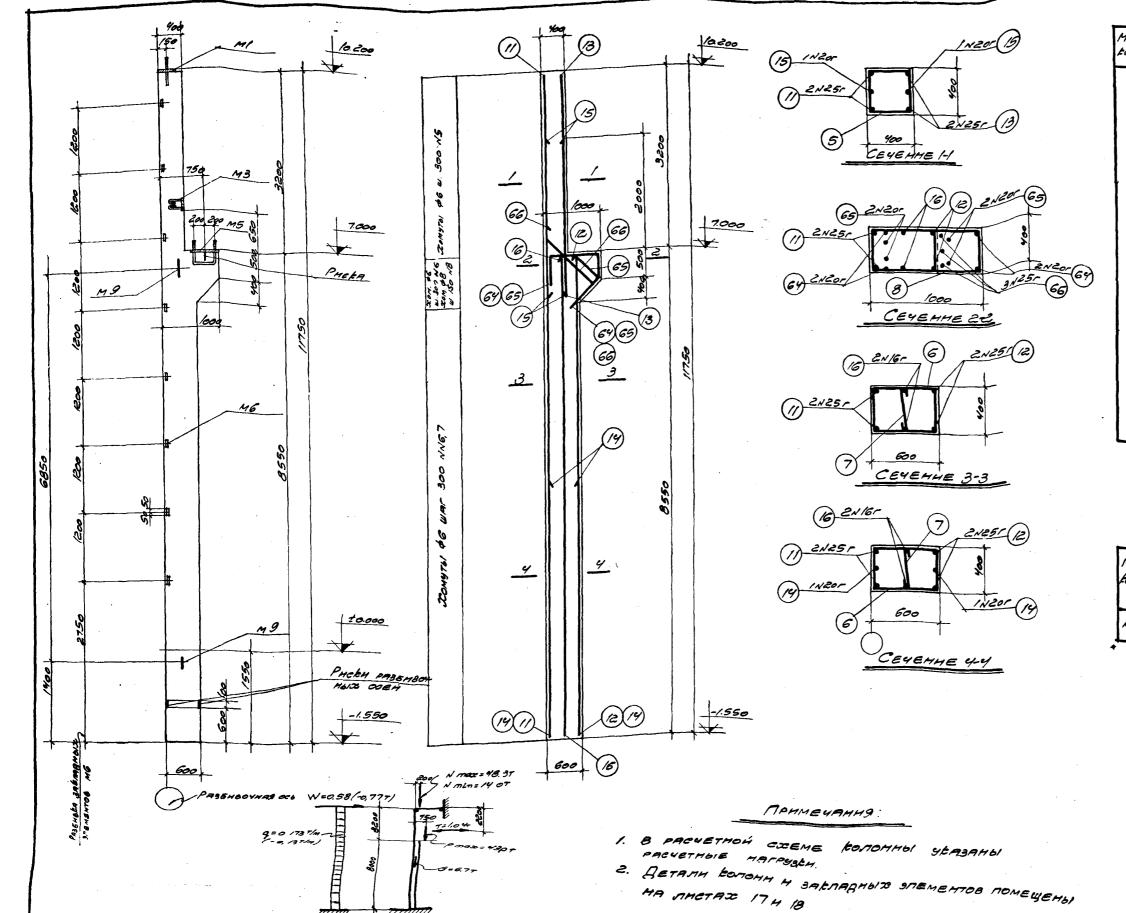
93A- BUSOPKA SAKNARHUR SNEMEHIDA TA ORHY CONOHHY

Marka kononnoi	BEC tonon- Hol T	MAP EL GETONA	08'EM 5 5 0HA M³	BEC CTANA RT
CI-2	67	200	2,69	387,4

MAPER E-80 N2
3 NET PRICE

M 2 /

M 3 2


M 5 2 18

M 9 2

T<u>/</u>

CONONHO EZ-2.

BUNYCEI SIMOT 2

PACYETHAS CREMA EI-3

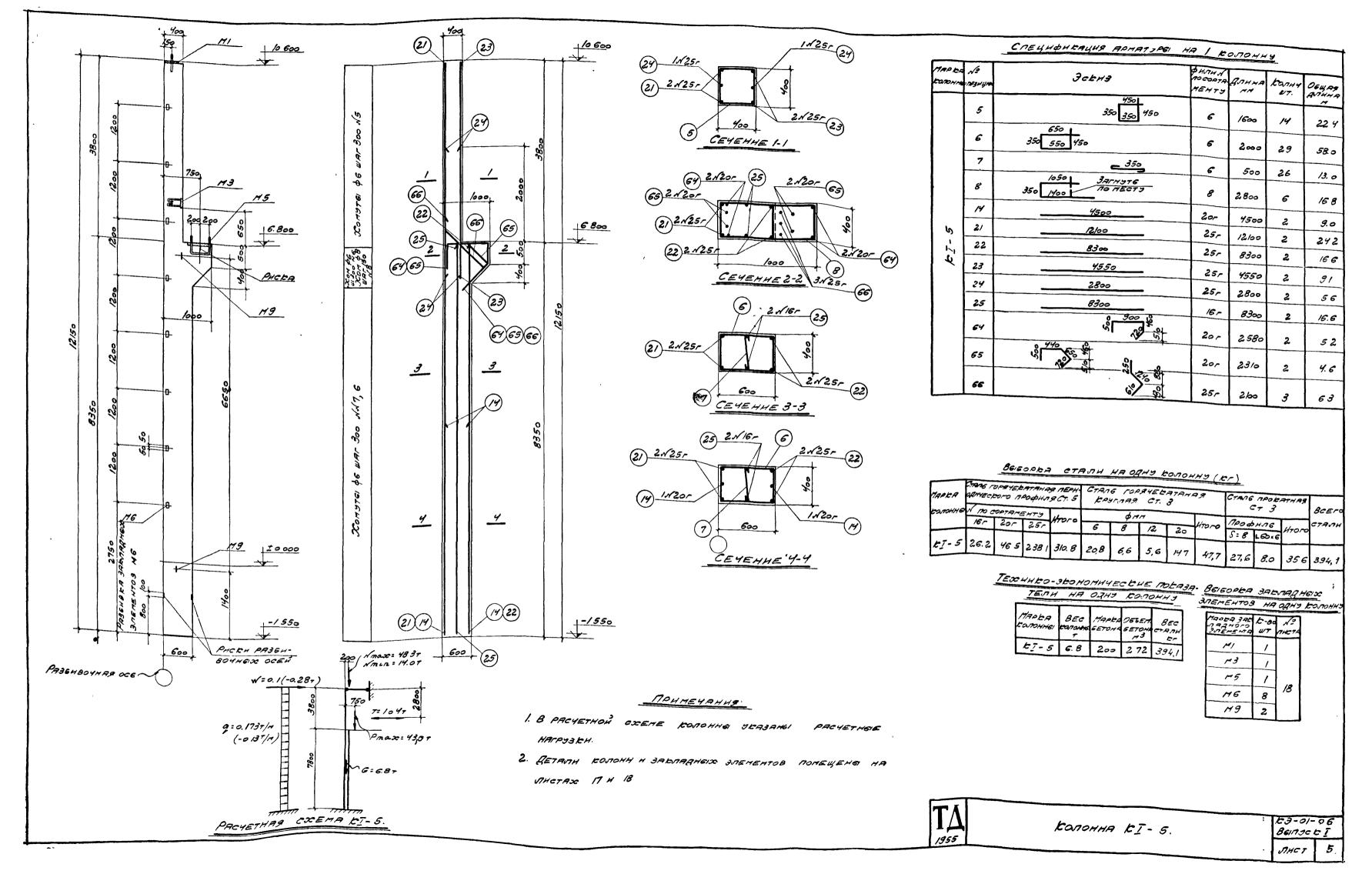
		Спецификация приматуры и	7 / to	NOHH	y	
MAPKA Lacomu	~2 /103HYHH	Эcknз чы	O HATH N NO SOFTA- MENTY	Длина мм	tonny.	OE WAS
	s	350 350 450	6	1600	12	M. M.
	7	350 350 450	6	2000	30	60,0
	8	1050	6	500	27	13,5
	11	350 1480	8	2800	6	16,6
2	2	8500	25r	11700	2	23,9
27	13	3950	251	8500	2	17.0
	14	4500	251	3950	2	7,9
	15	2600	201	4500	2	20
	16	8500	2or	2600	2	5,2
		900	160	8500	2	17,0
	64	500 400	2or	2580	ટ	5,2
	65		201	23/0	2	4,6
	100	sa s	250	2/00	э	6,3

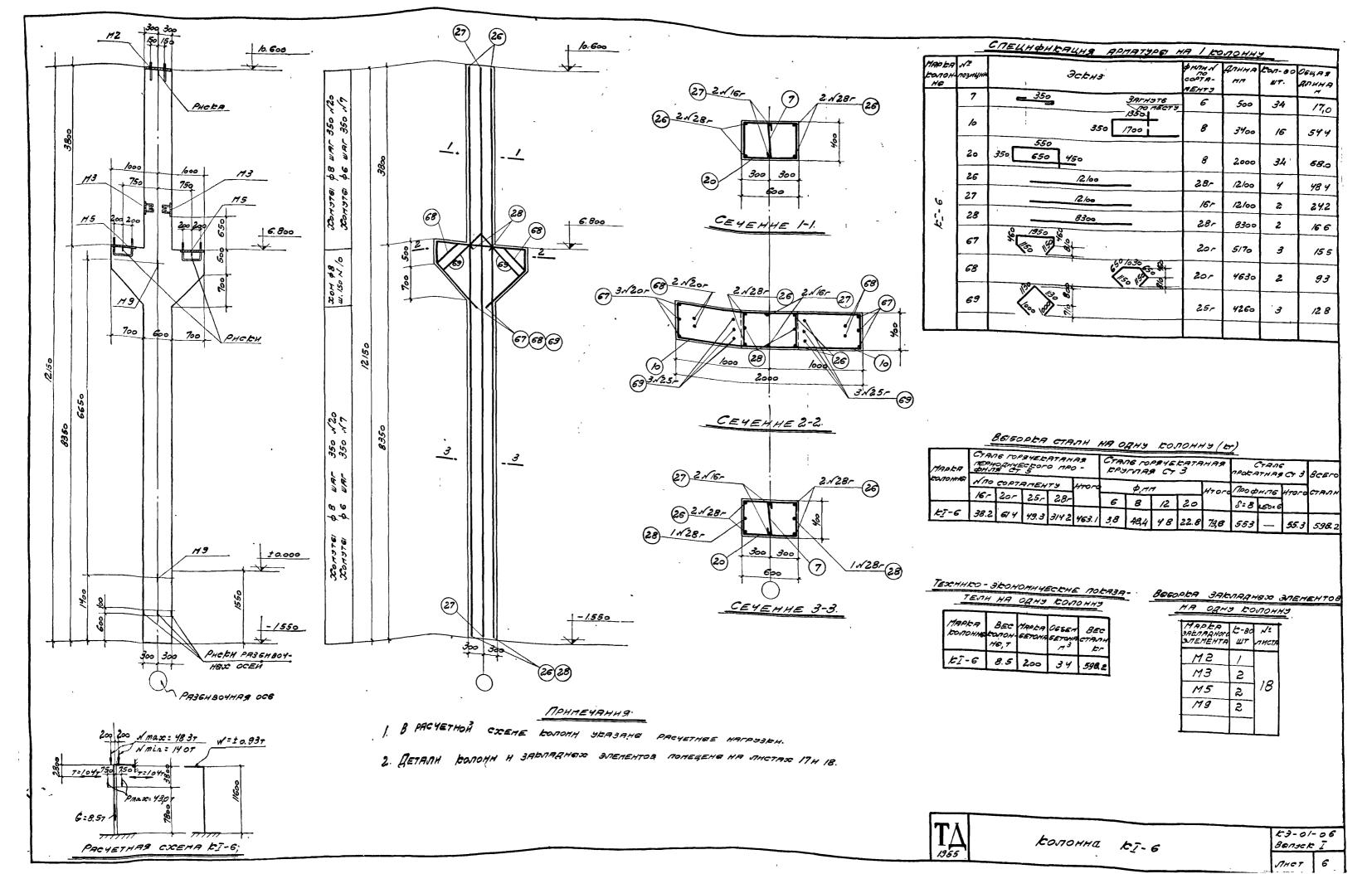
Выборья стапи на одну колония (ст)

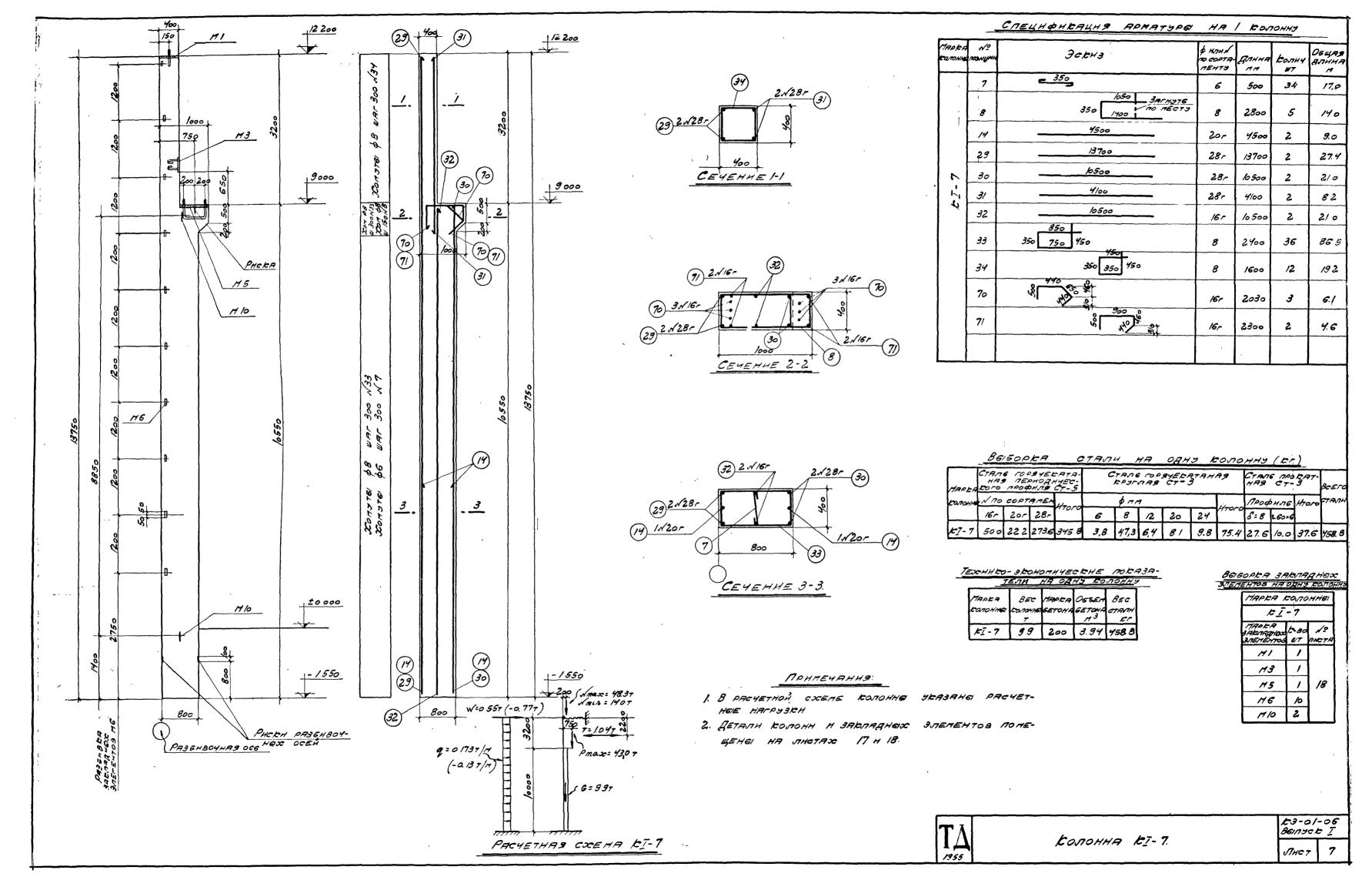
MAPBA	CTANG P	WAYELAT.	AHAS DEM	CTR	74 000	244		y to.	OFTE	3 (2	:/ <u>-</u> _	
1	N 100 0	TOP A YELPT. TOPO O POPMI TOP TAMENT	HTOCO	£'A		SYER SCT	. 3			CT 3	EATHAS	Beern
-	167	201 25		~	<u> </u>		20	HTOTO	1709 5=8	HAB	HTOD	CTACH
123	26.8	59.4 2/0	20 296.2	<i>Co.</i> 7	6,6	5,6	14.7	47,6	27.6	80	25.0	270 11

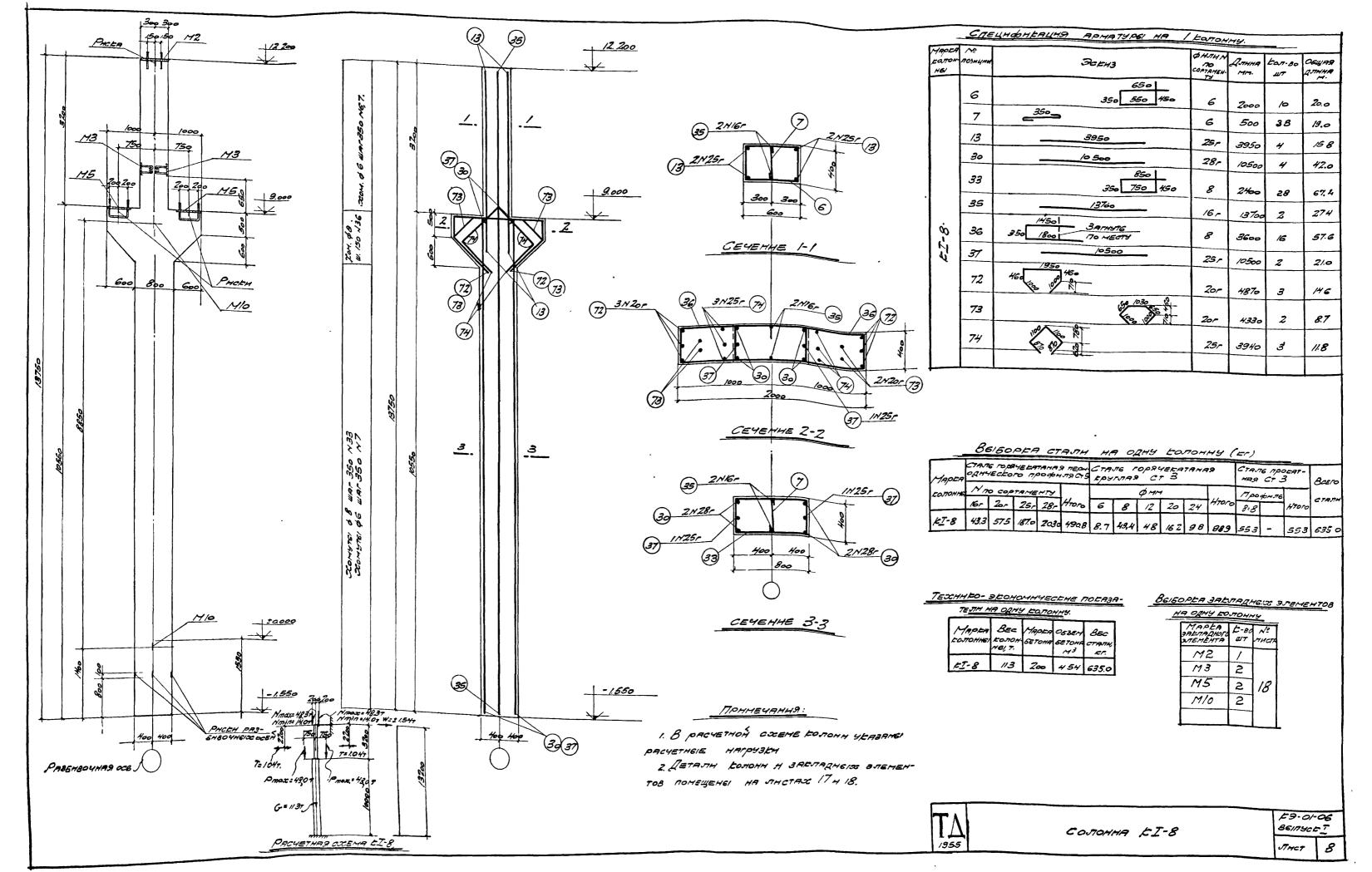
TEXHULO- 3 CONOMHYECTHE TOLA-

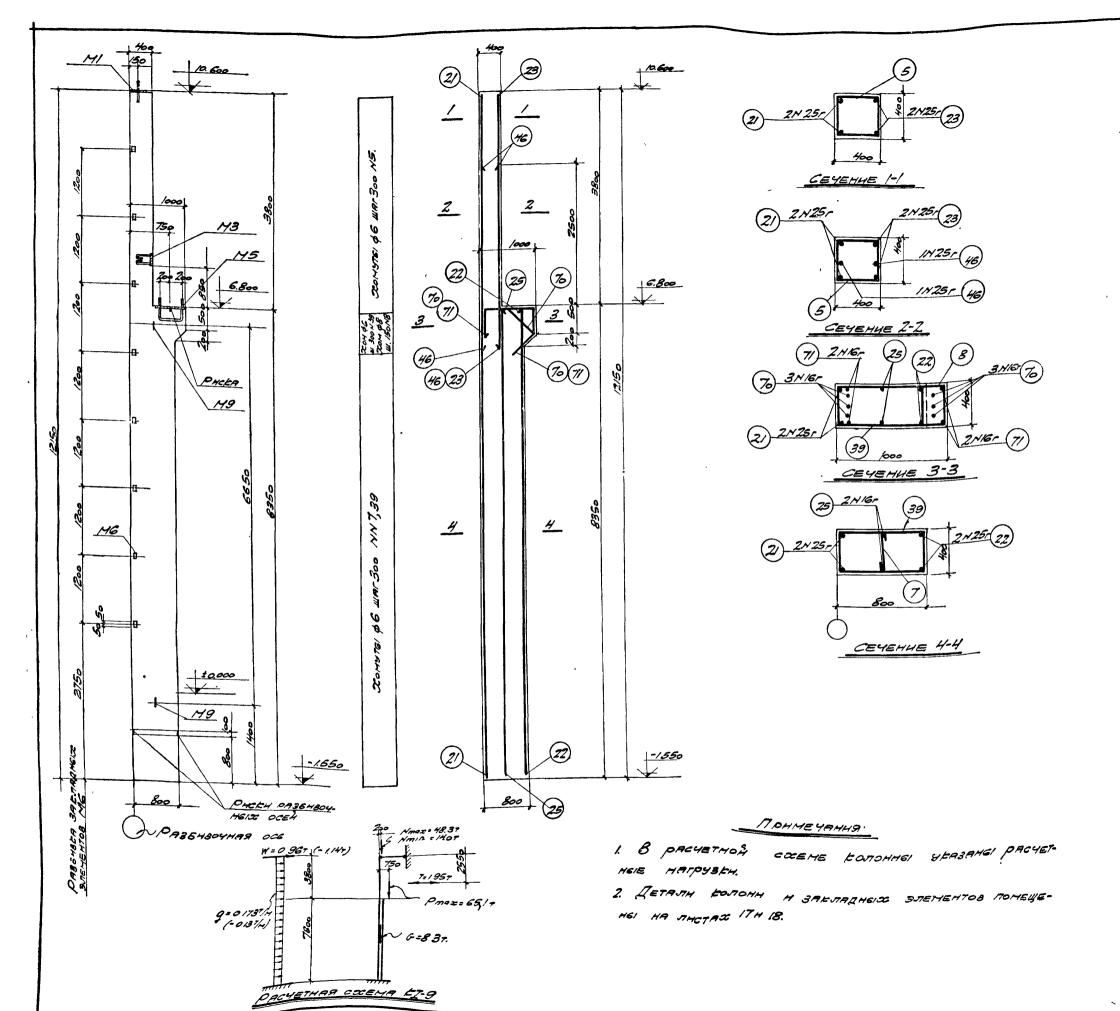

	AMY	COMO	444	
Ben	M=-6	222	0 -	•
6,7				
,	Ben	BEC MARKA topogram SETO-	Bec MANKA OF BEAN to nothing better better T HA MS	BEC MANKADESEM BEC KONOTHIN SETO- BESON STANKER BET BET BETON STANKER BETON BE


BUGOPKA BAKMARHUX


1e	MEHTOB	MAOL	HY Enne
	MAPKA BAKMAH PODMENEN	taras	
	MI	1	
	МЗ	1	
	M5	1	18
	ME	8	
	M9	2	


KONONHA KI-3


k3-01-06 BunyekI



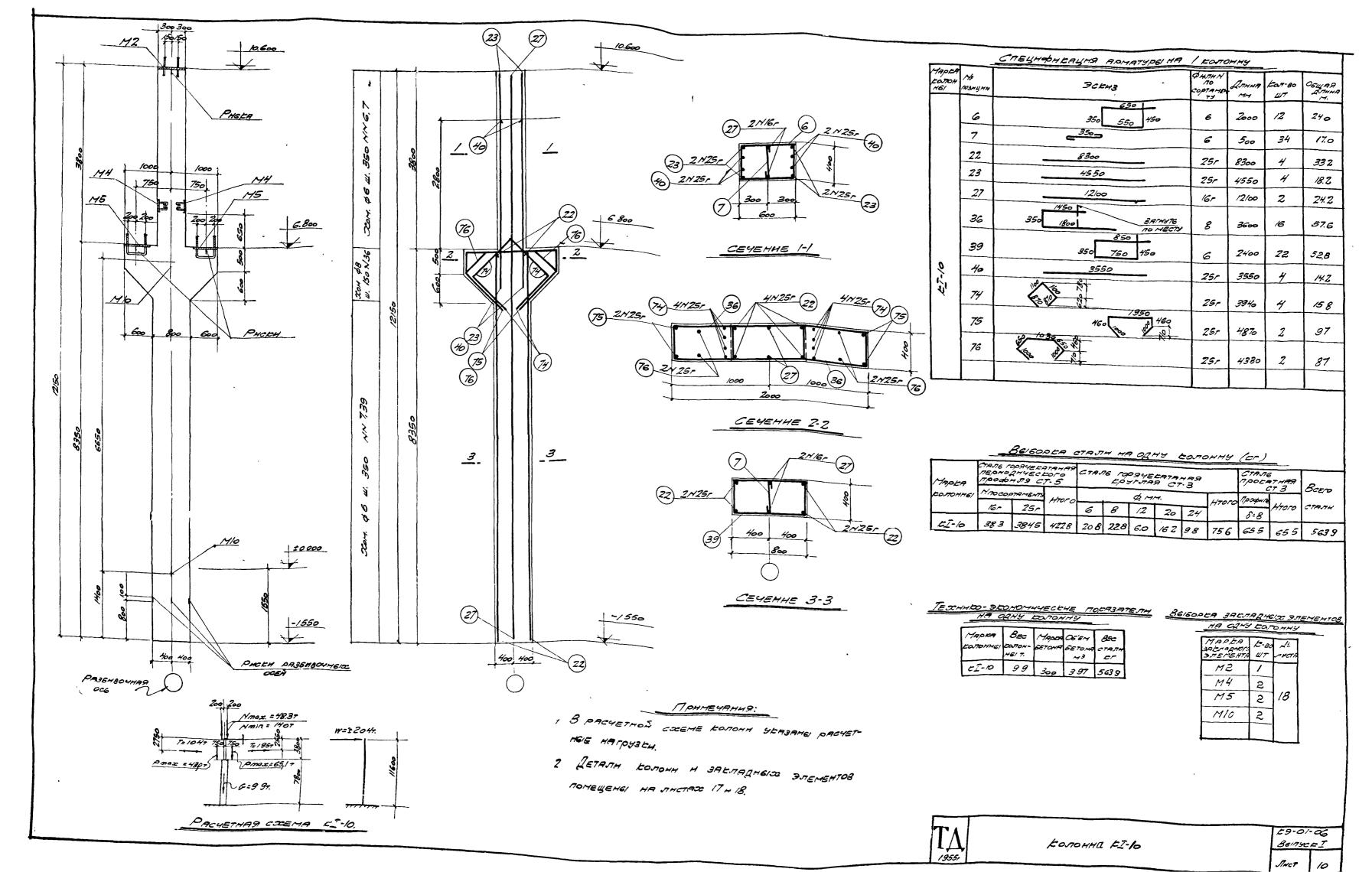
<u>د</u>	617	ЕЦНФИЕЛЦИЯ ДРМАТУРЫ	HA / K	ОЛОННУ.		
Марка колонча	Nº 110 3 HYMH	Эскиз	Ф МЛН N ЛО СОРТАНЕН- ТУ	Длина нн	tan WT.	0649759 20114 11,121
	5	350 350 450	6	1600	14	224
	7	350	6	500	27	13.5
	8	350 1400 3A: HY16 10 MECTY	8	2800	5	14.0
	2/		25,	12/00	2	242
è	22	8300	25 r	8300	2	166
EI-	23	4550	25,	4550	2	91
` .	25	8300	160	8300	2	166
	39	350 750 H50	6	2400	29	695
	46	3250	25,	3250	2	65
	76	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16-	2030	. 3	61
	7/	ης <u>900</u>	16r	2300	2	46
,						

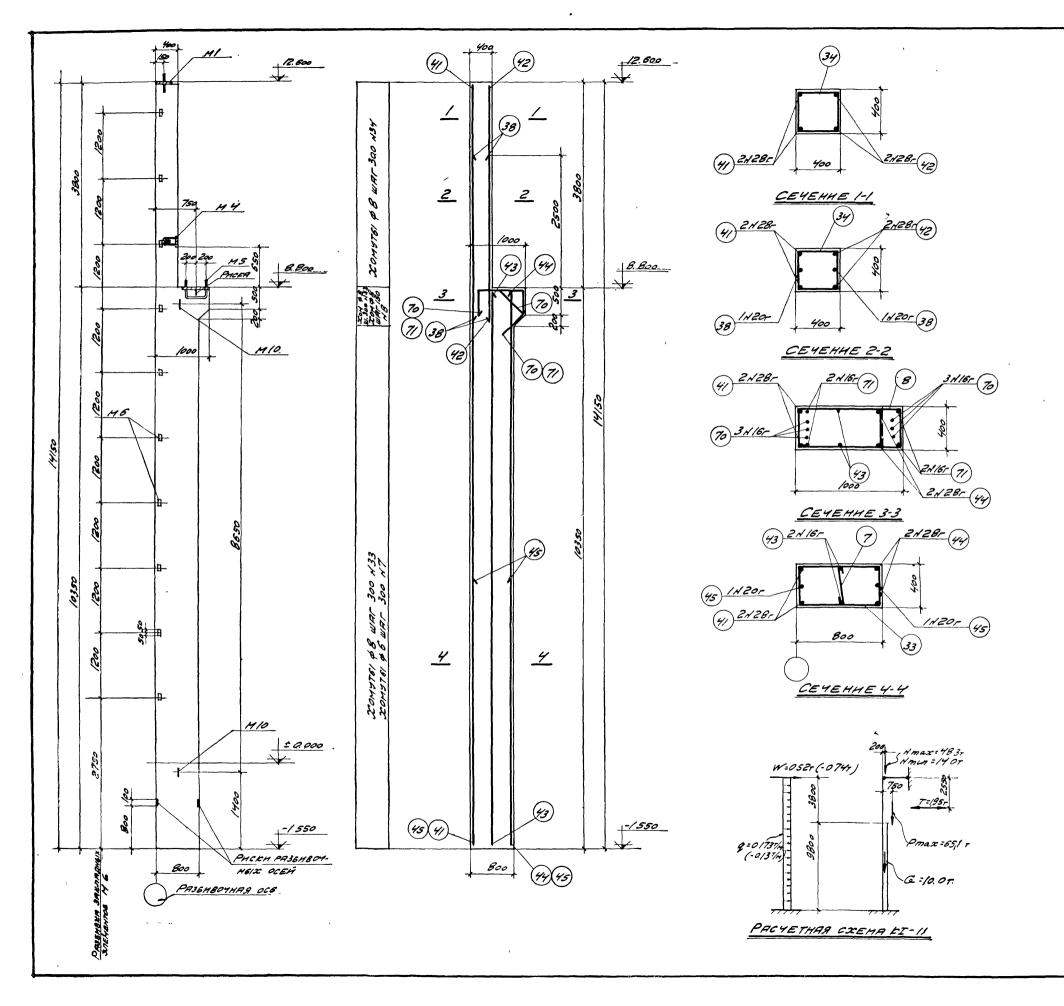
Выборка стали на одну колонну (кг.)

1 ///		PECEON	ECATAHAS NE O NPOG CT 5	CTAN EPYI	PTAH	CTANG NPORAT- HAS CT 3			Bcero			
LOTOHHE	16,	COPTA 25,	MENTS HTOFO	6	8	MM.	20	RPOODHUTE.			CTANH	
ET- 9	431	2/7.3	260.4	23,4	5,5	5,6						345.2

TEXHHEO- SKOMOMHYECTHE MOTASA-

			207 0 747	<u> </u>
MAPER	BEC	MADER	OS'EM	BEC
COSTO HHE	E070H H61 T	6E TOHA	GETONA N 3	CTAVIH ET
£7-9	83		3.33	


BEIEDPER ZAEJIADHEIX


276	MEHTOB H	BOR	yy ca	701
	MAPKA K	0070A	M6/	
	EĪ.	_		
	MAPER 3A- EVIR QHOFO SITEMENTA	£-80		
	9JTEMENTA	227.	JIHOTA	
	MI	/		
•	M3	1		
	M5	1	18	ļ
	M6	8		
	149	2]
				-

T<u>A</u>

E ONOHHA ET-9

#3-01-06 Beinyer I Ther 9

СПЕЦИФИКАЦИЯ ЯРМАТУРЫ НА ГЕОЛОНИУ

MAPEA EONOH- HGI	н9 Познцни	acrus.	фили Н ПОСОРТЯ: НЕНТУ	ДЛИНА ММ.	Eashy UTYF	05 ЩАЯ ДЛННЯ М
	7	350	6	500	33	16,5
	8	350 1400 AECTS	В	2800	ح	140
	33	350 750 450	8	2400	36	865
	34	450 350 350 450	8	1600	14	22.4
	38	3/00	20r	3/00	2	6.2
-I=	41	14100	28-	14100	2	282
V	42	4650	28 r	4650	2	93
	43	/0300	16-	10300	2	206
	44		28-	10300	2	206
	45	5000	200	5000	2	10.0
	70	26 440 CO ST	16r	2030	حى	6.1
	7/	2 900	16-	2300	2	4.6

BEIGOPER CTANH HA ORMS EONOHHY (ET)

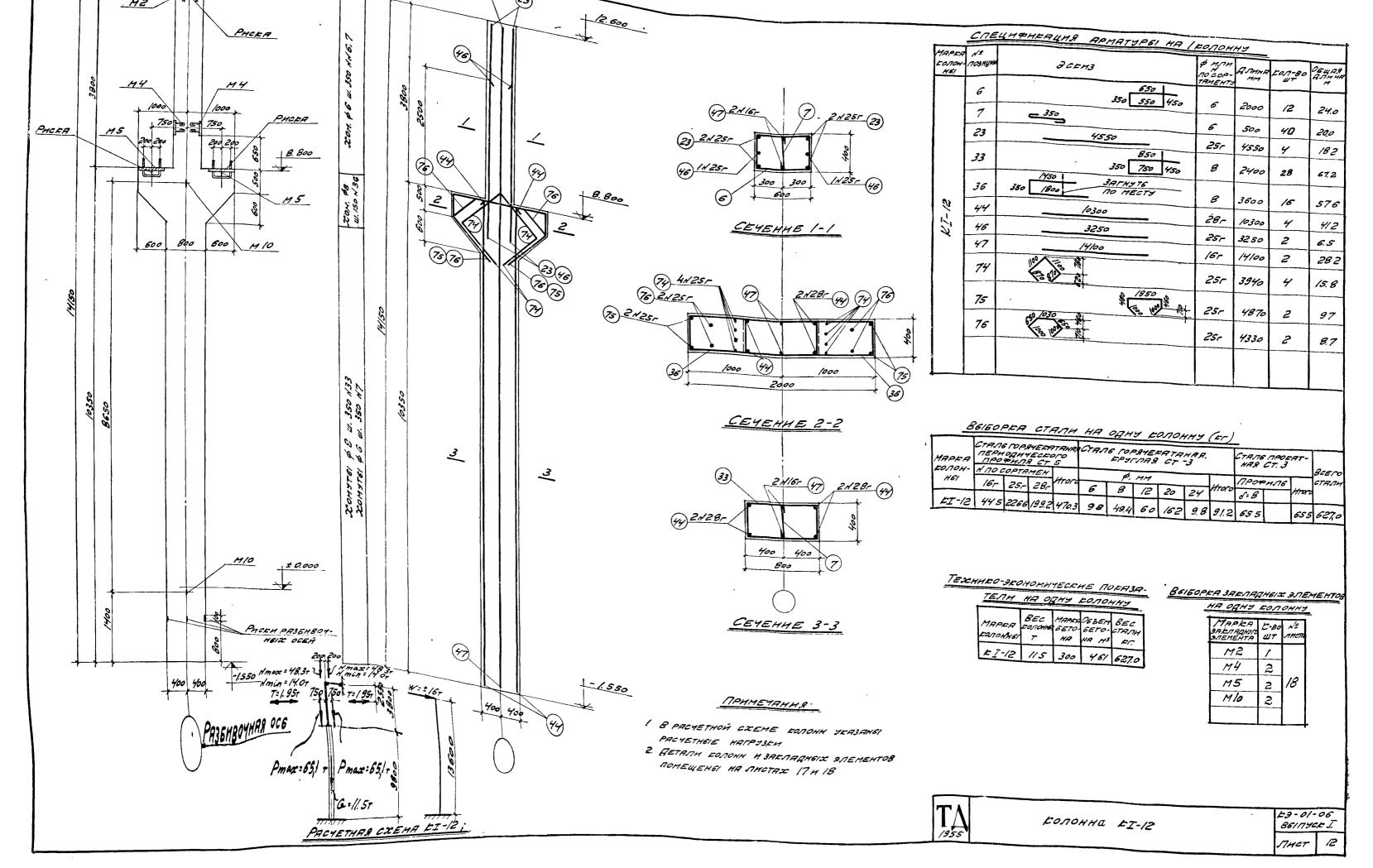
MAPKA	CTA.16 PHOQH	COPAY! HECKOCO	ECATAN O NPO P	IAR NE • H.NAC+ 5	CTANG FORRYEFATAHAS S EPSINAS CT. 3							CTANG NPOKATHAM CT 3		
CONOH-	N NO COPTAMENTY		l.,	Ø. MM				0:8 160.6 HTOPO		[CTANH			
H61	160	20r	28-	Mroro	6	8	12	20	24	Hroro	d: 8	160.6	MTORO	
ET-11	495	400	2809	3704	3,7	49,0	7.0	81	98	77.6	327	10.0	427	490,7

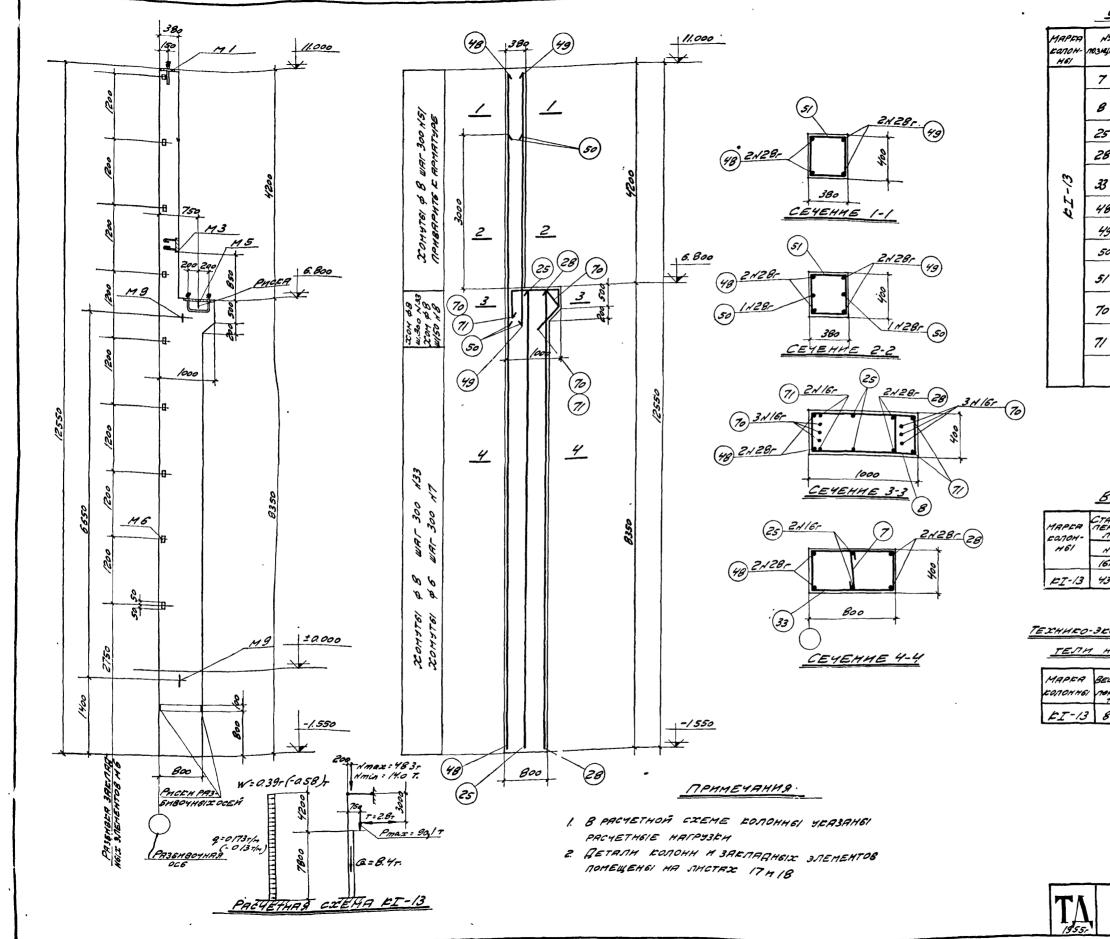
TEXHHEO-SECHOMHYECKHE NOCASATENH

HA ORNY EONOHHY

МАРЕЯ ЕОЛОННЫ	EONOH.	GE TUHA	OGBEM GETOHA M³	8EC CTANH CT
EI-11	100	200	3 98	490,7

PHMEYAHHA:


- 1. B PACYETHOÙ CXEME KONOHHE!
 YERBRHE! PACYETHE!E HALPYSCH
- 2. AETANH EONOHH H BAENAAHSIX BNEMEH.
 TOB NOMEYEHSI HA NHCTAX 17 H /B


BNE	MEHTOB H		con	PHHY
•	MAPEA JAK NAQHOFO INEMEHTA	K-80 WT	Nº SHCTH	
	MI	/		
	M4	/		
	M5	/	18	
	M6	10		
	M10	2		

BEIEOPER BRENARHEIZ

6	4-11
KONOHHA	E I-1/

E3-01-06 BEINGCE I NUCT 11

СПЕЦИФИКАЦИЯ АРМАТУРЫ НА / КОЛОННУ познун ANHHA PCEM3 Колич Общая NO COPT = 350 ANHHA MEHTY 7 BACHYTE NO 5 500 27 13.5 2800 140 25 16-8300 28 16.6 8300 28-8300 2 16.6

33 750 450 8 2400 29 48 695 12500 28-12500 5050 25.0 28-5050 2 50 3850 101 28-3850 77 5/ 350 8 1560 15 234 70 16-2030 3 61

BEIEDPER CTRAN HR ORMY KONOHHY (ET)

MAPER EQJOH-	CTANG FOR SY REPHORMYECE AS CT5	EKATAHAR CTANE	TOPRYEKATAHAD	<u>er)</u>
H61		MEHTS MICOTO	Bun	CTANS NPOERTHAR CT3 SCETO
EZ-13	431 2860	1 101	8 12 20 Hro	1-8 160 ×6 HTORD CTANK
			66.	4 276 90 366 432.1

TEXHURO-SKOHOMHYECKHE MORASA.

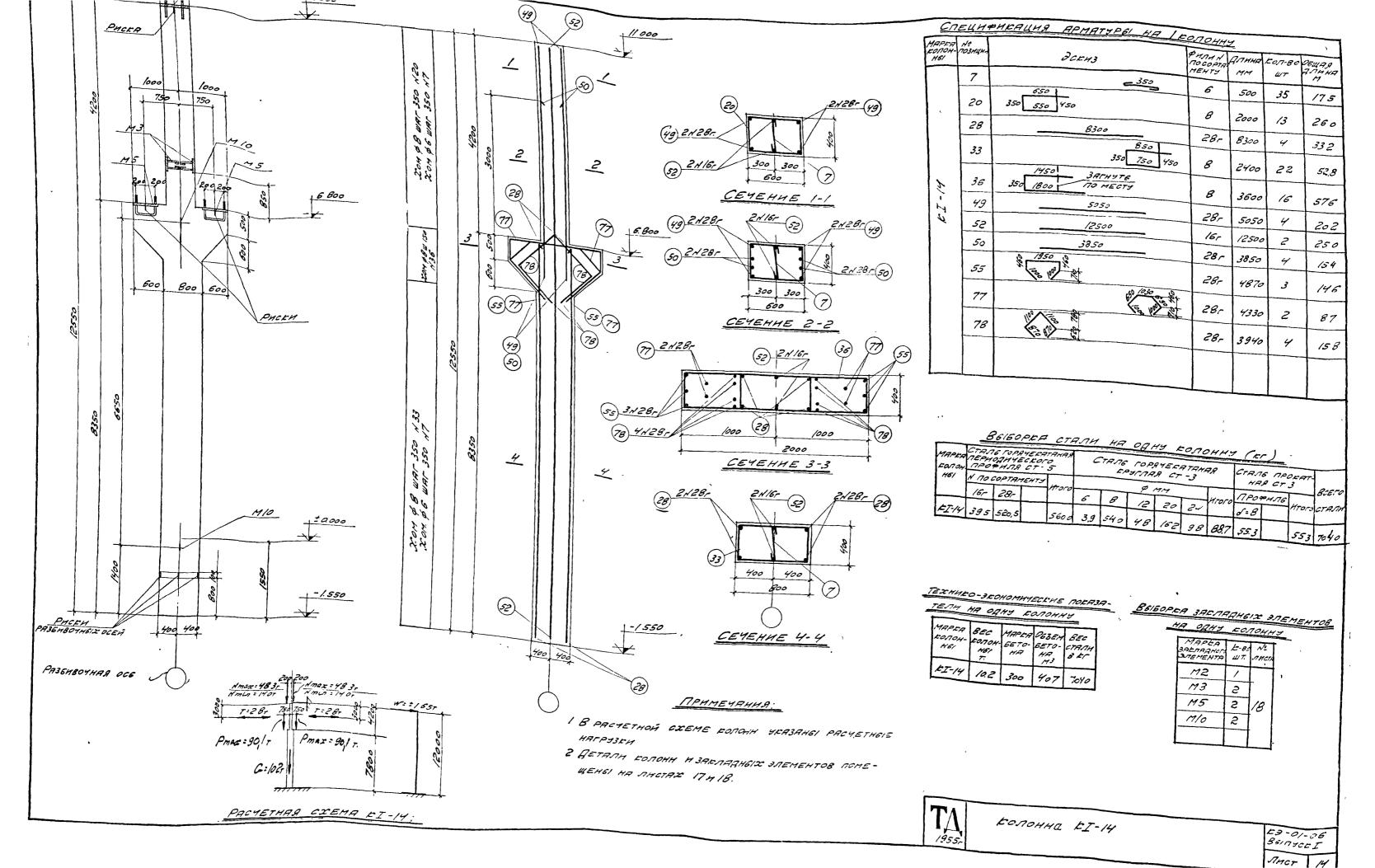
TEAM HA OAHY EOMOHHY

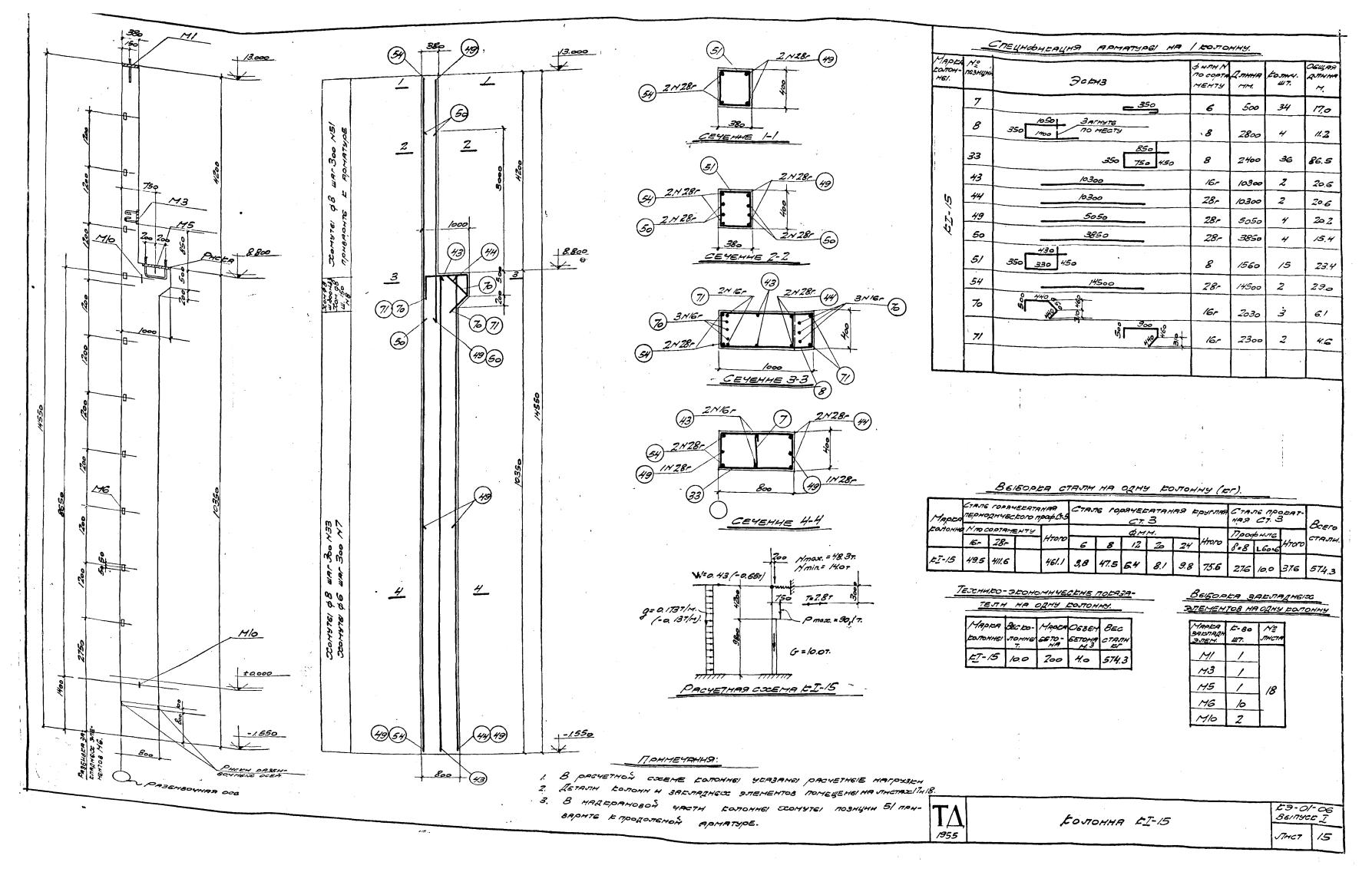
MAPEA EONOHHGI	BEC RO- NONHOI T	MAPKA SETOHA	OBBEH BETOHA	BEC CTANH
EI-13	84	200	335	432.1

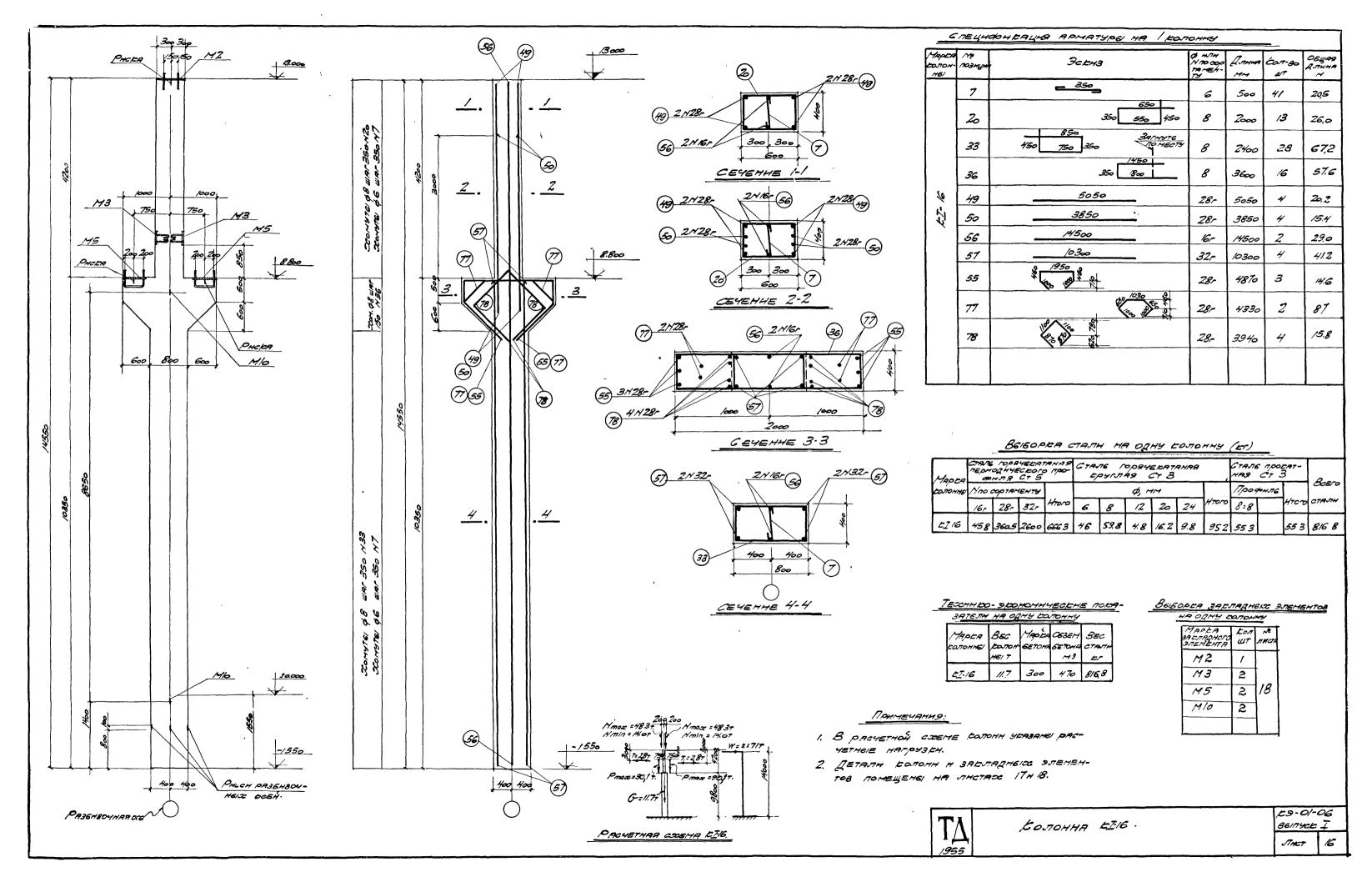
BEIEOPER BRENARHEIX ЭПЕМЕНТОВ НЯ ОДНУ СОЛОННУ

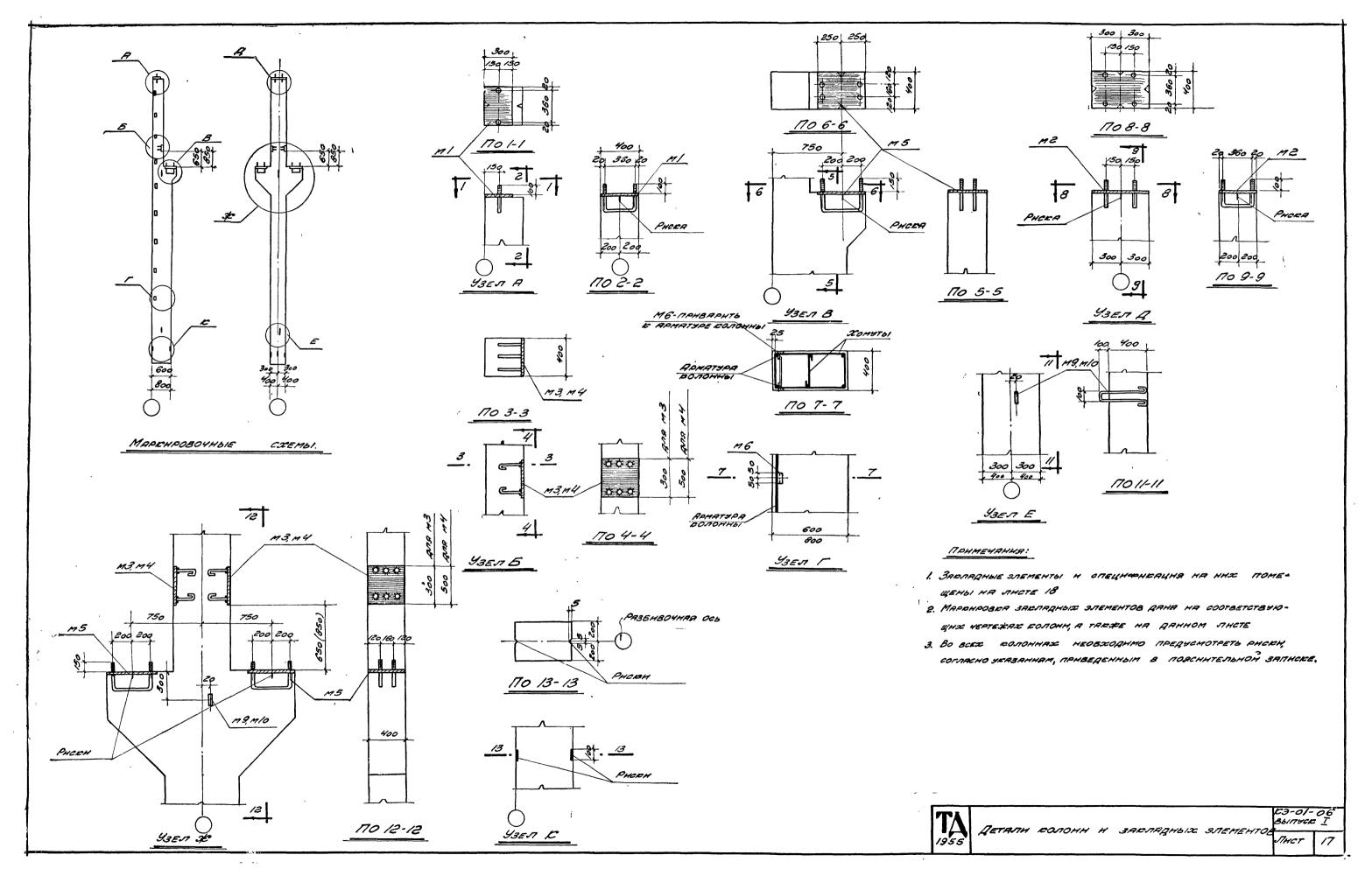
K-80	Nº THETA
1	
/	İ
1	18
9	
2	
	1 1 9

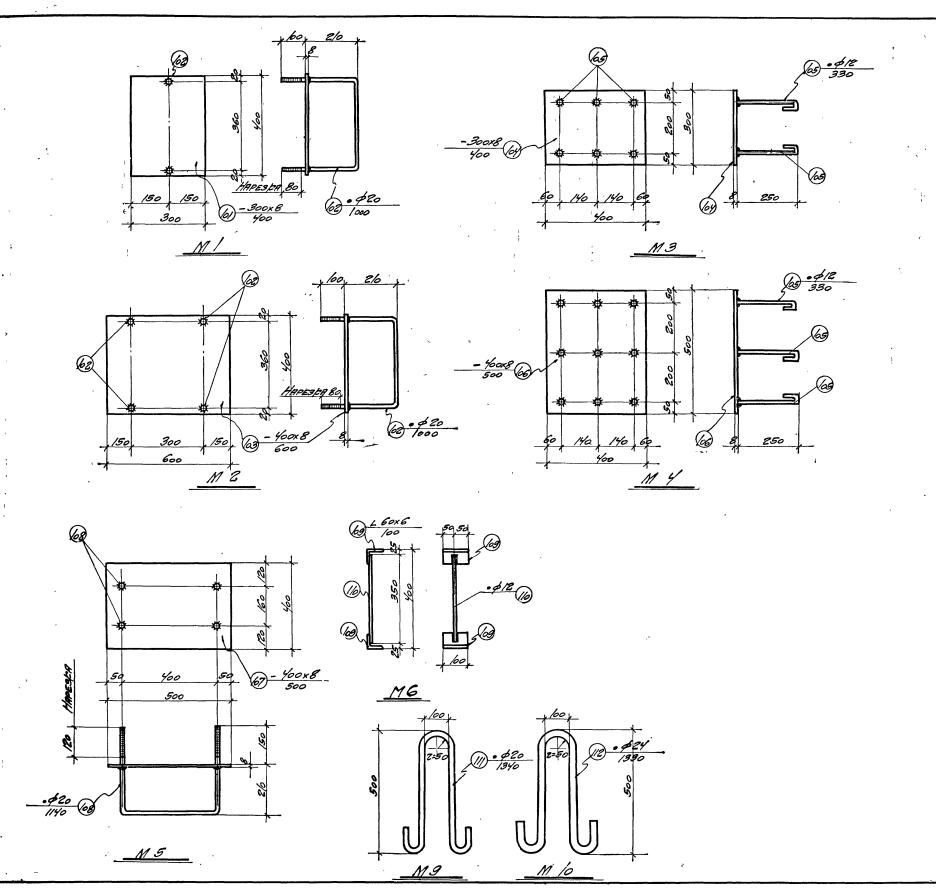
16-


2300


2


4.6


KONOHHA KI-13


E3-01-06 BEINYCE I SHET

Специфирация стали на одну штуру рафдой марри

l	(CTANG MA	PPEH	CT.	3			
	Nº		Длиня	Kan	B	BEC, Er	-	
MAPEA	1103H ЦИИ	Профиль	MM	WT.	AETRINA	BCEX	MAPEN	Примечания
	101	-300×8	400	1	7,5	7,5		
MI	102	. \$20	1000	1	2,5	2,5	100	
	1		<u> </u>		<u> </u>	<u> </u>	ļ'	
*10	102	6\$20	1000	2	2,5	5,0		
ME	63	-400x8	600	1	15,1	15,1	20,1	
	ل با		 	↓ 			 '	
	164		400	14	7,5	7,5	1	
M3	105	• \$12	330	6	93	1,8	9,3	
	لببا	1	1	↓	 	 	 	
i .	106	-400x8	500	 _	12,6	12,6	┨	
MY	105	· \$12	330	9	93	2,7	15.3	
——	<u>لــــا</u>	-	 	├	 	 	┼	ļ
	107	 	500	1/	12,6		٠,,	
M5	108	·\$ 20	1140	E	2.8	5,6	18,2	ļ
	109	L 60x6	100	 _	9,5	1	+	
M6	1/0	· \$12	350	2	94	0,4	14	
<i>""</i>	///		-	+-	17/		- "'	
Mg	111	. \$20	1340	17	3,3	3,3	3,3	
M/0	118	·\$24	1390	17	49	4,9	4.9	

MPHMEYAHUA:

- 1. Данный лист смотреть совместно с листом 17
- 2. Сварья речелых стерфней с листовой, полосовой и человой сталью выполнять швами с шириной по наруфной повержности В=8мм.
- 3. Приварку торцов круглых стерфней к закладным листам выпалнять швами толщиной h=6mm.

ТД ./955

ЗАРЛАДНЫЕ ЭЛЕМЕНТЫ MI-M6, M9, MIO

E9-01-06 BUTHEF I MUCT 18

СПЕЦН фИКАЦНЯ СТАЛН НА ОДНУ ШТУКУ КАФЕДОЙ МАРКИ

	ا مـ	Nº NO3H	Профиль	Длина	ton.	BE	ic, kr	-	Management .
MAR	PEA	13 1414	111 07-11110	MM	WT.	ДЕТАЛН	BCEX	MAPKA	MPHMEYAHHA
		//3	L60X6	200	г	1.1	22		
		114	· \$8	230	4	0.1	04	30	
1111	MII	115	• \$6	550	2	02	04	30	
BAPHAHI	-	//6	- 200×8	800	/	10.0	100		
4	M/2	117	• ø/2	900	3	0.8	2.4	/2.4	
<u> </u>		118	• p/o	570 ran 770	2	0.5	1.0		
BAPHAHT	M13	119	[ASTP. \$1"	400	æ	1.0	2.0	3.0	
00									
181	}							1	

		N.0	Про филь	Длина	ton.	BE	c, kr	•	TPHMEYAHNS
MAI	PEA	17 03 14 1414		MM	шт.	ДЕТАЛН	BCEX	MAPKA	
		//3	L6016	200	г	1.1	22		
	•	114	· \$8	230	4	0.1	04	30	
17.	MII	115	• \$8	550	2	02	04	50	
BAPHAHT	-	//6	- 200×8	800	1	10.0	100		
7	M/2	117	• ø/2	900	3	0.8	2.4	/2.4	
Ĺ		118	• p/o	570 ran 770	г	0.5	1.0		
BAPHAHI	M/3	119	[ASTP. \$1"	400	2	1.0	2.0	3.0	
10									

BUBOPEA DOMONHHTENBHUX 3AKNADHUX STEMENTOS HA /KOJOHHY C HHAEKCOM, a

Вярнянт £7-2°, 4°, 6°, 12°, 14°, 6°, М-12 2	'. N-112 BAPHAKTA	Марка колонн,	Марка Закладного ЭЛЕНЕНТА	tannu, wryk 8 tanonne
EJ-8ª, 10°, 12°, 14°, 6° M-12 2	I Barnant	£1-29, 49, 69	M-11	ંટ
1 1- 2a/a cana //a 4 /2 2		ET-8ª, 10 ª 12ª 14ª, 6	e M-12	г
2 2-6-,7-,0-,74= 11-13	<u>"</u>	ET- 2ª,4ª,6ª,0ª,14ª	M-13	3
BAPHANT E-82/22/62 M-13 4	BAPHAHT	£1-82,122,162	M-13	4

TPHME4AHH9

HA JAHHOU SHCTE NOMEWENDI JONASHHTENDHDIE BAKNAJHDIE BREMENTOI B EPAHOSOIX CONOMHAX BHYTPEHHHX PAGOS, YCTAHASIHSAEHDIX Y TOPLESDIX CTEH SARHHA, AND EPENNEMAS E HAM TOPHEBUX CTEH. ЭТИ КОЛОННЫ . HMENOT допалнительный индерс "а", например ЕТ-44 BALTALHUE STEMENTO PROPRESTANDI O LOUX BAPHANTAX. [BAPHANT-MIIH MIZ,

I BAPHAHT - M 13

2. PACKOR MATERHANOS HA BAKNARHUE SNEMENTON MIL, 12 HAM MIB HE SKANOVEN В ОБЩИЙ РАСХОД МАТЕРНАЛОВ ПО КОЛОННАМ

3. CBAPHUE WALL NONHATE h:6MM

1701-1	MII 	
	<u>M12</u>	<u>10 2-2</u>
300 300 300 300 V3EN H	-	400 400 Y3EN N
	58 58 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	

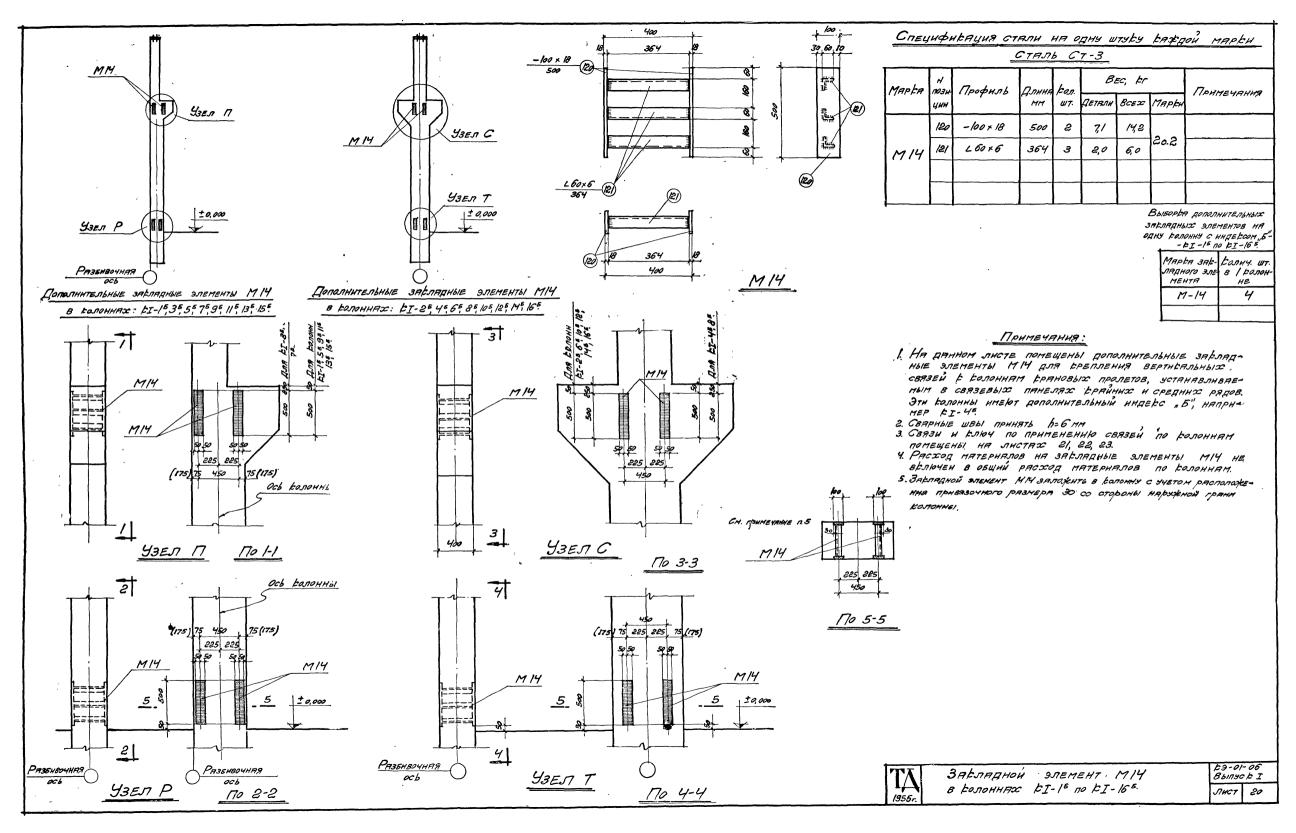
MAN 570

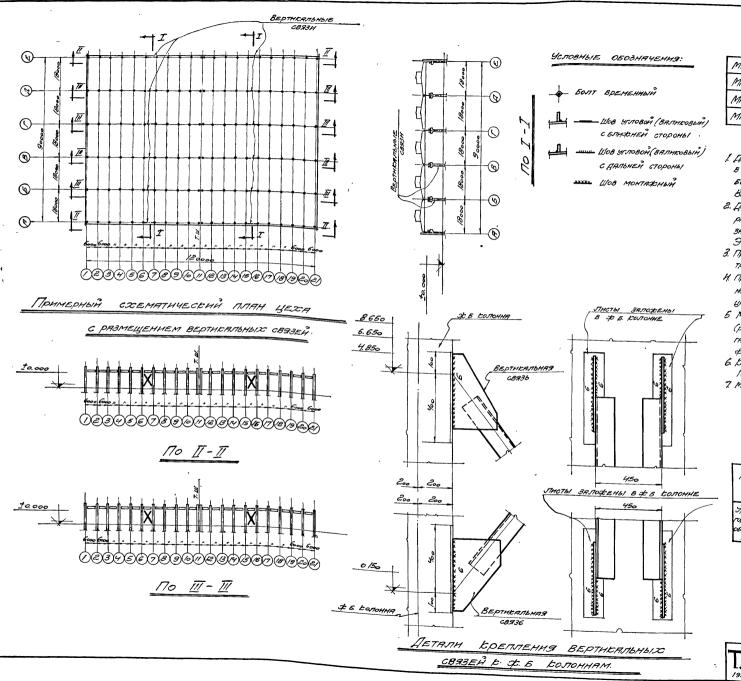
17 BAPHAHT	55 5 65 600 600 600
600 550 25, 150 25 114 114 113 113 115 550	3. M13
M 11	53 E ST M 27830861E 7040(19) 150 150 150 150 400
11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

M/2

M13

YBEAM


Y3EN 1


YJEN H

I BAPHAHT

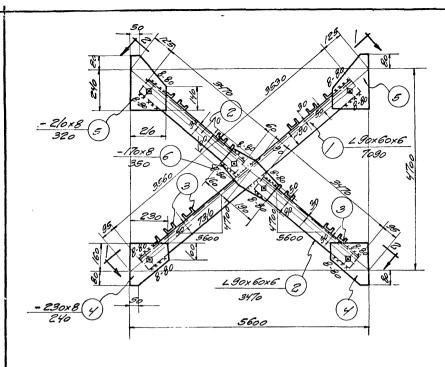
Ang ti-29 49 69

BAKNAGHUE SNEMEHTU MILMIZ, MIS KS-01-06 B KONOHHASE ET-2442,60,80,100, 120,140,160

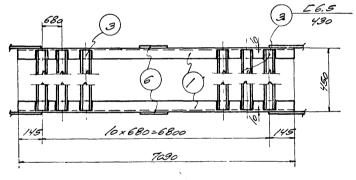
КЛЮУ К ВЕРТИКАЛЬНЫМ СВЯЗЯМ ПО КОЛОННАМ

MAPKA KONOHHUI	4.5 15	1 - 05	1				-	
THEN COSTONIES	E1.10	E1.50	EI-36	EI-40	KI-56	£1.66	KI-76	FT. 86
MAPICA CB93H	MIS	M15	MIT	MIT	MIT	14.17	2415	K2 0
MAPICA COSTONINI	£I.96	EI.66	EI-//5	KT-125	FT 125	19//	1916	M/6
MAPKA CBASH	M17	MIT	ME	MIC	102-/3	E1-146	EI-/5°	EI-168
	M17	1	7770	1116	1917	MIT	M16	M16

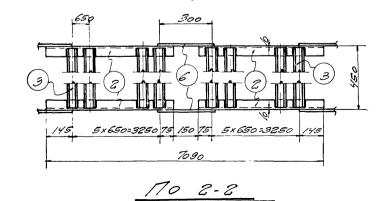
Пояснительная записка

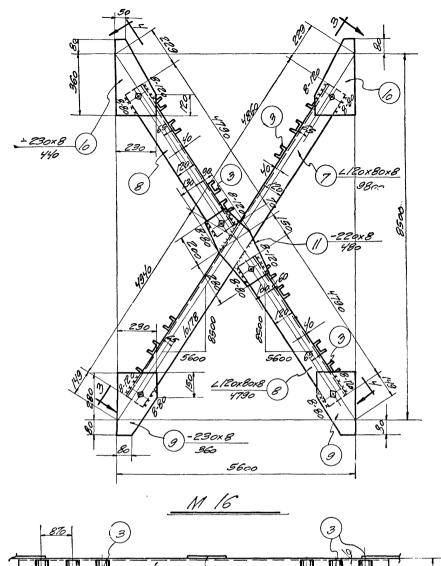

- ! Для обеспечёння фестеости здяння в продольном направлении, в середние температирного отсеба, в кафдом рядя болони должны быть поставлены стальные вертнеяльные связи выбор связей производится согласно ключи.
- 2. Для среплення связей, в колоннях устанявливаемых в пачелях, где расположены вертисальные связи, предосмотрены дополнительные заслядные элементы М/4 (ст. лист го). Эти колонны имеют индекс "5", напоннер К.Т-46.
- 3. При заказе колони для определенного здания необходино ысазать требуемое роличество и нарки связей и дять расход стали.
- И. Проектирование вертисальных связей по колоннам выполнено по нормам и техническим эсловиям проектирования стальных констрыций (и и т.у 121-55).
- 5 Материал Конструкций сталь марки СТ.З ПО ГРЭППЕ А ГОСТ 380-50 (расчетное сопротнеление R. 2100 ГГрм.), мартеновская с дополнительными гарантиями предела текочести, предельного содержания экперода, серы и фосфора, согласно пп8 и 14 Гост 4 380-50
- 6 Конструкции свярные Свярку производить электродями типа 942 Гост 2523-51.
- 7 Монтяф ВЕРТИКАЛЬНЫХ СВЯЗЕЙ ПРОИЗВОДИТЬ НА СВАРСЕ.

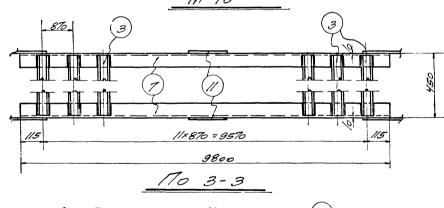
XAPARTEPHOTHER CTANH.

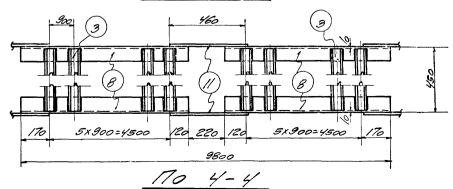

HASBAHHE	MAPKA	MEREN	COREPACE	7.4HE 3.71	EMEHTOB	GNOCOS
CTANH	GTANH	TERYYECTH		CEPA	фосфор	HBFOTOBJEHHA
		Er/MME	TITEPOS	HE 6	ONEE	THE THE STATE OF T
Yrnepoghcta s ropsyceatah ag oblichobehhoro eayectba	G7. 3	HE MEHEE 24	0.14-0,22	0.055	0.050	МАРТЕНОВСЕНН

Д БЛЮН С ВЕРТИСАЛЬНЫМ СВЯЗЯМ ПО КОЛОННЯМ.
ГІНМЕРНЫЙ СХЕМЯТИЧЕСКИЙ ПЛЯН ЦЕХЯ С РЯЗНЕSS ЩЕННЕМ ВЕРТИСАЛЬНЫХ СВЯЗЕЙ.


13.01-06 15.01-06 15.01-06 17.01-



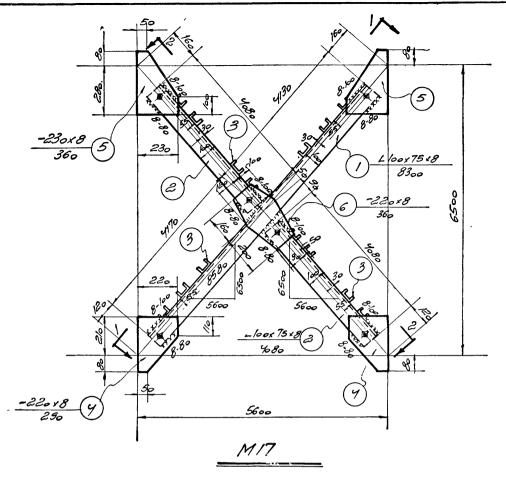

M 15

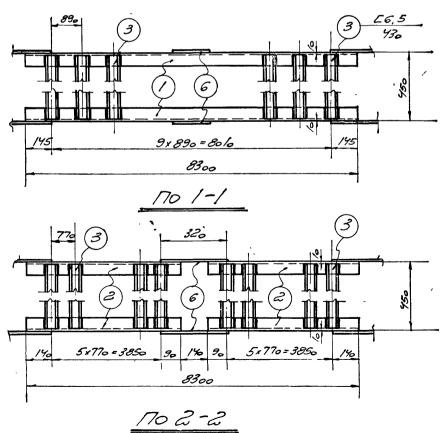


Mo 1-1

CREUMPHEALUS CTARN HA OGHS WISES CASCHOU OTHPABOUHOU MAPKU

		CTANO	MAPE	H	Cr. 3			
07111918. MAPKA	NNº CE. AET	Профиль	Длина мм	<i>Еол.</i> ШТ.		EC ET BCEX		Примечанне
	/	2 90x 60x6	7090	2	49,0	98		
	2	190x60x6	3470	4	24,0	96		
	3	L 6,5	430	23	2,9	67		
سر رر	4	-230×8	240	4	3,5	14		
M 15	5	-2/0×8	320	4	4,2	17	305	
	6	-170×8	350	2	3,7	7		
		HARRABREHA	1614 M	TANI	2%	6		
	3	£ 6,5	430	24	2,9	70		
	7	LICOXBOX8	9800	2	120,0	240		
	8	L/20×80×8	4790	4	58,5	234		
	9	-230x8	360	4	5,2	21	1	
	10	-230x8	440	4	6,4	26	616	
M 16	//	-220x8	480	2	6,6	13	1	
		HANNABNEHH	GU MET	91111	2%	12		


MPHME4AHHA.


- 1. BCE EQUITED \$ 18 MM
- 2 BCE OFFESSI = 40 MM
- 3 BCE HEOLOBOPEHHILE CBAPHILE WIBLI CHITATH TOTUMHON 6 MM
- 4 Свярные швы выполняются элертродями типя Э48 TOCT 2523-51
- 5 CBASH NPH NEPEBOSKE CNOCHTE U NEPEBASATE
- 6. MONTACHAG COVEMA NOMEYEHA HA SHOTE 21.

ВЕРТИГАЛЬНЫЕ СВЯЗИ ПО ГОЛОННЯМ M 15 H M 16

E3-01-06 Bunyer I

THET

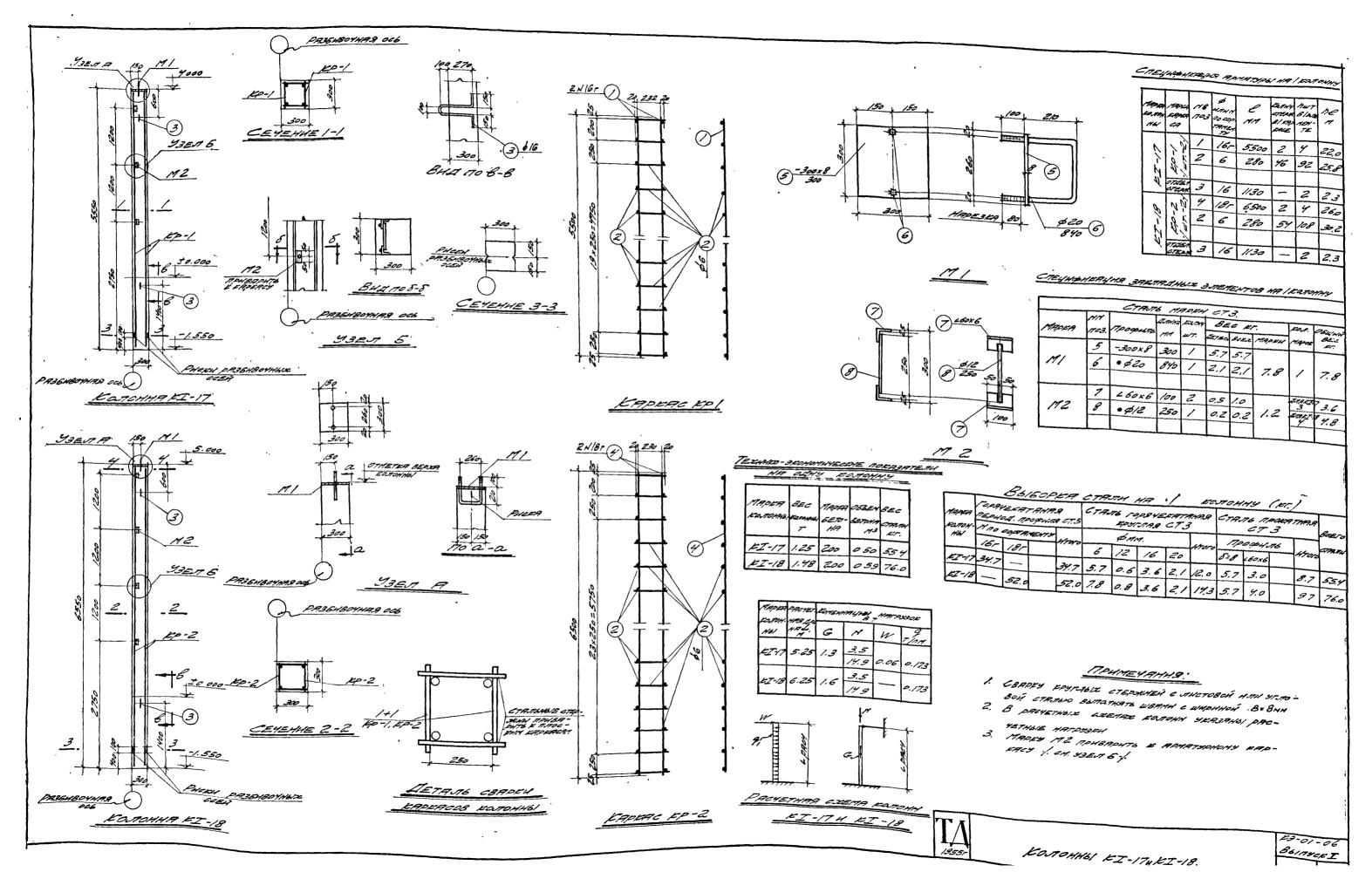
Спецификация стали на одну штуку кафдой отправочной марки.

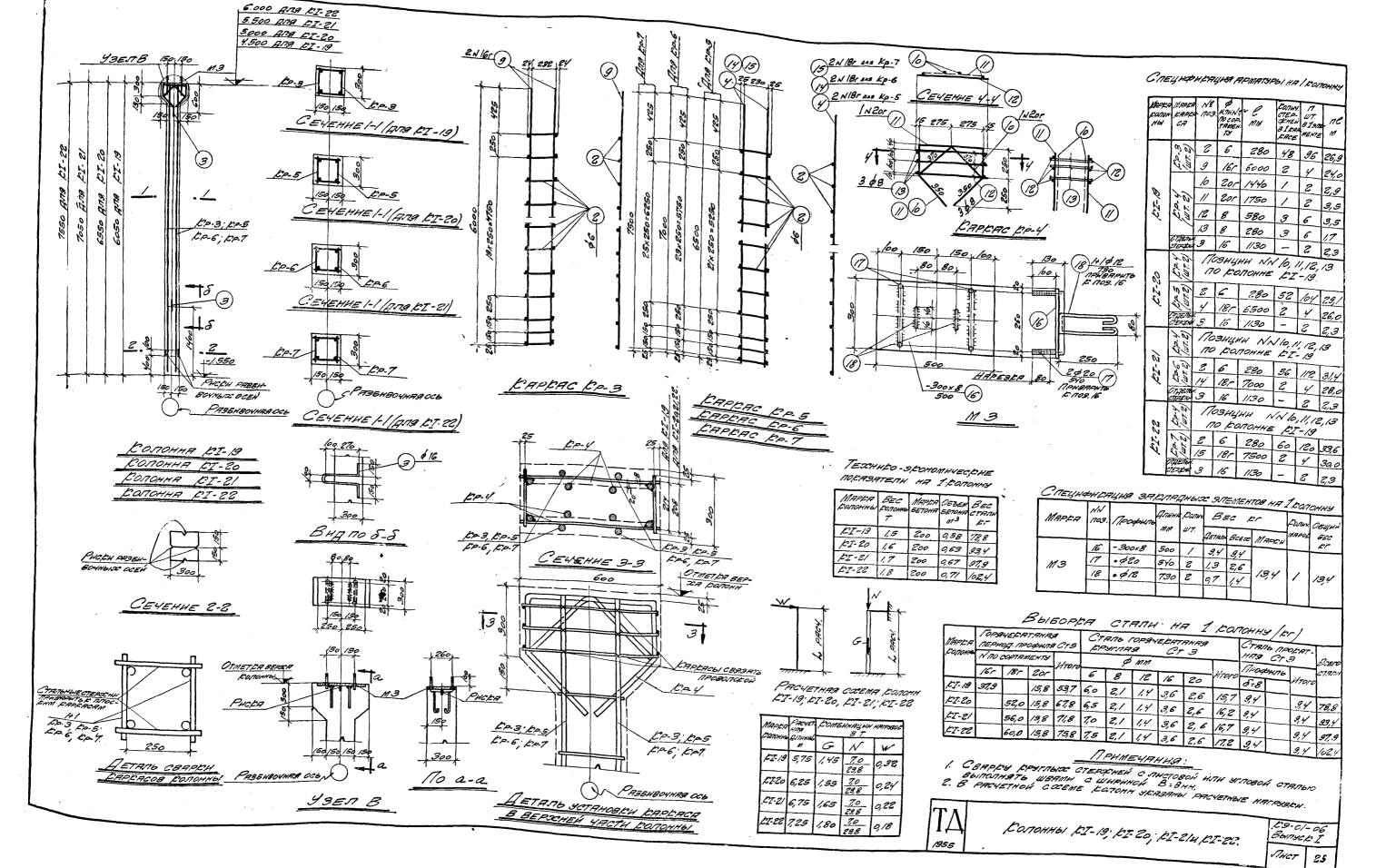
		CTAV	16 MA	PPEH	GT. 3	3		
ОТПРЯВ		0	Длина	tos.	BE	c kr		7
MAPICA GET	Профиль	MM	WT.	ובאבדועו	BCEX	MAPKH	PAMEYAHHE	
	/	L100x75x8	8300	2	88.0	176		
	2	Lloox15×8	4080	4	43.3	173		
	3	L6,5	430	22	2.9	64		
MIT	4	-220x8	290	4	40	16	469	
•	5	-230x8	360	4	5.2	21		
	6	-220x8	360	α	5.0	10		
]	
	HAM	NABNEHH6IH	METAJ	10-2	%	9		

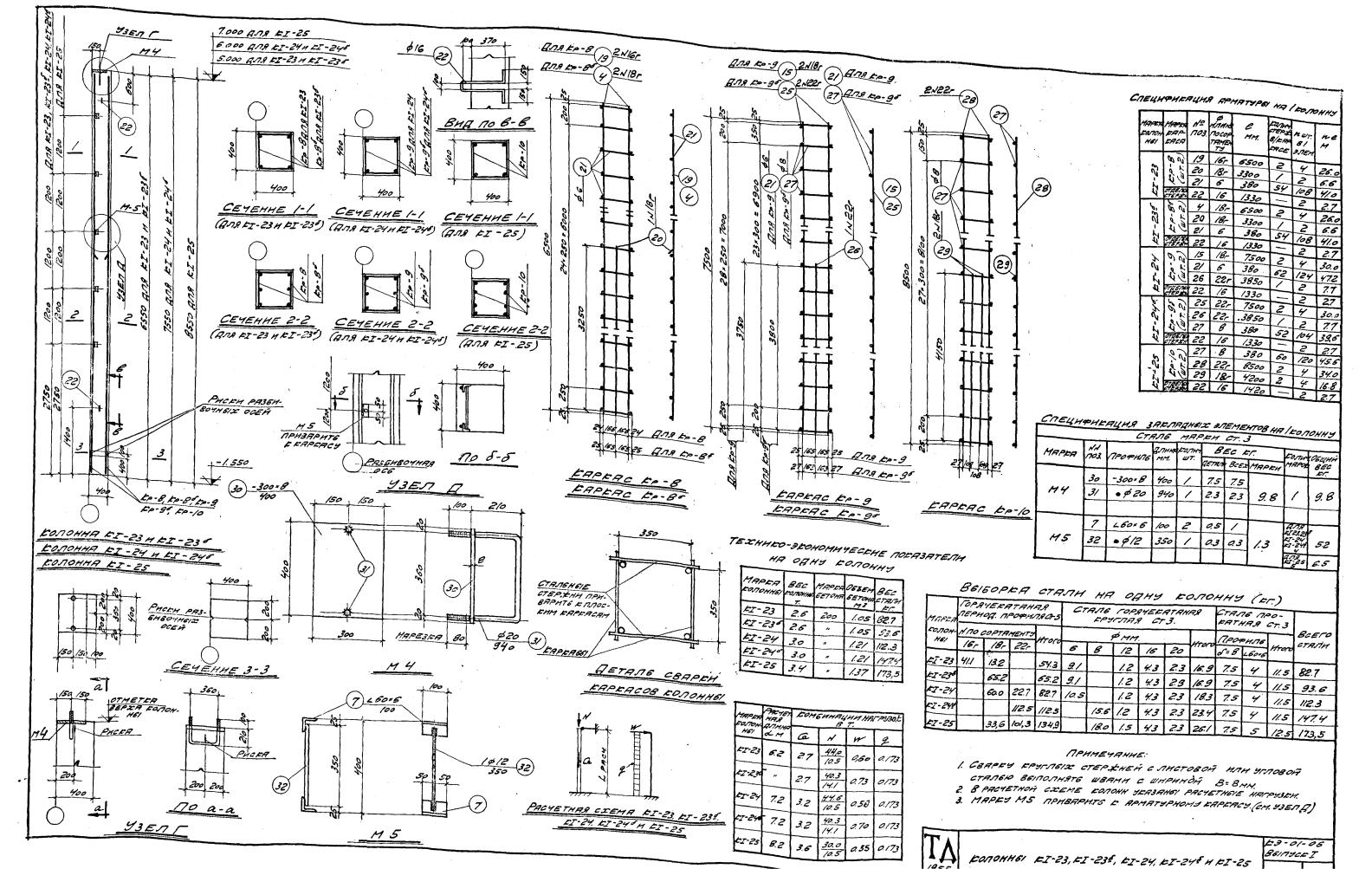
RPHMEYAHAG:

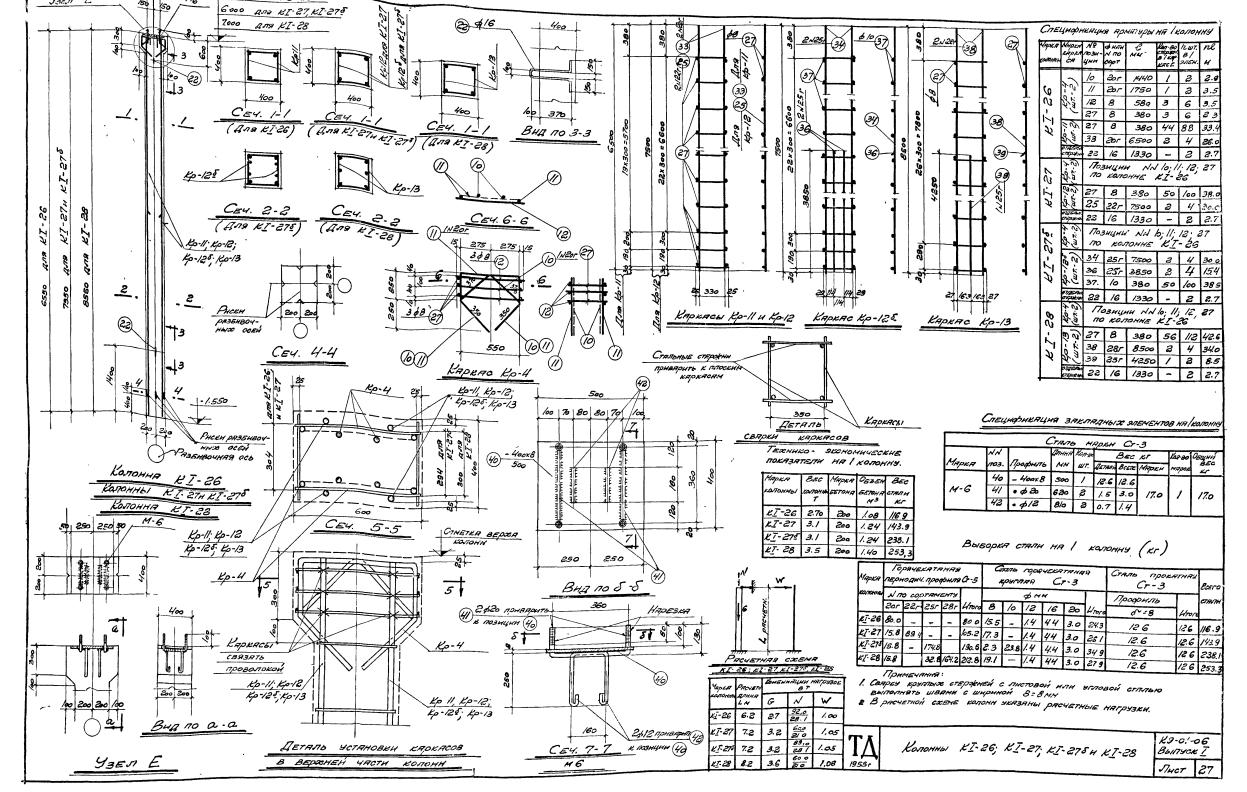
1. ВСЕ БОЛТЫ \$18 MM.

2. BGE OFFE361 = 40 MM


3. BCE HEOFOBOPEHHUE CBAPHUE WB61 CYNTATO


Толщиной 6 мм.


Ч. Свярные швы выполняются электродами типа эчг Гост 2523-51.


5. Связи при перевозке слофить и перевязить.

6. Монтафияя схемя помещеня на листе 21.

Нагрузри на фундаменты

Мяркировка ,колонн	COSC181	PRPHITHA EHHOTO CONOHH	H SECA	OT EPA	THOS WILL	non			ALLASEN HA
	N/ T	M	Q	06	PARTOR WITH PARTORAL PARTORAL	BOTO	OT BE	ETP#	77
	2	3	4	7	M	Q T	M TM	Q T	17 римечания
FI-1	45,0	+0,9	10,5	5	6	7	8	9	10
EI-8	86,6		1	24,2	-3.00	-1,64	+10,4	+1,67	70
	100,8	ļ		24,2	± 6,5	+2,83	-/0,0	-1,50	
EI-3	46,1	+1,2	+95		294	10,13	±10,0	±1/1	
KI-4	88,3	_	+-	33,7	-5,8	-2,03	+14,5	+2,0	
	-		 	67,4	1/045	13,38		_	
EI-5	46,8	10,9	+0,4	33,7	±0,9	10,25	± 13,1	=1,2	
EI-6	88,8		1	+	-4,85	-1,9	-14,0	+1,9	
	 	-	1	674	± 9,5	13,2	112,8	-1,8 ±1,1	
EI-T	49,8	+2,3	t98	33,7	-48	203	+187	<u> </u>	
ET-8	90,7	_		33,7		-44	-18,0	+2,B -2,0	-
	+		+	674	± 1985 ± 10	± 2,9 ± 9,2	=17,0	=13	
KI-9	48,8	+94	10,7	51	-50	-2,3	+19,1	+2,8	
				51	± 12,55		-184	-2,5	†
EI-16	89,5	-	-	(51)	1 = 12,55) = 2,4	10,5	± 19,8	=17	SHAYENKA, SAEMOYENKE I CEOSERE, OTHOGOTES E CONYAND MANUTUS I PONTETE COMMON CTO. PONTETE COMMON EPA HOR FORDOMENT
EI-11	49,8	+1,5	+9,7	(84,7) 51	(±5,9) -6,76	(±1,9) -2,1	+193	+2,3	HOB PERSONOFIEMA 2.
NT 10	1	 	+		ļ		-18,5	-2,0	
KI-18	91,9			102	± 15,3 ± 2,2	± 4/2	= 18,2	1/3	
EI-13	48,2	-37	-95	793	+14,4	13,06	+14.3	+1,9	
EI-14	901/	_		70,3			-13,6	-1,7	
1-17	30,4	-		1496	±15,2 ±2,8	£ 6,35	±16,6	±1,4	
EI-15	49,8	-//	-0,5	70,3	-7,93	-2,8	+19,2	+2,2	
EI-16	92,0	-	_	70,3	± 20,6	±5,67	-	-2,0	-
				140,6	± 37	1207	# 20,0	±1,4	

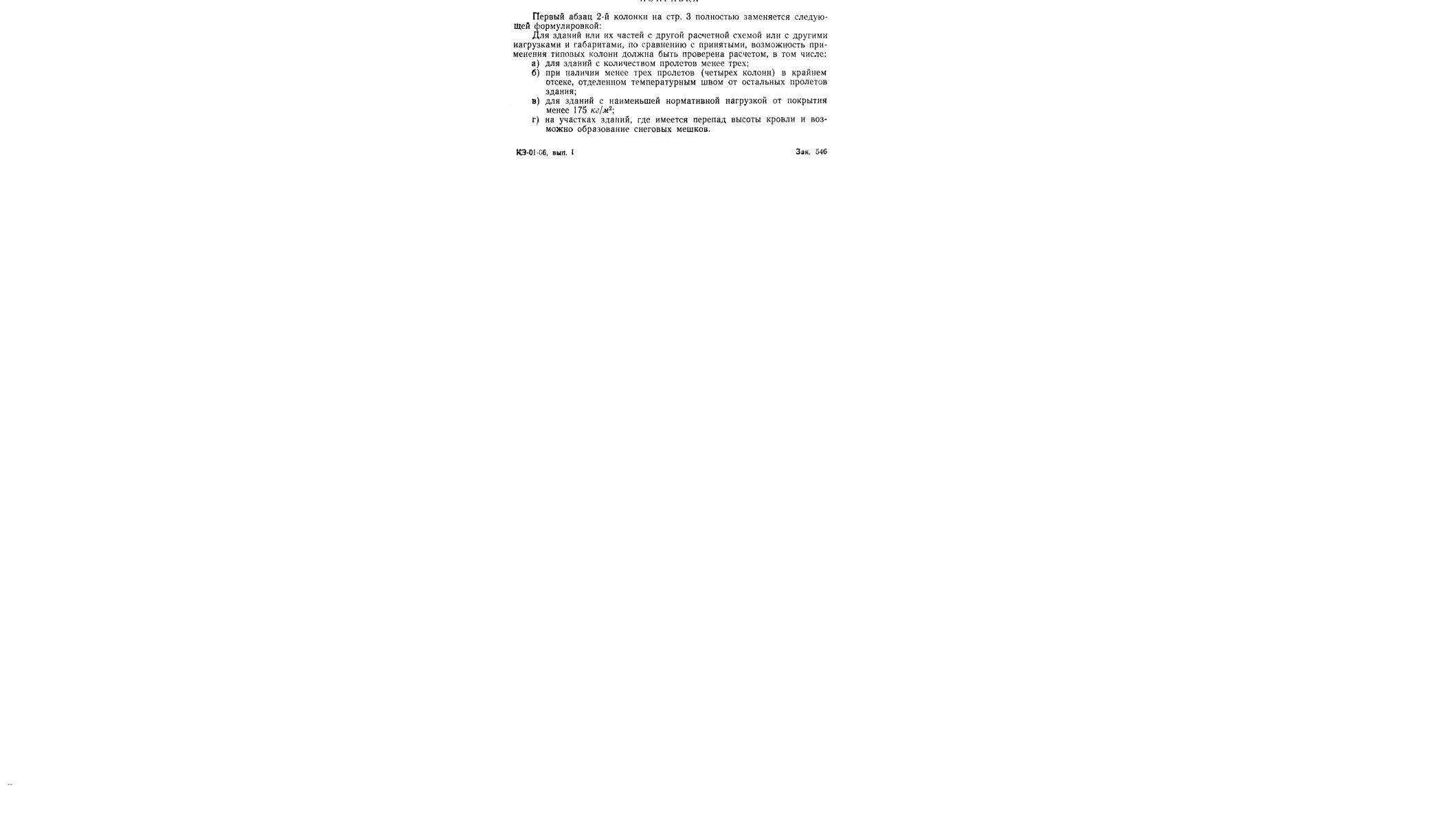
b.	11,3	3	4	5	6	~		Γ	1
EI-17	13,1			2,2	-	7	8	9	10
	.0,7		_	4,3			1000	1-7	L=6M; 9=560
KI-18	11,5			70			+2,26	+970	L=12m; 9=330
EZ-19	.,,,,		_	2,2	_	_	+2,42	+0,80	
	21,5	_	_	4,3				 	
EI-20	21,6						1,55	±0,27	
	25,3	_	_	4,3			1		L=6m; 9=560
PI-21	217			8,6			11,3	1920	L=12M; 9=330
h= -			-	4,3	_		114	19,21	
EI-22	21,8	_		40			-"/		
EZ-23	22,8	1950		43	_	_	=11	1915	
	32,7	10,75	+9,24	4,3	_		± 4/8	1/20-	1:12M : 2-50
ET-235			19,36	6,5	_		± 5,85	11,26	L=12M; q=560
	26,2	10,60	1929	8,6	_				L=18M; 9=560
EI-24	23,2	+0,50	+0,21	1/10			±6,8	± 1,57	L=24M; 9=330
	33,/	+9.75	+0,3/	6,5			±5,8	\$ 1,33	4=12; 9=560
EZ-245 2			7-7	9,5	=		±7,2	±1,37	L=18; 9=560
	26,7	1960	10,25	8,6	_	}	+00		
EI-25	23,6	1950	10,18	4,3			±8,2	± 1,69	4=24 9=330
	21,1	+0,45	+916	6,5			±7,0	= 1,45	L=12; 2=560
EI-26	62,9			13,0			± 8,6	± 1,50	L=18; 2=330
	50,0	_	_	173	-		£5,16	±0,84	L=18; 9=560
KI-27	43,4	_		8,6	ļ		£6,0	±0,97	4=24; 9=330
	38,6	_			-		±4,9	±0,68	4=12; 9=560
pr	63,3	_		130	-		± 5,3	1988	L=18; 2=330
EI-275	50,5	_	_		-		+6,3	10,88	4=18; 9=560
EI-28	43,8	_	_	77.3			±7,2	\$1,0	4=24; 2=330
1-1-68	38,9	1-	<u> </u>	8,6			±58	±0,76	4=12; 2=560
		1	 	130			±7,35	10,9	L=18, 2=330
	1	Ì	1				1	1-49	~-10, Z=330
		 	1	<u> </u>					
	1	1					T	 	
			l	 					
				ì				1	
		 	 	<u> </u>				1	1
·								1	

MPHMEYAHHA

1. В ТАБЛИЦЕ ДЯНЫ НОРМЯТИВНЫЕ НЯГРУЯРИ НА ФУНДЯМЕНТЫ.

2. При пользовании нагрязении на фундаменты НЕОБОГОДИМО РУРОВОЗСТВОЯНТЬСЯ УВЛЯНИЯМИ, ПРИВЕДЕННЫМИ В ПОЯСНИТЕЛЬНОЙ ЭППИССЕ.

3 B THESTAGE BANG SHAVENAR MA Q OT BETPA DITIONING SHATTENING IT IN COT BEITH MONEYER SARAHA GENNA OF BETTH BROKE SARAHA HE APPRICABLE THE THE CHU HE ABJANTOS


4 g. Harpista or restporting to /HZ;

T [] 1955 r

13-01-06 . Нягрузри на фундаменты

BUNGET SHET 28

поправка

