типовой проєкт 903-1-159

КОТЕЛЬНАЯ с 4 котлами ДЕ-25-14гм отопительно -производственная система теплоснавжения - отурытая топливо - газ и мазыт

Aльбом W

16175-04 HEHA 2-34

ТИЛОВОЙ ПРОЕКТ 903-1-159 КОТЕЛЬНАЯ С 4 КОТЛАМИ ДЕ-25-14ГМ

ОТОПИТЕЛЬНО- ПРОИЗВОДСТВЕННАЯ. СИСТЕМА. ТЕПЛОСНАБЖЕНИЯ— ОТКРЫТАЯ ТОПЛИВО—ГАЗ И МАЗУТ

		מ	CTAB	TPOEKT	A :	
Альбом	1	АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЕ РЕШЕНИЯ		Aupeom	χV	МОНТАЖНЫЕ ЧЕРТЕЖИ
Альбом	иķ	КОНСТРУКЦИИ ЖЕЛЕЗОБЕТОННЫЕ		Anbedm	XVI	ОТОПЛЕНИЕ И ВЕНТИЛЯЦИЯ, ВОДОПРОВОД И
Альвом	11/2	СТРОИТЕЛЬНЫЕ ИЗДЕЛИЯ		Альбом	VVIII	KAHANUSALUN
Альбом Альбом	 V	МЕТАЛЛИЧЕСКИЕ КОНСТРУКЦИИ ПОЯСНИТЕЛЬНАЯ ЗАПИСКА, КОМПОНОВК А ОБОРУ-		רוטטטונו	XVII	ЗАКАЗНЫЕ СПЕЦИФИКАЦИИ.— ТЕПЛОМЕХАНИЧЕСКА Я САНИТАРНО-ТЕХНИЧЕСКАЯ ЧАСТИ
Mindri	17	ЛОВАНИЯ. ТРУБОПРОВОДЫ КОТЕЛЬНОЙ		Альбом	XVIII	ЗАКАЗНЫЕ СПЕЦИФИКАЦИИ.— ЭЛЕКТРОТЕХНИЧЕСКАЯ
Альбом	٧	ВОДОПОДГОТОВИТЕЛЬНАЯ УСТАНОВКА				ЧАСТЬ
Альбом	٧I	ГАЗООБОРУДОВАНИЕ.ПАРОМАЗУТОПРОВОДЫ КОТЕЛЬНОЙ		Альбом	XIX	ЗАКАЗНЫЕ СПЕЦИФИКАЦИИ—
Альбом	VII	КОНСТРУКЦИИ ИНДИВИДУАЛЬНОГО ИЗГОТОВЛЕНИЯ		•		АВТОМАТИЗАЦИЯ
Альбом	VIII	СИЛОВОЕ ЭЛЕКТРООБОРУДОВАНИЕ И ЭЛЕКТРООСВЕЩЕНИЕ		Альбом	XX	ТЕХНО - ЗКОНОМИЧЕСКАЯ ЧАСТЬ
Альбом	١X	СХЕМЫ ЧПРАВЛЕНИЯ ЭЛЕКТРОДВИГАТЕЛЯМИ		Альвом	XXI	СМЕТЫ НА СТРОИТЕЛЬНЫЕ РАБОТЫ
Альбам	X	ЩИТЫ СИЛОВЫЕ УПРАВЛЕНИЯ—		Альбом	XXII	СМЕТЫ НА ТЕПЛОМЕХАНИЧЕСКУЮ, ЭЛЕКТРОТЕХНИЧЕСКУЮ,
_		ЗАДАНИЕ ЗАВОДУ-ИЗГОТОВИТЕЛЮ			KHNFA 1 KHNFA 2	САНИТАРНО-ТЕХНИЧЕСКУЮ ЧАСТИ, АВТОМАТИЗАЦИЮ
Альбом	XI	СХЕМЫ ФУНКЦИОНАЛЬНЫЕ				KOTENHON
Альбом	XII	СХЕМЫ ЭЛЕКТРИЧЕСКИЕ ПРИНЦИПИАЛЬНЫЕ		Альвом	IX	CKNAA PEAFEHTOB. TO 903-1-153
Альб ом	XIII	КОТЕЛ ДЕ-25-14ГМ. ОБЩИЙ ВИД ЩИТА ОБЩИХ ЗАМЕРОВ		Альбом	XXIV	ЗАКАЗНЫЕ СПЕЦИФИКАЦИИ. ТП 903-1-153
Альбом	XIV	ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ ОБЩИЕ ВИДЫ ЩИТОВ УПРАВЛЕНИЯ		Альбом	XXIX	CMETH, TN 903-4-453

ПРИМЕНЕННЫЕ МАТЕРИАЛЫ:

TUNOBOÑ NPOEKT 907-2-215 TUNOBOÑ NPOEKT 704-1-51 ADMOBAS TPSEA H-60m, As-21m

СТАЛЬНОЙ ВЕРТИКАЛЬНЫЙ, ЦИЛИНДРИЧЕСКИЙ РЕЗЕРВУАР ДЛЯ НЕФТИ И НЕФТЕПРОДУКТОВ ЕМКОСТЬЮ 300 м.3

АЛЬБОМ IV

РАЗРАБОТАН ГПИ "САНТЕХПРОЕКТ" ПРОЕКТНЫМ ИНСТИТУТОМ N2 ЦНИИ ПРОЕКТСТАЛЬКОНСТРУКЦИЯ БАЯПРОМСТРОЙПРОЕКТА ГОССТРОЯ СССР ТРЕСТОМ ЮБМА ГЛАВМОНТАЖАВТОМАТИКИ МИНМОНТАЖСПЕЦСТРОЯ СССР

ГЛАВНЫЙ ИНЖЕНЕР ИНСТИТЧТА ГЛАВНЫЙ ИНЖЕНЕР ПРОЕКТА

института жилинун.и. шиллер ПРОЕКТА Тортану З. М. ЗАМАРИНА УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ ГПИ "САНТЕХПРОЕКТ" С 1 ИЮНЯ 1979г ПРИКАЗ N 75 ОТ 18 МАЯ 1979г

ЦЕНТРАЛЬНЫЙ ИНСТИТУТ ТИПОВОГО ПРОЕКТИРОВАНИЯ госстроя ссср

Москва, А-445, Смольная ул., 22

Сдано в печать 1979 года

Заказ № /0443 Тираж 500 экз.

	POPHAT	SHCT	<i>Няименовани</i> є	ПРИМЕЧЯНИ
	22	1	ОБЩИЕ ДЯННЫЕ (НЯЧЯЛО)	
	22	2	Общие дянные (продолжение)	
	22	3	Общие дянные "	
-	22	4	Общи Е ДЯННЫЕ	
HIIOOUL	22	5	Общие дянные "	
00	22	6	ОБЩИЕ ДЯННЫЕ	
2	22	7 ·	ОБЩИЕ ДЯННЫЕ	
	22	В	ОБЩИЕ ДАННЫЕ	
	7.2	9	Общие данные	
	22	10	Общие дянные ,,	
200-1-133	22	\mathcal{H}	ОБЩИЕ ДАННЫЕ	
	22	12	Общие дянные (окончание)	
,	22	13	МОНТЯЖНЫЙ ГЕНПЛАН	
5	22	14	Компоновка оборудования котельной	
	22		ПЛАН ПО 1-1. РАЗРЕЗ 5-5 (ВАРИАНТ 1)	
וובמבנוו	22	15	ТО ЖЕ. ПЛАН ПО 2-2. РАЗРЕЗЫ 3-3; 44 (ВАРИЯНТ 1)	
•	22	16	Компоновка оборудования котельной.	
ž			ПЛЯН ПО 1-1. РЯЗРЕЗ 5-5 (ВЯРИЯНТ 2)	
2	22	17	ТО ЖЕ.ПЛАН ПО 2-2. РАЗРЕЗЫ 3-3,4-4 (ВАРИАНТ 2)	
MICHOLIN	22	18	СХЕМЯ СОЕДИНИТЕЛЬНЫХ ТРУБОЛРОВОДОВ КОТЕЛЬНОЙ.	
	22	19	ОБЩИИ ВИД КОТЛОЯГРЕГАТА (ВЯРИАНТ 1)	
	22	20	TO ME. (BAPUAHT 2)	
	22	21	ТРУБОПРОВОДЫ КОТЛОНГРЕГАТА. ПЛАН по 1-1.	
			PA3PE361 3-3; 4-4	
	22	22	TO ME. PASPESON 2-2; 5-5	
	22	23	ТО ЖЕ. СПЕЦИФИКНЦИЯ	
	22	24	ТО ЖЕ.СХЕМЯ. СПЕЦИФИКАЦИЯ	
	22	25	ПАРОПРОВОДЫ КОТЕЛЬНОЙ. ПЛАН И РАЗРЕЗ 1-1	
	22	26	То ж.е. Рязрезы 2-2;3-3; 4-4 и спецификация	
\vdash	έċ	27	ТРУБОПРОВОДЫ СЕТЕВОЙ ВОДЫ И ГОРЯЧЕГО ВОДОСНЯБ -	
	П		ЖЕНИЯ .ПЛАН И РАЗРЕЗЫ 8-8; 9-9; 10-10	
	22	28	TO ME. PASPESSI 1-1; 2-2; 3-3; 4-4; 5-5.	
			Спецификация	
	22	29	То же. Спецификация	

POPMAT	Лист	Наименование	Примечание
22	31	ГРУБОПРОВОДЫ КОНДЕНСЯТЯ, ПИТЯТЕЛЬНОЙ ВОДЫ И	
		ЯТМОСФЕРНЫЕ. ПЛАН И РАЗРЕЗ 1-1	
22	32	TO ME. PASPESUL 2-2; 3-3; 4-4; 5-5; 6-6 M	
		спецификация.	
22	33	ТО ЖЕ. СПЕЦИФИКАЦИЯ	
22	34	ДРЕНЯЖНЫЕ И ПРОДУВОЧНЫЕ ТРУБОПРОВОДЫ	ar .
		КОТЕЛЬНОЙ , ПЛЯН. ЭЛЕМЕНТ ПЛЯНЯ НЯ ОТМ. 3, 600	
		PA3PE361 2-2: 5-5	4
ટર	35	ТО ЖЕ РЯЗРЕЗ 1-1. СХЕМЯ. СПЕЦИФИКАЦИЯ	
22	36	ГО ЖЕ. РАЗРЕЗ 6-6. СПЕЦИФИКАЦИЯ	

ВЕДОМОСТЬ ПРИМЕНЕННЫХ И ССЫЛОЧНЫХ ДОКУМЕНТОВ

ОБОЗНАЧЕНИЕ	Наименование	<i>ПРИМЕЧЯНИЕ</i>
СЕРИЯ 2.400-4 В.1	Детали тепловой изоляции	
	ПРОМЫШЛЕННЫХ ОБЪЕКТОВ С ПОЛО-	
	ЖИТЕЛЬНЫМИ ТЕМПЕРАТУРЯМИ.	
	TENNOBER HEADEN REGION REGIONAL	
CEPUS 2.400-4 B. 3	ТО ЖЕ. ТЕПЛОВАЯ ИЗОЛЯЦИЯ	
	ПРОМЫШЛЕННОГО ОБОРУДОВЯНИЯ	
CEPHA 3.903-5/73 B.1	ИЗОЛЯЦИЯ ТРУБОПРОВОДОВ НАДЗЕМ-	
	ной и подземной канальной	
	ПРОКЛАДКИ ВОДЯНЫХ ТЕПЛОВЫХ	
	CETEN, ПАРОПРОВОДОВ И КОНДЕНСАТО-	
	проводов. Теплоизоляционные	
	конструкции.	
CEPUR 4.903-10 B.8	ИЗДЕЛИЯ И ДЕТЯЛИ ТРУБОПРОВОДОВ	
	ДЛЯ ТЕПЛОВЫХ СЕТЕЙ, ГРЯЗЕВИКИ	
Пенинградский филиал	БАК ДЕДЭРАГОРНЫЙ V= 25 M 3	
HHCTHTYTA " ЭНЕРГОМОНТАЖ -	СБОРОЧНЫЙ ЧЕРТЕЖ	
TPOEKT "4EPT. 1186.05.000 CB.		
CEPUA 4.903-11 . B.1	Блоки деязрационно-питательных	
	YCTAHOBOK KOTENHHIX	
CEPNA 4.903-11 B.2	БЛОКИ СЕТЕВЫХ УСТАНОВОК	
,	КОТЕЛЬНЫХ	
CEPUR 4.903-11 B.4	Блоки централизованных устано-	
A 10	BOK FORMETO BOJOCHA & KEHUA	
	КОТЕЛЬНЫХ	
CEPUA 4.903-11 B.5	БЛОКИ ОБЩЕКОТЕЛЬНОГО ОБОРУДО-	
'	ВЯНИЯ КОТЕЛЬНЫХ.	

BEDOMOCTE OCHOBHEIX KOMNDEKTOB

0603HA4EH	NE	HAUMEHOBAHUE	ПРИМЕЧАНИЕ
		КОТЕЛЬНЯЯ	
903-1-159	AP	АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЕ ЧЕРТЕЖИ	Альбом I
903-1-159	кж	KOHCTPYKUUN MENEBOBETOHHBIE	Альбом <u>I</u> [1]1
903-1-159	кжи	Строительные изделия	Альбом 🔟
903-1-159	KM	МЕТАЛЛИЧЕСКИЕ КОНСТРУКЦИИ	Альбом III
903-1-159	TM	TENNOMEXAHUYECKRA YACTO	Яльбомь; <u>Т</u> ү÷ <u>Ті</u> ї
903-1-459	Э	ЭЛЕКТРОТЕХНИЧЕСКАЯ ЧАСТЬ	Rabeombi <u>VII</u> I÷X
903-1 -159	ATM	<i>АВТОМАТИЗАЦИЯ</i>	AAbbombi XI: XY
903-1-159	08	Отопление и вентиляция	Альбом ХУ
903-1-159	BK	Водопровод и канализация	AABBOM XXI

ТИПОВОЙ ПРОЕКТ 903-1 КОТЕЛЬНОЙ С ЧКОТЛЯМИ ДЕ-25-14 ГМ
РЯЗРАБОТЯН ПО ПЛЯНУ ТИПОВОГО ПРОЕКТИРОВЯНИЯ ГОССТРОЯ СССР
НЯ 1978 ГОД В СВЯЗИ С ПЕРЕХОДОМ ПРОМЫШЛЕННОСТИ НА ВЫПУСК НОВЫХ
КОТЛОВ СЕРИИ "ДЕ "И СНЯТИЕМ С ПРОИЗВОДСТВЯ КОТЛОВ ДКВР.
НЯЗНЯЧЕНИЕ ТИПОВОГО ПРОЕКТЯ-СТРОИТЕЛЬСТВО КОТЕЛЬНЫХ НЯ ТЕРРЙТОРИИ
ПРОМЫШЛЕННЫХ, КОММУНЯЛЬНО-БЫТОВЫХ И СЕЛЬСКО-ХОЗЯЙСТВЕННЫХ ПРЕАПРИЯТИЙ, ТЕПЛОСНЯБЖЕНИЕ ЭТИХ ПРЕДПРИЯТИЙ, В ТЯКЖЕ ПРИЛЕГЯЮЩИХ К НИМ РЯЙОНОВ ЖИЛОЙ ЗЯСТРОЙКИ.
ВЫПОЛНЯЕТСЯ Е ТИПОВЫХ ПРОЕКТЯ ЗДЯНИЯ КОТЕЛЬНОЙ: ТП 903-1

СБОРНЫХ ОБЛЕГЧЕННЫХ МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ (ВАРИАНТІ) ТЛ903-1 ИЗ СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ (ВАРИАНТ 2). РАЗМЕЩЕНИЕ ОБОРУДОВАНИЯ И ТРЯССИРОВКА ТРУБОПРОВОДОВ ПРИНЯТА ЕДИНОЙ ДЛЯ ОБОИХ ТИПОВЫХ ПРОЕКТОВ.

NPN PROPRETIKE THROBOTO RPOEKTA KOTERBHON RPNMEHEHBI HOBBIE TEXHOROLUYECKUE PEWEHUA:

1.КОМПОНОВКА ОБОРУДОВАНИЯ КОТЕЛЬНОЙ РАЗРАБОТАНА С ПРИМЕНЕНИЕМ ТРАНСПОРТАБЕЛЬНЫХ СТРОИТЕЛЬНО-МОНТАЖНЫХ БЛОКОВ ПО СЕРИИ 4.903. 11, ИЗГОТОВЛЯЕМЫХ СИЛАМИ МОНТАЖНЫХ ОРГАНИЗАЦИЙ.

<u> </u>								
					TN903-1-159	ТМ	1	
N311 /	WCT	N AOKYM.	подп.	QATA	Котельная с ч котлами	AE-25	14 rm	,
IN.HH	I. TP.	Зямарина	My		:	JIHT.	SINCT	ЛИСТОВ
TA.CI	ТЕЦ.	Зиль6 грштен Гаврилова	Jak.	_		P	1	36
HCNO.	MH.	Якшинский Яровая Наумов	21.060		ОБЩИЕ ДЯННЫЕ (НЯЧАЛО)	CAH	TEXIL	OEKT

ТИПОВОЙ ПРОЕКТ РАЗРАБОТАН В СООТВЕТСТВИИ СДЕЙСТВУЮЩИМИ ОРМАМИ И ПРАВИЛЯМИ И ПРЕДУСМАТРИВАЕТ МЕРОПРИЯТИЯ, ОТОТ ЗУИВ ПЮЩИЕ ВЗРЫВНУЮ, ВЗРЫВОПОЖАРНУЮ И ПОЖАРНУЮ БЕЗОПАСНОСТЬ ПРИ ЭКСПЛУАТАЦИИ ЗДАНИЯ

SAABHOIN NHMEHEP APUEKIA

MMM. 3AMAPHIIA /

KODMP. TEPEN

16175-04 3

POPMAT 22

2.Установка блоков осуществляется на ускленный пол без фундаментов. З. МОНТАЖ ТЕПЛОМЕХАННЧЕСКОГО ОБОРУДОВАННЯ И ТРУБОПРОВОДОВ КОТЕЛЬНОЙ, А TAKWE KAPKACA SAAHHA H OFPAMAAHOWHX KOHCTPYKUHH MOMET BUROAHATCA OLHOH CREUHANHSHPOBAHHON MOHTAWHON OPFAHHSAUHEN.

PHMEHENHE BAOKOB OBOPYAOBAHMA ROSBOARET ROBLICHTL CTERENL HHAYCTPHAAMSA-LINN MONTAMHUX PAGOT H, KAK CAEACTBHE, SHAYHTEABHO COKPATHTE CPOKH CIPON-TEALCIBA. KOTEALHAR TREAHABHANAETCR AND TETALOCHAB MEHHA TOTPEBHTEAEH II KATEFOPHH CHCTEM OTONNEHHA, BEHTHNAUHH, FOPA 4EFO BONOCHAGMEHHA MHALIX, OBMECTBEHHUX H PROMEMAENHUX BAAHHA H TEXHONOPHYEEKHX POTPEBHTENER. Область применения - районы с расчетной температурой наружного воздуха MHHYC 20°C MHHYC 30°C, MHHYC 40°C.

B KAYECTBE CCHOBHE O TURNHER RPHHRT RPHPOAHHA TA3 (OF = 8500 KKAN HH), PEDEPENDED-MANTIQ -9300 KKPA/KE).

CHCTEMA TERMOCHAEMENNA - OTHENTAS.

TERADHOCHTEAH!

- -BUCOKOTEMNEPATYPHAR BODA C &: 150-70°C HA HYMAU OTONAEHHA, BEHTH-ARUHH H FOPRYEFO BOJOCHABMEHHA;
- -HACHWEHHHIN NAP C PPAG = TKrc/cm2 HA TEXHONOTHUECKHE HYMAH. PACYETHLIE TERMOBLE HAPPYSKH 8 % OF OTHYCKAEMORD TERMA:
- A OTORAEHHE H BEHTHARUHA
- 6) TOPAYEE BOLOCHAG MEHHE
- B) TEXHONOTHYECKOE MAPOCHAGMENHE 25%.

CONPOTHBARHE BHEWHER TERMOBOR CETH- 50M BOACT. AABARHE & OBPATHOM TPYBONPOBOAE -25M BOACT. KONAEHCAT OT NOTPEBHTENEH TEXHONOCHYECKO-TO MAPA - HAMDPHON, B KONHYECTBE 50% OF OTHYCKAEMOTO KONHYECTBA MAPAMA TEXHONDIHIO. TEMPEPATYPA BOSBPAWAEMOID KOHAEHCATA-80°C. HAPOP. -2011 SOACT HAROP HEXOLHOH BOALL-25 M BOALT. HETOYHHK BOACCHAB ME-

HHA - BOAA XO3AHCTBEHHO - AHT 6 EBOTO BOAOAPOBOAA.

*) 34EC6 H DANEE YKASHBAETER ABCONFOTHOE DABAEHHE. OCHOBHUE TOKASATEAH KOTEABHOH YCTAHOBKH AAR PAHOHOB C PACYETHOH TEMпературой наружного воздуха минус 30°С/приведены в таблице 1.

	PACYETHAS HOH, FI	YCTAHOBAEI HAR MOU -				
РАСЧЕТНЫЙ РЕЖИМ	PACXON TENM HA OTONAE- HHE H BEH- THARUHHO	AA HA FOPA- 488 8040 -	NA HA TEX- HONOCHUEC-	PACKOA	HOCT & JAEKT PORBHEATE- AEÑ , K BT	
МАКСИМАЛЬНО-ЗИМНИЙ	35,08	5,4	13, 5	53,98		
HAHBONEE XONOQHOFO MECRUA	20,2	5.4	13,5	39,1		
<i>ЛЕТНИЙ</i>	-	3,54	13, 5	17.04		

KPATKHE CBEAEHHA NO HOTEABHOÙ

B KOTEALHOÙ YCTAHABAHBAETCH 4 KOTAA DE-25-14 [M OPOH3BOACTBA BHÜCKOFO KOTEABHOTO JABOLA TEXHHUECKAA XAPAKTEPHCTHKA KOTAA TIPHHHMAETCA TO TY 108-739.78. B KOTNOASPESAT BYOGHT: WHAHBHAYANGHGIN SKOHOMAN3EP 3N1-808 NO OCT 24.271.30.74; AUMOCOC THNA LH-12.5; AYTHEBOH BEHTHARTOP BAH-11.2 MARKETALLHA KOTAA AE-25-14 M ALIMOCOCOM H BEHTHARTOPOM PHHATA B эргветствин с "Комплектацией водогрейных и паровых котлов производи- τ ельностью до 75 au/v'', утвержденной Госстроем СССР и auехническим YRPABAEHHEM MHH3HEPFOMAWA CCCP.

ПРОЕКТ РАЗРАБОТАН ИСХОДЯ ИЗ ПРИНЦИПА БЛОЧНОЙ И КОМПЛЕКТНОЙ ПОСТАВ-KH OBOPYAOBAHHA KOTEABHON. HHME B TABANUE 2 APHBOANTER REPEYEHG BAO-KOB OFORYAOBAHHA, APHHATHIX B APOEKTE.

TABAHUA	2
---------	---

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Наименование	ДНАПОЗОН ПРИ МЕНЯЕМОСТ Н
КРУПНО-БЛОЧНАЯ ДЕАЗРАЦНОННО-ПНТАТЕЛЬНАЯ УСТА	20÷120
HOBKA KEANY-100-120, 7/4	1-0
KPYNHO-BAOUHAA YCTAHOBKA FOPAUETO BOLOCHAB-	20 ÷ 120
WEHHA KESIB- 100 , T/Y	
BAOK HACOCOB TOPAUETO BOAOCHAEMENNA EMT8-65/224	
A) MPOH380AHTEABHOCTS , M3/4	65÷224
6/ HAROP , M BOA. CT.	61 ÷ 45
BAOK MODOSPEBATENEH CETEBOH BODL BACE - 29, TRANTY	5 ÷ 29
BAOK MODOLDEBATENEN CETEBON BOLL BUILD - 14, [KAN 4	5 ÷ 14.5
DAOK CETEBUX HACOCOB 5CH-180 650;	
A) POH 380 AHTE A CHOCT 6, M3/4	180+650
6 HAROP , M 804.CT.	80 ÷ 64
BAOK PEANKUHOHHOH YCTAHOBKH BPY-60, T/Y	60
BAOK CERAPATOPA HERPEPHIBNOÑ RPOGYBKK BCHR-3005, T/4	2,5 ÷ 6
BAOK XONOAHABHHKA OTBOPA NPOB BXON-0,45	_

BHE 3AAHUR KOTEABHOÙ YCTAHOBAEHBI BAKH AKKYMYARTOPHBIE V: 300m3 NO THROBOMY PROEKTY 704-1-51.

ВОДОПОДГОТОВКА ПРЕДНАЗНАЧЕНА ДЛЯ ПРИГОТОВЛЕНИЯ ВОДЫ, ИДУЩЕЙ НА NHTAHHE NAPOBELL KOTAOB H NOANHTKH TENAOCETH. AAR OBPABOTKH BOALL B NPOEKTE NPHHATA CXEMA BOLOPOL-KATHOHHPOBAHHA C " FONOLHOH PEFEHE-PAUNEN", C BY PEPHEMH PHASTPAMH, REKAPBOHH3AUHR B REKAPBOHH3ATOPE W DEASPAUHA & TEPMHYECKOM DEASPATOPE. LAR DOGABKA MUTATEALHOÑ BODL TAPOBLIX KOTADS - ROCAE LEKAPBOHUSALHW LBYXCTYREHYATOE HATPKA - KATHOHK POBAHHE C NOLWENAYHBAHHEM H LEASPAUHR B TEPMHYECKOM LEASPATOPE. DEWHE AAHHUE H PAGOUNE VEPTEWH BOLONOLLOTOBKH PHBELEHU B

FASOPETYARTOPHAR YCTAHOBKA TPEZHASHAYEHA JAR CHHMEHHA JABAEHHA FASA C P= 3+6Krc/cm2 HA ABBEHHE O.4Krc/cm2 HEOBX DAHMOE B TASOMASYTHIN TOPENKAX. ОБЩИЕ ДАННЫЕ И РАБОЧНЕ ЧЕРТЕЖИ ГАЗООБОРУДОВАНИЯ КОТЕЛЬНОЙ И МАЗУТО-CHAGMEHUE KOTAOB TIPHBELEHU B AALGOME VI.

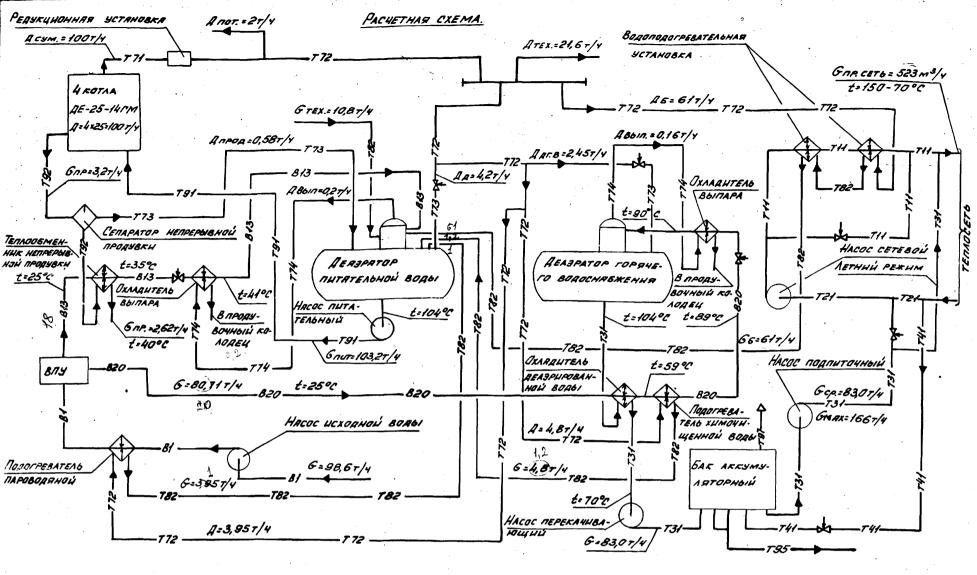
TENAOBAA CXEMA

TENNOBOÙ CXEMOÙ NOTENHOÙ NPEANCMOTPEN OTNYCK NAPA TEXHONOCHUECKHM NOTPE. EHTENAM AABNEHHEM TRICOM " NEPERPETON BOAL 150-70°C HA OTONNEHHE. BEHTHARUHHO, FOPRYEE BOJOCHABMEHHE.

NAPOBEMH KOTNAMH BEPABATEBAETCA NAP ABBEHHEM 14KIC/CM2 KOTOPEH PEAN. UHPYETCA DO DABAEHHA TKre/cm? YACTO NAPA, HQYWETO HA MAZYTHOE XOSAÑCTBO PEDULHPUETCH DO LABAEHHA 10krc/cm² PEDUKUHOHHLIM PRUMHHHLIM KAARAHOM. CXEMON TREASCMATPHBAETCA PERSANDOBANNE TEMPERATSPH CETEBON BOOM TO TEMMEPATYPE HAPYMHOTO BOSAYXA MYTEM MOLANH YACTH OFPATHOH CETEBOH 80. DU HENOCPEACTBEHHO B TENAUCETS, NOMHMO NOAOIPEBATEAEH.

ANR MOANHTKH TEMADBON CETH MPH OTKPHION CHCTEME TEMADCHASMEHHR HONDAL. SYETCH BAONHAR YCTAHOBKA FORRNERO BOZOCHABWEHHR. PYHKUHO ROZONTONHOK HACOCOB OCYMECTBARIOT HACOCH FOPRYETO BOAOCHABMEHHR.

YCAOBHUE OGOSHAYEHHA TPYGONPOBOAOB


	БУКВЕННО - 41 0503 Н Я	
HAHMEHOBAHHE	MPHHATOE B MPOEKTE	
ТРУБОПРОВОД ГОРАЧЕЙ ВОДЫ ДЛЯ ОТОПЛЕНИЯ И		
вентиляции подающий	711	<u>—13</u> —
ТРУБОПРОВОД ГОРЯЧЕЙ ВОДЫ ДЛЯ ОТОПЛЕНИЯ Н		
ВЕНТНЛЯЦИИ ОБРАТНЫЙ	721	 13
Трубопровод горячей воды для горячего водо-		
СНАБЖЕНИЯ ПОДАЮЩИЙ	731	-14-
Трувопровод горячей воды для горячего водо-		
СНАБЖЕННЯ ЦНРКУЛЯЦНОННЫЙ	741	-14-
TPYSOMPOBOR MAPA. PPAS: 10:14 Krc/cm2	771	-01-
TPYBONPOBOR NAPA. PPA= = 7 Krc/cm 2	712	02-
TO ME . PPAS: 3: 1.2 Krc/cm2	773	— 03 —
TPYSONPOSOA 86INAPA	774	-1/-
TPYGORPOBOD KOHAEHCATA. PPAG : 14 Krc/cm2	T81	-06-
TO ME. PPAB. = TKrc/cm2	782	-06-
-11- PPAS. = 2 KFE/CM2	T83	-06-
ТРУБОПРОВОД ПИТАТЕЛЬНОЙ ВОДЫ	791	-04-, -05
Трубопровод непрерывной продувки	792	08
Трубопровод пернодниеской продувки	7 93	-09-
Трубопровод дренажный напорный	<i>T95</i>	12-
Трубопровод дренажный безнапорный	796	-12-
ТРУБОПРОВОД АТМОСФЕРНЫЙ	T.97	-10-
ТРУБОПРОВОД ПАРОВОЗДУШНОЙ СМЕСН	T98	-11-
TPYGORPOBOA BOASI ROCAE NA-KATHOHUTHSIX	·	
PHASTPOB I CTYTENH	B 13	-20-
TPYSONPOBOA BOALI NOCAE AEKAPSOHHBATOPA	B 20	19
Водопровод хозянственно-пнтьевой	81	15

В ЛЕТНИЙ ПЕРИОД НАСОСЫ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ ВЫПОЛНЯЮТ ФУНКЦИЮ CETEBUX HACOCOB.

SANHUE TERMOBORO PACYETA SAR MAKCHMANDHO-3HMHERO PEMHMA RPHBESE-HU B PACUETHON CXEME (TORNHOD-FA3) HA NHCTE 3.

•				
TN 903-1-1	59	TI	M 1	
MINOT NAOKSM. NOAM. GATE KOTEABHAR C 4 KOTA	AMH ,	QE-2.	5-14 FN	,
HHM.DA JAMAPHHA Jaccay		AHT.	AHET	AHCTOB
V.OTA. SHALEFPUTERY LCG		P	2	36
THEY TABPHAOBA 144			<u> </u>	
K. P. THWHHCKHIN - 42 - DEWILL CONVILLE	-	carr	ד כע מכ	me ut
PROPERTY LANGE WHITH BEET	: 1		T EX NF	
HONN HAYMOB HONN 1273 (MFOLON MEHHE)	/	./	MOCK	84
15/75 011				

DODMAT 22

COCTAB U YUCNEHHOCTO NEPCOHANA KOTENDHOW.

7 Ng /

651-1

TABAUGA 2

	KONH	HECT80	EF	PYNNA NPO-		
Должность	BCECO	O B TOM HUCKE NO CMEH.			H880ACTBEN- Hbix Menuse	
		7	1	<u>I</u>	C08	
HAYANGHUK KOTENGHOL	1	1	-	-	<i>I</i> 6	
CTAPLULL MAWUHHET	4	1	1	1	Ţσ	
MALLIHHET	4	1	1	1	<u>T</u> 5	
СЛЕСАРЬ ПО РЕМОНТУ И ОБСЛУ- ЖИВАНИЮ ОБОРУДОВАНИЯ	4	1	1	1	Is	
JAEKT POMONTEP .	4	1	1	-21 <u></u>	I s	
MPH60PHCT	1	1	_		I6	
XLIMUK-NAGOPAHT	1	1.		_	<i>I</i> 5	
ANNAPATHUK BODONOBIOTOBKU	4	1	1	1	15	
450PULLUA	2	2	_	_	_	
Utoro:	25	10	5	5		

L'UCNEHHOCTO REPCOHANA RPUHRTA US YCNOBUÚ PACRONOMEHUR KOTENDHOÚ HA · ЩАЯТ ПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ. В 4ИСЛЕННОСТЬ ЭКСПЛУАТАЦИОННО-MEPCOHNAR HE BEAMULEHON:

A PASOUNE NO NPHEMY W PASIFYSKE MABYTA;

5) TEPCOHAN, 3AH9T6IÚ KOMMEPHECKUMU PACHETAMH TIPH OTTUSCKE TETAM CTOPOHHUM

OPFAHUSALUAM;

B) PASOUNE, OCYMECTBARIOM HE MARNOSO- PRELYPREAUTEACHOIL H KAMHTAACHOIL

I) REPCOHAN NO SKERNYATAYNU TERNOBBIX CETEN.

OXPAHA MPUPOAHI.

Паним из мероприятий по предотвращению вредного влияния выбросов US KOTENDHOU, ABARETCA OSECHEHUE ONTUMANDHOÙ BOICOTOL ADIMOBOÙ TRYSOL. ADIMOBAR TPYEA, TPUHRTAR & TPOEKTE BUCOTON H-60M, ANAMETPON BUKORHOTO OTBEPCTUA TPYESI 2,1 M/TUNOBOÙ NPOERT 907-2-215/, OBECNEUUBAET KONGENTPA-LIN BPEAHOIX BELLECTS & SXOARLLINX TABAX HUME TPEAEAGHO AONSCTHMOÙ KOHUEHTPAUUN, YCTAHOBAEHHOÙ CH369-74. AUAMETP BOXOAHOTO OTBEPCTUA TPY-SOI OFFERENEH US YCAOBUN OFTHMANOHOIX CHOPOCTEN TASOB IN CTATUYECHOTO ARBAEHUR HA CTEHKU ALIMOBOÚ TPUSLI AAR PEKUMA NPU CPERHEÚ TEMNEPATYPE CAMOTO XONOGHOTO MEERUA. PESYNETATE PACUETA REIMOBON' TPYSE, BEINONHEHHOTO C STETOM POHOBOL KONGENTPAGNU BPERHOIX BEWEETS & ATM DEPERE RO 0,2 mr/m3, TPUBEREHOI B TAGANGES

POEKTOM ПРЕДИСМОТРЕНЫ МЕРОПРИЯТИЯ ПО ОЧИСТКЕ ЗАМАЗИЧЕННЫХ CTOUNDIX BOA MADILAREN (CM. PASAEN ,, BOADMPOBOA H KAHANUSAYUR" ANGEOM XVI).

HAUMEHOBAHUE	PESYAGTAT PACHETA
РАСХОД ТОПЛИВА КОТЕЛЬНОЙ, Т/4:	
А) МАКСИМАЛЬНЫЙ	6,5
б) минимальный	2,08
TEMPERATURA UXOARMUX TABOS, °C	172
Температира окрижающего воздика, "С	-30 "
CERSHAHOW OFFEM ALIMOBULE (A308, M3/C:	1
A) MAKCUMANGHOIÚ	45
5) минимальный	14,3
CROPOCTO BOIXOAA FA30803A4WHOÙ CMECH, H3 4CTOA, M/C:	
A) MAKCHMANOHOLU	13
Б) МИНИМАЛЬНЫЙ	4,15
Содержание серы в топливе на рабочую массу, %	3,5
KOSPPULUENT, SABUCALLUÍ OT TEMNEPATYPHOÙ CTPA-	
THOURALLH ATMOCOEPSI, CES.MI. IPAR 13/	160
Каэффициент, учитывлющий скорость оседяния	
BPEANOIX BELLECTS & ATMOCPEPHOM BOSANIE	1
KOSPPULLIENTEI, YYNTEIBAIDILLIE YCAOBUR BEIXOAR TASOBOS-	0,99
AYWHOÙ CMECH H3 BHIXOAHATO ATBEPCTUR TPYSHI	1
CONHUECTER OFHICADE CEPHI, BUIEPACHBAEMHIX & ATMOC-	
PEPS C ASIMOBBIMU TASAMU, T/C	124
MAKCUMAABHAA TIPUSEMHAA KOHUEHTPAUHA OKUCAOB	
CEPH C YUETOM POHOBOU KOHUEHTPAUHU, Mr/m3	9,463
Коэффициент, характеризующий выход окислов	
ASOTA HA IT CHULAEMOLO TOUVARA, ELLAST	4,8
Коэффициент, учитывающий влияние на выход окис-	
108 A30TA KA4ECTBA CXHFAEMOFO TORNHBA	1
CONUMECTEO OKUCNOS CEPHI, BHISPACHIBAEMHIX & ATMOC-	
PEPY ALIMOBLIMU TABAMU, T/C	1,96
MAKCHMANGHAR TIPUSEMHAR KOHUEHTPAUHR OKHCAOS	
430TA, Mr/m3.	0,00413
DESPASMEPHAR CYMMAPHAR KOHUEHTPAUUR	

TAGAU4A3

				TN 903-1-459	TI	41	,
BM. AUCT	N BOKYM	Подпис	AATA	KOTENBHAR C 4 KOTAAMH RE	-25-14	IFM	-
A.HHX. AP. HAY OTO.	ЗАМАРИНА ИЛЬБЕРИТЕЙН	Berrafs			AHT.	AHET	METOB
A. SHEU	TABPUAOBA	D			م	3	36
HENOAM!	AKWUNCKUU APORAS HASMOB	34218	11.78	Общие данные (продолжение)	CAH	TEXTE	OEKT
Kanupos	DEMILITARA			10175 011 5			

POPMAT 221

ГРУЗОПОДВЕМНЫЕ УСТРОЙСТВА.

ДЛЯ ПРОИЗВОДСТВА РЕМОНТНЫХ РАБОТ В КОТЕЛЬНОЙ ПРЕДУСМОТРЕНЫ ТЯЛИ РУУ-НЫЕ ПЕРЕДВИЖНЫЕ ЧЕРВЯЧНЫЕ: НАД БЛОКАМИ ПОДОГРЕВАТЕЛЕЙ СЕТЕВОЙ ВОДЫ, НАД БЛОКАМИ СЕТЕВЫХ НАСОСОВ И ДЫМОСОСАМИ

OXPAHA TPYAA.

ДЛЯ БЕЗОПАСНОГО ОБСЛУЖИВАНИЯ ОБОРУДОВАНИЯ В КОТЕЛЬНОЙ ПРЕДУСМОТРЕНЫ СПЕДУЮЩИЕ МЕРОПРИЯТИЯ:

- A) ТЕПЛОВЫ ДЕЛЯЮЩЕЕ ОБОРУДОВАНИЕ И ТРУБОПРОВОДЫ ИЗОЛИРОВАНЫ (ТЕМПЕРАТУРА НА ПОВЕРХНОСТИ ИЗОЛЯЩИИ $440\,^{\circ}\mathrm{C}$);
- Б) В СООТВЕТСТВИИ С ТРЕБОВАНИЕМ ОСТОРТЕХНАДЗОРА СССР ТРУБО ПРОВОДЫ ДОЛЖНЫ БЫТЬ МАРКИРОВАНЫ ПО ОКРАСКЕ, ПОКАЗЫВАЮЩЕЙ НАЛИЧИЕ ДЯННОЙ СРЕДЫ;
- В) ВРАЩАЮЩИЕСЯ ЧАСТИ ОБОРУДОВАНИЯ ОГРАЖДЕНЫ;
- Г) ОСНАЩЕНИЕ НАГЛЯДНЫМИ ПЛАКАТАМИ ПО БЕЗОПАСНОСТИ ОБСЛУЖИВАНИЯ ОБОРУДОВАНИЯ ;
- Д) СТАЦИОНАРНОЕ И МЕСТНОЕ ОСВЕЩЕНИЕ ДЛЯ ОБСЛУКИВАНИЯ ОБОРУДОВАНИЯ.

 КОТЛОАГРЕГАТЫ И ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ ОСНАЩЕНЫ НЕОБХОДИМЫМИ СРЕДСТВАМИ ЗАЩИТЫ, ОТКЛЮЧАЮ ШИМИ КОТЕЛ ПРИ АВАРИЙНЫХ СИТУАЦИЯХ И
 ОСУЩЕСТВЛЯЮЩИМИ ЗВУКОВУЮ СИГНАЛИЗАЦИЮ ОТКЛОНЕНИЯ ТЕХНОЛОГИЧЕСКИХ
 ПАРАМЕТРОВ ОТ НОРМЫ.

ДЛЯ КОТЕЛЬНОЙ ПРОИЗВЕДЕН АКУСТИЧЕСКИЙ РАСЧЕТ ШУМА, СОЗДАВАЕМОГО 050-РУДОВАНИЕМ КОТЕЛЬНОЙ СОГЛАСНО СНИ П. 12-77. С ЦЕЛЬЮ СНИЖЕНИЯ ШУМАВ ПО-МЕЩЕНИИ КОТЕЛЬНОЙ ПРИМЕНЯЮТСЯ ВИБРОДЕМП ФИРУЮЩИЕ МАТЕРИАЛЫ ТИПА ВД-17-59 ДЛЯ ПОКРЫТИЯ КОЖУХО В ДУТЬЕВЫХ ВЕНТИЛЯТОРОВ И НАСОСОВ. КРОМЕ ТОГО ПРЕДУСМОТРЕНА УСТАНОВКА ВЕНТИЛЯТОРОВ НА ВИБРООСНОВАНИИ

Указания по привязке ТЕПЛОМЕХАНИЧЕСКОЙ ЧАСТИ ПРОЕКТА.

ПРИ ПРИМЕНЕНИИ ТИПОВОГО ПРОЕКТА СЛЕДУЕТ РУКОВОДСТВОВАТЬСЯ УКАЗАНИЯМИ
ИНСТРУКЦИЕЙ СН 202-76.

2. В СЛУЧАЕ ИЗМЕНЕНИЯ ПРИНЯТОГО В ПРОЕКТЕ СООТНОШЕНИЯ РАСХОДОВ ТЕПЛОНОСИТЕЛЕЙ ДОЛ-ЖЕН БЫТЬ ПРОВЕДЕН ПЕРЕРАСУЕТ ТЕПЛОВОЙ СХЕМЫ, ПРИ ЭТОМ ПРОВЕРЯЕТСЯ ПРИМЕНЯЕМОСТЬ ОТДЕЛЬНЫХ УЗЛОВ И ОБОРУДОВАНИЯ БЛОКОВ, И СООТВЕТСТВЕННО КОРРЕКТИРУЮТСЯ ЭАКАЗ-НОГЕ СПЕЦИФИКАЦИИ. БЛОКИ ОБОРУДОВАНИЯ, ПРЕДУСМОТРЕННЫЕ ДАННЫМ ПРОЕКТОМ, МОГУТ БЫТЬ ЗАМЕНЕНЫ НА БЛОКИ ДРУГИХ ПРОИЗВОДИТЕЛЬНОСТЕЙ, ИМЕЮЩИЕСЯ В УНИФИЦИ-РОВАННОЙ СЕРИИ БЛОКОВ.

3. Количество котлов определяется из условий покрытия Заданных тепловых нагрузок в соответствии с гребованиями, изложенными в сни Π_{i}^{T} -35-76. 4. Типы насосов сетевых, подпиточных и горячего водоснабжения следует уточнять в соответствии с расходами воды и пьезометрическим графиком тепловых сетей. При изменении нагрузок на горячее водоснавжение проверяется емкость баков аккумуляторов в соответствии с графиком потребления горячей воды и требованием СНи Π_{i}^{T} -36-73.

- 5 ВЫСОТА ДЫМОВОЙ ТРУБЫ В ЗАВИСИМОСТИ ОТ МЕСТНЫХ УСЛОВИЙ УТОЧНЯЕТСЯ В СООТВЕТСТВИИ С СН 369-74 и СН 245-71.
- 6. При расположении котельной не на территории промышленных предприятий в ее составе дойжна предусматриваться ремонтная мастерская с необходимым оборудованием и соответствующим персоналом.
- . В НУГРИПЛОЩАДОЧНЫЕ ИНЖЕНЕРНЫЕ КОММУНИКАЦИИ: ВОДОПРОВОД, КАНАЛИЗА-ЦИЯ, А ТАКЖЕ ГЕНЕРАЛЬНЫЙ ПЛАН-РЕШАЮТСЯ КОНКРЕТНО ПРИ ПРИВЯЗКЕ ПРОЕКТА.

8. Параметры пара, вырабатываемого котлами, позволяют осуществить переход на повышенный температурный график работы тепловой сети $470^{\circ}70^{\circ}$ С. Для этого следует учитывать следующее:

- А) ПАРОВОДЯНЫЕ И ВОДОВОДЯНЫЕ ПОДОГРЕВАТЕЛИ, АРМАТУРА И ТРУБОПРОВОДЫ ДОЛЖНЫ БЫТЬ УСТАНОВЛЕНЫ С РАСУЕТНЫМ РАБОЧИМ ДАВЛЕНИЕМ ПО ПАРУ И КОНДЕНСАТУ $P \ge 14$ krc/cm² и на подводе сетевой воды с давлением $P \ge 16$ krc/cm².
- 5) ПОДПИТОЧНЫЕ НАСОСЫ ДОЛЖНЫ УСТАНАВЛИВАТЬСЯ С НАПОРОМ, ИСКЛЮ-ЧАЮЩИМ ВСКИПАНИЕ ВОДЫ В СЕТИ;
- В) ТРУБОПРОВОЯ Ы ВОДОПОДОГРЕВАТЕЛЬНОЙ УСТАНОВКИ ВЫПОЛНЯНОТСЯ С УЧЕТОМ КОМПЕНСАЦИИ ТЕПЛОВЫХ УДЛИНЕНИЙ ДЛЯ УСЛОВИЯ ТЕПМЕРАТУР 170°-70°С
- 9. BAPOEKTE APERYCMOTPEHLI TPYSOAPOBORLI, PACCYUTAHHLIE HA YCAOBHE BE-LEHUR MOHTAWHLIX PAGOT APU TEMAEPATYPE HAPYWHOLO BOBLYXA HE HUWE MUHYC 30°C. APU TEMAEPATYPE HAPYWHOLO BOBLYXA HUWE MUHYC 30°C COPTA-MEHT M MATEPUAALI TPYS LOAWHLI KOPPEKTUPOBATLOR

TEXHUYECKUE TREBOBAHUR NO TRYBONROBOLAM.

- 1. MONTAX BENOMOFATEALHUX TPYSONPOBOAOB, HE YKASAHHUX HA YEPTEXAX, HO
 NPUBEAEHHUX B CXEMAX, NPOBOAUTU NO MECTY, APMATYPY YETAHABAHBATU B
 MECTAX YAOGHUX AAR EE OBENYKUBAHUR.
- 2. ВСЕ ТРУБОПРОВОДЫ ПОСЛЕ СВАРКИ И ПРИВАРКИ ШТУЦЕРОВ ДЛЯ КИП И АВТОМАТИКИ ДОЛЖНЫ БЫТЬ ПОДВЕРГНУТЫ ГИДРАВЛИЧЕСКОМУ ИСПЫТАНИЮ ПРОБНЫМ ДАВЛЕНИЕМ РАВНЫМ 1,25 ОТ РАБОЧЕГО ДАВЛЕНИЯ В СООТВЕТСТВИИ С ТРЕБОВАНИЕМ ПРАВИЛ, УСТРОЙСТВА И БЕЗОПАСНОЙ ЭКСПЛУАТАЦИИ ТРУБОПРОВОДОВ ПАРА И ГОРЯЧЕЙ ВОДЫ ГОСГОРТЕХНАДЗОРА СССР
- 3. ПРИ РАЗРАБОТКЕ ДЕТАЛИРОВОЧНЫХ ЧЕРТЕЖЕЙ ТРУБОЛРОВОДОВ ПРИМЕНЯТЬ:

 A) МАТЕРИАЛ ТРУБ ПО ГОСТ 10704-76, ГОСТ 8734-75, ГОСТ 8732-70, ГОСТ 3262-75
 СТАЛЬ МАРКИ ВСТЗ ПС 5 (ГОСТ 380-71), МАТЕРИАЛ ТРУБ ПО ГОСТ 9941-72
 СТАЛЬ МАРКИХ21Н5Т ИЛИ Х22Н6Т.
- Б) МАТЕРИАЛ ДЕТАЛЕЙ ТРУБОПРОВОДОВ ПОГОСТ17375÷ГОСТ17379-СТАЛЬ МАР-КИ 20 / ГОСТ 1050-74)
- B) МАТЕРИАЛ ФЛАНЦЕВ ПО ГОСТ 12830-67- СТАЛЬ МАРКИ В СТ. 3 СЛ. (ГОСТ 380-74);
- r) материал болтов по гост 7798-70- сталь марки 20(ГОСТ 1050-74);
- A) MATERNAN FAEK NO FOCT 5915-70 CTANA MARKN10 (FOCT 1050-74);
 E) MATERNAN NROKNAAOK NO FOCT 15180-70 NAPOHNT NOH (FOCT Y81-71);
- 4. 3AAAHAE HA YAMA KAENNEHNA TAYSONDOBOQOB NAMBELEHA B ANGOME VII.
- 5. Трубопроводная арматура в проекте принята в соответствии с рекоменпациями, согласованными с Союзглаварматурой 26 июня 1978г.

MODERA NOT THE RUHABOLY OF THE RESERVENT

ПРОЕКТОМ ПРЕДУСМОТРЕНА ТЕПЛОВАЯ ИЗОЛЯЦИЯ ОБОРУДОВАНИЯ, ТРУБОПРОВОДОВ И АРМАТУРЫ. В КАЧЕСТВЕ ОСНОВНОГО ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА ПРИНЯТЫ:
А) ПЛИТЫ ТЕПЛОИЗОПЯЦИОННЫЕ МЯГКИЕ ИЗ МИНЕРАЛЬНОИ ВАТЫ ГОСТ 9573-72,

Б) ПОЛНОСБОРНЫЕ ТЕПЛОИЗОЛЯЦИОННЫЕ МИНЕРАЛОВАТНЫЕ КОНСТРУКЦИИТУЗ6-1180-70. ДЛЯ ИЗОЛЯЦИИ ТРУБОПРОВОДОВ МЕЛКИХ ДИАМЕТРОВ ЛРИНЯТ АСБОПУХШНУР ТУ 36-1695-73

В ОПЛЕТКЕ СТЕКЛЯННОЙ НИТЬЮ. ТИП ИЗОЛЯЦИОННЫХ КОНСТРУКЦИЙ ВЫБРАН ВЗАВИСИМОСТИ ОТ ДИАМЕТРА ТРУБОПРОВОДА И ТЕМПЕРАТУРЫ ТЕПЛОНОСИТЕЛЯ В СООТВЕТСТВИИ
СО СНИЛ 17-35-76 И ПО "ТИПОВЫМ КОНСТРУКЦИЯМ ТЕПЛОВОЙ ИЗОЛЯЦИЙ СЕРИИ
З 903-5/73 И 2.400-4, РАЗРАБОТАННЫМ ВНИЛИ, ТЕПЛОПРОЕКТ "В 1972 ГОДУ.
В КАЧЕСТВЕ ПОКРОВНОГО СЛОЯ ЗАПРОЕКТИРОВАНЫ: A) CTANS TOHKONUCTOBAR OLUMKOBAHHAR FOCT8075-56-QAR OGOPYGOBAHURHAPHATYABI

б) ФОЛЬГОИЗОЛ- ДЛЯ ТРУБОПРОВОДОВ ГОСТ 20429-75.

HEUSONUPYEMBLE TPYGOTPOBOOB OKPAWUBAHOTCH KPACKOUBT-17700 FPYHTOBKE FP-0203A 2 PASA. TETNOUSONALUH BAKOB-AKKYMYNATOPOB 2X300M BBUTONHAETCH NO TUTO. TO, AND BOMT, PASPABOTAHHOMY BHUTU, TETNOUPOEKT. B COOTBETCHUU C TPEBOBAHURMU, TPABUT TEXHUYECKOÙ SKCTNYATAUM BIEKTPOCTAHUUÙ U CETEN AND OBECTEVEHUR HADEXHOÙ SAWUTBI BAKOB-AKKYMYNATOPOB OT KOPPOBUU, MUMEHOWYHOCH B HUX BOOY OT ABPAUUN TPUMEHRETCH FEPMETUK I, AF U"

OCHOBHLIE DOMOWEHUR DOAFOTOBKH H DPONSBOACTBA

CTPOUTE 16HO - MOHTA KHOIX PAGOT.

1. METOR SI MONTAKA OSOPYROBAHUA.

- 1.1. MOHTAX TENDOMEXAHUYECKOPO OBOPYAOBAHUR U TPYGONPOBOROB KOTENSHON BARAHUN US CEOPHOPO XENESOG TOHA NPONSBORHTS BAOYHO-KOMMEKTHSIM METOROM RBYNR CNOCOEAMU:
- A) B SAKPLITOM (SAKOHVEHHOM CTPONTENLITBOM) SAAHUN KOTENLHON C OCTABNEH-HLIMU MOHTAKHLIMU NPOEMANUC UCNONLSOBAHUEM CAMOXOQHOTO CTPENOBOTO KPAHA F. D. 20T TUNA MKN-20 U SAEKTPONESEGOK F. D. 3T;
- Б) СОВМЕЩЕННО С МОНТАЖОМ КАРКАСА И ОГРАЖДАЮЩИХ КОЖТРУКЦИЙ ЗДАНИЯ С МСЛОЛЬЗОВАНИЕМ СТРЕЛОВОГО САМОХОДНОГО КРАНА Г.Л. 25Т. ТИГЛА МКЛ. 25. 1.2. МОНТАЖ ТЕЛЛОМЕХАНИЧЕСКОГО ОБОРУДОВАНИЯ ИТРУБОПРОВОДОВ КОТЕЛЬНОЙ В ЗДАНИИ ИЗ ЛЕГКИХ МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ ПРОИЗВОДИТЬ БЛОЧНО-КОМПЛЕКТИВИМ МЕТОДОМ СОВМЕЩЕННО С МОНТАЖОМ КАРКАСА И ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ ЗДАНИЯ С ИСПОЛЬЗОВАНИЕМ САМОХОДНОГО СТРЕЛОВОГО КРАНА Г.П. 25Т ТИГЛА МКЛ-25.

2. ПОДГОТОВКА КОТЕЛЬНОЙ К НАЧАЛУ ПРОИЗВОДСТВА МОНТАЖНЫХ РАБОТ.

2.1. ПРИ МОНТАЖЕ ОБОРУДОВАНИЯ В ЗАКРЫТОМ ЗДАНИИ КОТЕЛЬНОЙ ДО НАЧАЛА МОНТАЖНЫХ РАБОТ СОГЛАСНО,, ИНСТРУКЦИИ ПО ПОДГОТОВКЕ И ОРГАНИЗАЦИИ СТРОМТЕЛЬНО. МОНТАКНЫХ РАБОТ ПРИ СТРОМТЕЛЬСТВЕ КОТЕЛЬНЫХ И ТЕПЛОВЫХ СЕТЕЙ МИСС СССР НЕОБХОДИМО ВЫПОЛНИТЬ:

A BHYTPHIMOMARONHLIE HHMEHEPHLIE CETH H COOPYMEHHA;

5) BLE OCHOBHLIE CTPOUTENLHLIE PAGOTLI NO SAAHUNG KOTENLHON, BKNIGYAR CTPON-TENLHLIE OTMETKIN BHYTPI SAAHUR, ФУНДАМЕНТЫ ПОД КОТЛОАГРЕГАТЫ, УСИЛЕН-HLIN NON IN NORSEMHLIE KAHANLI KOTENLHON, KROBNO IN OCTEKNEHIE

					TN 903 - 1-159	T	M 1	,
U3m N	VCT	N' AOKYM	ЛОДПИСЬ	AATA	Котельная с 4 котлам	иДЕ-	25-141	M
Гл. ини	C NP.	<i>ЗАМАРИНА</i>	Bauras	,		SUT.	PHCT	THETOB
		ЗильбЕРШТЕЙ. ГАВРИЛОВА	31	,		P	4	36
Pyk. I Henan	rp. H.	ЯКШИНСКИИ Яровая	Sport		ОбщиЕ ДАННЫЕ. (Продолжение)		TEXT	DEKT
7,			3 Jane	11/18			0	

KONUPOBAN: 704 - 16175-04 6

POPMAT 22r.

B YCTAHOBKY TIPOEKTHЫХ MOHOPENSCOB NOD PYYHWE U BREKTPUYECKUE TAMU; () POEKTHUE U MOHTAMHUE CEOPONHO YKPYNHUTENHULE PLOWARKU NOR OSO PYROBAHUE (CM., MOHTAKHUN FEHRMAH").

A TOURTES AHBIE PROEKTHEIE IN BREMEHHEIE PLYTH AND THESONOR SEMILIX MEXANISMOS . H ABTOTPAHCNOPTA;

Е) УСТАНОВКУ И ЗАЩИТУ ЭЛЕКТРОСБОРОК ОБЩЕЙ МОЩНОСТЬЮ 120 КВТ, УСТРОЙСТВО BPEMEHHOOD BOLODPOBOLA C MAKCHMANAHAM PACKOLOM BOLA 3M3/4 N CAMBA BOALLY

Ж) ВРЕМЕННЫЕ СООРУЖЕНИЯ СМ., МОНТАЖНЫЙ ГЕНПЛАН").

Временные пути и монтажные площарки в зависимости от местных УСЛОВИЙ ВЫПОЛНИТЬ ИЗТВЕРДЫХ ПОКРЫТИЙ (АСФАЛЬТ, СБОРНЫЙ Ж/Б) ИЛИ MORCHINAHHLIMM FPABMHHO-MECYAHOM CMECHO.

HOH AND STATES A STNEATTO OMNDOXOOSH RNHABORYGOOD NIVADOR RNA TAXHIE PROEMUL!

- A) NO OCH, 11" B OCAX , 5-1" PASMEPOM12,0x6,6 M, 5E3 YCTAHOBKH PAXBEPKIBIN КОЛОННЫ ПО ОСИ"В"
- Б) ЛО ОСИ, A" В ОСЯХ, 4-5" PASME POM 6,0×7,2M.
- 22. Nan Cobmellehhom mohtame obopyaobahur C Kapkacom u oppamaehnem KOTEABHOU DO HAYAAA MOHTAKHBIX PABOT HEOBXOQUMO BUNOAHUTB:
- Д) НУЛЕВОЙ ЦИКЛ КОТЕЛЬНОЙ, ВКЛЮЧАЯ УСИЛЕННЫЙ ПОЛ. ФУНДАМЕНТЫ И
- Б) ВНУТРИПЛОЩАДОЧНЫЕ ИНЖЕНЕРНЫЕ СЕТИ И СООРУЖЕНИЯ И ВСЕ ПОДГОТОВИ-TENEHLIE PAGOTLI NO N.2.1., KPOME PAGOT, TPESYICILLINX HAMMYIN SAAHIIR ΚΟΤΕΛЬΗΟΝ.
- 23. СБОРОЧНО-УКРУЛНИТЕЛЬНЫЕ ПЛОЩАДКИ ДЛЯ МОНТАЖНОЙ ОРГАНИЗАЦИИ PASMEPAX!
- A CO CTOPOHLI OCH, 1" MAOWAALHO 430 M2 /24,0x18.0M)
- Б) СО СТОРОНЫ ОСИ, 11" ПЛОЩАДЬЮ 630M2 (35,0×18,0M)
- B) CO CTOPOHLI OCH, A" NAOWALLIO 300M2 (30,0x10,0 M);
- Г) В PANOHE БAKOB- AKKYMYNATOPOB ПЛОЩАДЬЮ 90 M2 (15,0 X 6,0 M).
- 24. Временные сооружения для монтажной организации:
- A MATERNANDHUM CKNAR SAKPUTUM KARKACHO-BACUNHOTO TUNA NNOWARUHO 24M2
- BI HABEC AND XPAHEHUR OBMYPOBOYHEK MATERNANDB CO CTOPOHE OCH, 11" NNOщадью 40 m2;
- В) КОНТОРКУ ДЛЯ ПРОРАБАТИПА ИНВЕНТАРНОГО ВАГОНЧИКА ПЛОЩАДЬЮ 10 MZ;
- T) BUTOBKH ANA PABOYNX, OBOPYAOBAHHUE WKAPAMM THIR HHBEHTAPHUIX BATOHYNKOB HA 20 YEAOBEK.
 - 3. RPONSBOACTBO MONTAKHLIX PAGOT.

3.1. Монтаж блоков оборудования в закрытом здании котельной (см. п.1.1) POUSBOANTE HAABNIKON NO YCHNEHHOMY DONY KOTENEHON YEPES MOHTAKHELE RADDEM LI DO OCAM , 11"M., A", N YEPES BOPOTA DO OCH, 1" C DOMOULLO PREKTPO-DEBETKH T. D. 3T. HADPABLEHUE MOHTAWA OBODYZOBAHUR YEDES DPOEM DO OCH 11" NONHUMAETCA OT OCH, 7"K OCH, 11" NO AYENKAM, 7-8", 8-9", , 10-11" HARPABREHUE MOHTAWA OBOPYHOBAHUR YEPES RPOEM ROOCH, A"H BOPOTA ROOCH, 1" DONHAMAETCA NO OCA, 7"K OCA, 1" NO AYENKAM, 7-6", 6-5"... , , Z-1". DUKPYNHEHHE H DODAYY STOKOB OSOPYDOBAHHA K MOHTAMHUM DPOEMAM PROMISBOGUTS C NOMOWER KPAHA TURA MKN-201. N. 201, PCTP. = 12,5 M. 3.2. MOHTAK GOOKOB OSOPYQOBAHUR COBMEWEHHO C YCTAHOBKON KAPKACA H OTPAK-

DAKUWIX KOHCTPYKUUN BAHAR DPONBBOANTS DO BAXBATKAM (RVENKAM) C DOMOLLSKO KPAHA TUNA MKN-25, T.N. 20T, PCTP = 17,5M. HANDABNEHNE MOHTAKA OTOCH,1" KOCM, 11" NO BAXBATKAM, 1-2", ,, 2-3,", ,, 10-11".

COBMELLEHHLIÚ MOHTAX B COUTBETCTBUN C., ГРАФИКОМ", COTNACOBAHHLIM C ЗАКАЗЧИКОМ, ГЕНПОДРЯДЧИКОМ И МОНТАЖНОЙ ОРГАНИЗАЦИЕЙ.

PEPEMELLEHUE KPAHA NON COBMELLEHHOM MOHTAKE KOMMEKTHUK ENOKOB OGO-PYQOBAHUR W KAPKACA BARHUR OCYMECTBARTO BHYTPH NAOMAAH KOTEAGHOÙ B OCAX, 5-1" OT OCH, 1"K OCH, 11" YCHNEHHBIN DON KOTENBHON PACYNTAH HA AO-MONHUTE NEHYO HAPPYSKY OT MONTA WHOPO KPAHA.

HAN SOMEE PALMOHAMBHO COBMEMENHISIN' MONTAK MPONSBOANTCH B CMYVAE MON-TAWA BAOKOB OBOPYAOBAHUR, C KOAEC "APA MODAYE HX AOA KPAH HA TPAHAEPE. 4. KOMONEKTOBAHUE OBOPYQOBAHUEM H NPUBASKA.

PROEKTA KOTEALHON

4.1. KOMINEKTOBAHUE KOTENSHON O 50 PYLOBAHUEM U MATEPUANAMU K HAYANY MOHTAXHAIX PAGOT DONAHO SAITA SAKOHYEHO NONHOCTAKO 8 063EME NNAHHAYE-MOTO NYCKOBOTO KOMPINEKCA. O BOPYAOBAHHE U MATEPUANGI, BKAHOYEHHGE B COC-TAB KOMONEKTHAIX CTPOUTENAHO- MOHTAXHAIX BAOKOB, B BABUCHMOCTH OT MEC-TA CEDAKH NOCNEAHUX KOMNNEKTYKITCA HA CKNARE BAKABYHKA HINI NOCTAB-NAHOTCA HA NOOMBOACTBEHHLIE GASLI MOHTAKHLIX YNDABNEHMM. 4.2. HA CTALINI DPUBRIKIN HACTORILLETO DPOEKTA K PEANGHOMY OBEKTY IN PAI-PAGOTKU NOC HA CTPOUTENOCTBO B CMETAX HEOGXOLUMO Y VECTO 3 ATPATO! HA YCTPONCTBO CEOPONHO-YKPYNHMTENEHBIX NAOWAAOK, NOAZEZAOB M BPEMEHHBIX СООРУЖЕНИЙ.

СВОДНАЯ СПЕЦИФИКАЦИЯ

MAPKA	O 603HAYEHUE	HAUMEHOBAHUE	кол	Примеч
		U50PYHOBAHNE		
K1	Бийский котельный	KOTEN NAPOBON FASOMASYTHЫЙ		
	ЗАВОД	AE-25-14 FM SES NAPONEPER		
		PEBATEAR A=257/4; P=14KTC/CH		
		KOMIN:	4	
K1.1	ЗАВОД, ИЛЬМАРИНЕ"	TOPENKA FASOMASYTHAR MIN-16		
	r. Tannuh	Q=16 [KM/V	4	
K2	Кусинский машинострои-	Экономайзер чугунный, блоч-	9	
	TEMBHLIN 3 ABOA	HBM 37.1-808, OCT 24.271.30-74		
		F-8087 C ROPOS OM NO 110CT24392274	42	
K3		Установка дымососа компл.:	42	
K3.1	Бийский котельный	Дымасас центробежный	A.	
	ЗАВОД	Д Н-12,5 ЛЕВОГО ВРАЩЕНИЯ		
		4=270°, Q=40400 m3/4,		
		H= 282,6 MM BOA.CT. C 3NEK-	4	
		TPOMBULATENEM 402-91-4		
		Л=150006/мин, N=75 кВт	4	
K4		Установка вентилятора компл.	4	
K4.1	Бийскии котельный	ВЕНТИЛЯТОР ЦЕНТРОБЕЖНЫЙ		
	3ABOA	ВДН-11,2 ПРАВОГО ВРАЩЕНИЯ		
	- 111	9 = 270°, Q = 21600m3/4,		
			4:	

MAPKA	0 603HAYEHHE	HAMMEHOBAHNE	Kon.	/IDHM E
	·	STEKTPOABULATENEM A02-82-4		,
		N=150005/MNH, N=55KBT	4	
K5 -	ANDEOM VII , VEPT. 2:5	Газоходы котла ДЕ-25-14ГМ	4	
K6	AALGOM VII , YEAT 2+5	BOJAYXOBOALI KOTAA AE-25 NIM	4	
K7.5	CEPHA 4.903-11, B.1	KPYNHO-5NOVHAR REASPAUMOH-	1	
		HO- MITATEMBHAR YCTAHOBKA		
		KERNY-100120 KOMNA		
K7.1	Учреждение ЮЕ-312/97	KONOHKA GEASPALMOHHAR		
		QA-100; Q=100T/4	1	
K7.2	T 186. 05. 00. 000 C6	BAKAEAJPATOPHOIN V=25M3	1	
K7.3	ACHOPOPOKEN MAMHO	HACOC LEHT POBEKHAIN MHOTO		
	CTPOUTEABHBIN 3ABOA	CTYNEHVATOIN CEKUNOHHOIN		
		TUNA LHEF 60-1980-60m3/V		
		H=198M BOB. CT. C BAEKTAG -		
		ABUTATENEM A2-81-2		
		Λ=290006/MHH, N=55 KBT.	2	
K7.4	YYPEKAEHUE ME-312/97	DXAAAUTEAL BARAPAOBA 8		
		F= 8m2.	1.	
K7.5	Учреждение ЮЕ-312/97	YCTPOHCTBO NPE DOXPAHU		
7,7,0	1	TEABHOE AA-100	1	1
K7.6		ТРУБОПРОВОДЫ И АРМАТУРА		
K7.7		МЕТАЛЛОКОНСТРУКЦИЯ		
K86	CEPHR 4. 903-11 B.4	KPYNHO SAOYHAR YCTAHOBKA		
		FORRYETO BODOCHA 5 X EHUR		
		K59FB-100 KOMIN	1	
K8.1	Учреждение <i>ЮЕ-312/97</i>	Колонка делэрационная		
		AA-100 Q=100T/y	1	
K8.2	T 186. 05.00. 000CB	BAK REAJPATOPHUN V= 25M3	1	
K8.3	ПРОИЗВОДСТВЕННОЕ ОБЪЕДИ-	Насос центробежный		
	HEHHE "ADMXNMMAH"	КОНСОЛЬНЫЙ ТИПА ЧК-90/20		
		Q=80M3/V, H=22,8M BOA CT		
		C BAEKTPOABULATENEM A02-42-2		
		Л=290005/мин, N=7,5 KBI	2	
K8.4	УчРЕЖДЕНИЕ ЮЕ- 312/97	DXAQUTEAL BURAPADBA-8, F= 8 M2	7	

								i
					TN 903- 1-159	TI	4.1	
3 <i>M</i>	NUCT				Котельная с 4 котлами	I DE	25-141	M
1. H	HXK.AP	SAMAPHHA.	Bureas			ANT	NHCT	MINCTOR
n. C	DE4	Зильберштейн Гаврилова	tale		4	P	5	36
ici	ONH.		Sus		ОБЩИЕ ДАННЫЕ (ПРОДОЛЖЕНИЕ).	CAH	TEXTIP	DEKT
1.1	OHTP	MAUMOB .	34ay.4	1179	MARRO SA MALTA OU ST	<u></u>	MOCKBA	

MAPKA	0503HAYEHME	HAUMEHOBAHUE	Κσπ	1
K8.5	YUPE KAEHNE HOE-312/97	Устройство предохрани		I
		TEALHOE AA-100	1	Ī
K8.6	ПРЕДПРИЯТИЕ УВД ВОРОШИ-	NODOLDEBATEUP BODOBODHHON		I
	ПОВГРАДСКОЙ ОБЛАСТИ	СЕКЦИОННЫЙ РАЗВЕМНЫЙ		Ī
		2×14 OCT 34-588-68, F=40,6 m2	10	Ì
K8.7	ЛЮБЕРЕЦКИЙ ОПЫТНЫЙ	ПОДОГРЕВАТЕЛЬ ПАРОВОДЯНОЙ		Ì
	SABOR THE PIO O DOPY DOBAHUA	ABYXXOAOBON C NAOCKUMU		I
		ДНИЩАМИ 030СТ34-531-68,		İ
		F= 24,4M2	1-	İ
K8.8		TPYBONPOBOAN N APMATYPA	_	İ
K8.9		МЕТАЛЛОКОНСТРУКЦИЯ		t
K9	СЕРИЯ 4. 903-11 B.4 V	FACK HACOCOB FORRYETO BOAD		t
		СНАБЖЕНИЯ БНГВ-65/224 КОМПЛ:	1	İ
K9.1	КАТАЙСКИЙ НАСОСНЫЙ	НАСОС ЦЕНТРОБЕЖНЫЙ		ľ
	ЗАВОД	консольный манаблачный		t
		TH NA 4KM-90/SSQ = 65-112m3/v,		1
		H=61+ 45 M BOA. CT. C BAEKTPO		l
	1	ABMINTENEMA2-62-2		ŀ
		N= 290005/MNH, N= 22 KBT	3	ŀ
K9.2		ТРУБОПРОВОДЫ И АРМАТУРА		ŀ
K93		МЕТАЛЛОКОНСТРУКЦИЯ		ŀ
K10	CEPNA 4. 903-11 8.2	Блок подогревателей сетевой		ŀ
		BOALLENCE-29 Q= 29 [KAN/VKOMT :	1	ŀ
K10.1	ПРЕДПРИЯТИЕ УВД ВОРОШИ	ПОДОГРЕВАТЕЛЬ ВОДОВОДЯНОЙ		ŀ
77.5.7	ЛОВГРАДСКОЙ ОБЛАСТИ	СЕКЦИОННЫЙ РАЗВЕМНЫЙ		ŀ
	The state of the s	2×14 OCT 34-588-68, F=406 A	4	ŀ
K10.2	СЕВЕРОДОНЕЦКИЙ КОТЕЛЬНО-	MODOLDEBATEUR VALOROTAHON	-	Į.
71.0.2	МЕХАНИЧЕСКИЙ ЗАВОД	YETHIPEXXOQOBON C OT 60 PTO-		Ļ
	Treatment Sharp	ВАННЫМИ ДНИЩАМИ	\dashv	ŀ
		05 OCT 34-577 68,F=539m2	4	L
K10.3		PERYNATOR NEDE TO BA & HC-4	4	L
K10.4		TPY50NPOBOALL APMATUPA	-	_
K10.4		METANNOKOHCTPYKUNA	-	_
K11	СЕРИЯ 4. 903·11 В.2	BAOK MODORPEBATEAEN CETE		_
-11/1	CEFFIN 7. 303 11 6.2	BON BOAM BACE -14 Q=14 KAN		_
			\dashv	_
K11.1	DOEADANGTHE URA DASSINA	KOMNA:	1	-
∧/1.7	ΠΡΕΔΠΡИЯΤΗ Ε ΥΒΔ ΒΟΡΟШИ- ΠΟΒΓΡΑΔΕΚΟЙ ΟБЛАСТИ	PODOFAEBATEND BOLOBOARDA		_
	HOO! PHACKOR COINCIN	CEKUNOHHUM PAZZEMHUM	ᅱ	_
K11.2	FERENDARUFUNIA MATERIA	2x14 OCT 34-588-68,F=40,6M2	2	_
1177.	СЕВЕРОДОНЕЦКИЙ КОТЕЛЬНО МЕХАНИЧЕСКИЙ ЗАВОД	PODO PEBATEAL PAPOBOLAHOW		_
	HEADDITECTION SHOUL	YET BIPEX XODOBON C OTEOPTO	_	_
		ВАННЫМИ ДНИЩАМИ.	_	
14.1 =			2	_
K# 3		PETYNATOP REPERNBA 5.1164	2	_
K11.4		TPYBONPOBORNI APMATYPA		_
K11.5		METANNOKOHCTPIKUNA	- 1	

				,,
MAPKA	OSOSHAYEHME	Наименование	Kon	NPUME
K12	CEPHA 4.903-11 8.2	BAOK CETEBOIX HACOCOB		
		5CH-180/650 KOMINS:	1	
K12.1	Завод, Ливгидромаш"	HACOC LEHTPOBEXHUIN		
		ABYXCTOPOHHERO BXOAR THINA		
		A-320×70 Q=/80÷320m3/4,		
		H= 80 -65 M BOQ. CT. C JAEK-		
·		TPORBUTATENEM A2-91-2		
		Λ= 294006/MUH, N=100 KBT	3	
K12-2		ТРУБОПРОВОДЫ И АРМАТУРА		
K12.3		МЕТАЛЛОКОНСТРУКЦИЯ		
K13	CEPUR 4.903-11 8.5	ENOK PERYKUMOHHOM YCTA.		
		HOBKH 5PY-60 Q= 607/4,		
		PI/P2=14/6 KIC/CM2 KOMINA:	2	
K13.1		TPY50NPOBOANI M APMATYPA		
K13.2	and the second of	МЕТАЛЛОКОНСТРУКЦИЯ		
K14	CEPUR 4. 903-11 B. 5	SAOK CENAPATOPA HENPE-		
		PHIBHON PORYBKU BCHT 3005		
		KOMOJ:	1	
K14.1	Бийский котельный	CENAPATOR HENPEPHIBHON		
	ЗАВОД	ПРОДУВКИ ДУ 300	7	
K14.2	TO WE	TERMOOFMEHHUK Q=20-40T/4	7	
		F= 5 M2	Ť	
K14.3	· · · · · · · · · · · · · · · · · · ·	Трубаправоды и арматура		
K14.4		МЕТАЛЛОКОНСТРУКЦИЯ		
K/5	CEPUR 4.903-11 B.5	Елок холодильника отбора	- †	
		DPOB 6×00-0,45 KOMAN:	10	
K15.1	САРАТОВСКИЙ ЗАВОД	XONOQUINGHUK OTEOPA NPOE	-"	
/////		F= 0,45 M2	8	
K15.2	TRKENOTO MAWNHOCTPUEHHR	ТРУБОПРОВОДЫ И АРМАТУРА	- "	
K15.3		†		
K16	TUT. NP. 704-1-51	METAMOROHOTPYKUMA	-+	
	77711. 775. 704 7 37	CTANGHOÙ BEPTUKANGHOÙ		
		LUNUHAPHYECKUM PESEPBYAP	\dashv	
		(SAK AKKYMY/ISTOPHON)	,	
K17	FENNO 1. 002 10 05	V= 300m3; \$\Phi 7,58m; H=7,54m	2	
^1/	CEPMR 4.903-10, 8.8	ГРЯЗЕВИК ВЕРТИКАЛЬНЫЙ	1	
- FE	Van van van var (augus)	16-300 T 32.03	-1	
K58	КРАСНОГВАРДЕЙСКИЙ	TAGE PYNHAR DEPERBUMHAR		
	КРАНОВЫЙ ЗАВОД	VE-8011 TOOT 1106-74	-	
KEA	70. 24.0	r/n-17; Hn=3M	3	
K59	TO WE.	TO KE; Hn=9M	<u>।</u>	
	0			

Примечание:
1. Спецификация на оборудование, позиции К18-К51 приведена
в разделе, Водоподготовительная установка" альбом V

			100	-	
	MAPKA	0 603 HAVE HHE	HAUMEHOBAHUE	Kon	i)DUMEYA
			Изделия и материалы	L	
	1	roct 10704-76	TAYEA \$ 478×7 M	10,0	81,31
	2	To WE	TO WE \$ 426x7	1,4	
-	3	ΓΟζΤ 8732-70	— и — ф 377xg		81,68
-	4	FOCT 10704-76	— "— φ325×6	†	47,2
ł	5	TO WE		79,0	
ł	6	 ,,	'' φ 2/9×6	-	<i>31,51</i>
ł	7	n	" φ159×4,5	2300	
ł	8	 // 		10,0	
ŀ	9	1/	—11 — ф108x3,5	100,0	
ŀ	10	"	ν Φ89x3	140,0	
ŀ	11	— II —		53,0	5,4
ł	12	//	" \$57×3	471.0	4,0
ł	13	FOCT 8734-75	$ " - \phi 45 \times 2,5$	169,0	2,62
ŀ	14	TO KE	<i></i> ν <i></i> φ38×2	185,0	1,78
+	15	——————————————————————————————————————	—" — \$32×2	307,0	1,48
H	16		" \$25×2	112,0	1,13
ŀ	17	 " 	" \$18×2	95,0	0,789
-	18		11 Ø14x2	60,0	0,59
+	19	FOCT 8732-70	— 11— Φ/33x4	58.0	12,73
ŀ	20	— // —	—η— Φ 89x3,5	/38	7,38
\vdash	21	TOCT 9941-72	—₁ — φ3 8×2	2,0	1,78
\vdash	22	TO WE	-"-\$25x2	44,0	1,13
F	23	//		47,0	0,789
+	24	FOCT 3262-75	" ΦδΟΧ3,5	48.0	4.88
+	25		" φ 48x3,5	60,0	3,84
}	26		$ \phi 33,5 \times 3,2$	<i>65,0</i>	2,39
-	27		" Φ 26,8 x 2,8	<i>55,0</i>	1,56
-	28	——————————————————————————————————————	$-11 - \phi 21,3x2,8$	26,0	1,28
-	29		Отвад 90° 426×10	1	121.0
-		To NE	Take 90° 377×10	4	93,0
-	30	To XE	-"- 90°325×8	30	50,3
-	31			16	31,4
-	32		MACCA YKASAHA OQHOTO USAERNA	-†	
L					

TIL	973- '59	TN	1 4	
USMANG NADKYM ADMINISTRAL KOTEGO	A Z KOTTAM	и 25-2	5-1451	
TA HERA CAMADUHA Bucco		11:17	ARCT	ALCTOS
HAY. OTA BHAGS PHITER AST		٦	6	36
HICHOAH SPORAS SURE (ADDA	IE DAHHME TONKEHME)		TEXTIF MOCKSA	
H. KOMPP HAVITOR HUAY, VITE	16175-04 8		DMAT 22	

	MAPKA	ОБОЗНАЧЕНИЕ	HAUMEHOBAHUE	Kon	NOMMEYAH.	MAPKA	O SO SHA VEHILE	HAUMEHOBAHUE	Kan.	NPMMEVI
	33	FOCT 17375-77	OTBOA 90°219×6	58	17,0	80	FOCT 17378 - 75	ΠΕΡΕΧΟΔ K 89×3,5-76 × 3,5	4	0,6
	34	To WE	To HE 90°159×4,5	70	6,9	81	70 KE	TO HE K89 X3,5-57X3	10	0,5
	35	//	-11-90°133x4	7	4,4	82	I)	K 76x3,5-57x3	1	0,4
>	36			25	2,8	83		" K76 x3,5-45 x2,5	2	0,4
Anbsom	37			110	1,6	84		-"- K57x4-45x2,5	2	0,2
992	38	//		4	1,2	85	//	K 57x4 - 38 x2	8	0,2
4	39	 -,		94	0,6	86		K57×4 - 32×2	1	0,2
Ī	40			102	0,3	87			3	0,1
>	41			2	0,8	88	FOCT 17377-77	СЕДЛОВИНА 325×8-159×4,3	1	5,5
1111	42			1	0,4	89	FOCT 17379-77	BARAYWKA 426×8	2	17,4
	43	11	-/ 45° 325x8 .	2	33,5	90	ТОЖЕ	70 KE 325×10	1	13,0
-159	44			14	20,9	91		2/9x8	2	5,2
7	45	— // —— ·	-1- 45°159×4,5	8	4,6	92		159×4,5	4	1,5
903-1	46	 ()		7	2,9	93	//	———— 133×4	2	1,0
8	47	——/i——		1	1,1	94			3	0,3
Ī	48			2	0,4	95			25	₹,2
¥	49	24 05734. 206-73	CEKTOP C YFROM 22°30'	4	21,88	96			4	0,1
PUEKT	50	FOCT: 17376-77	Тройник 426×10-325×8	4	70,7	97	·	38×2	4	0,1
a	51	TO HE	TO WE. 325 x8 -273x7	1	36,0	98	ЗКЛ2-16	ЗАДВИЖКА КЛИНОВАЯ С		
	52		-11 - 325x8-219x6	9	38,1			выдвижным шпинделем		
Z.	53	//		6	13,2			Ду 300, Ру 16	2	305,0
иповой	56		-// -/33x4-89x3,5	9	3,8	99	TO WE	TU WE AY 250, PY 16	4	230,0
00	.55		76x3,5-57x3	5	1,6	100		Ay 200, Py 16	7	140,0
Z	56			5	1,5	101	//		10	105,0
-	57	——————————————————————————————————————	57x3-45x2,5	24	0,7	102	//		1	55,0
ŧ	-58			7	77,5	103		Ay 80, Py16	8	40,0
İ	53	//		2	41,3	104	30c 572 HX	ЗАДВИЖКА КЛИНОВАЯ		
ŀ	60		273×8	1	32			ДВУХДИСКОВАЯ С БЫДВИЖ-	7	
-	61		4 2/9×6	1	13,8			НЫМ ШПИНДЕЛЕМ		
	62	"·····································	159x4,5	6	6,6			Ay 400/300, Py 25	1	640,0
	- 62 - 62			1	3,3	105	. 15 KY 19 N1	ВЕНТИЛЬ ЗАПОРНЫЙ ФЛАН-		
	e'i			9	2,6	. ,		LEBUM AY 50, PY16	4	8,0
			76×3,3	2	1,5	106	TO WE		25	5,8
	5€		76×3	49		107		-1- Ay 32, Py 16	8	4,3
	67	5,227,7772	TEPEXOR K426 x12-325 x10	49	0,8 42,7	108			35	2,7
ŀ		f0CT17378-77		-		109	15 KY 16 M	ВЕНТИЛЬ ЗАПДРНЫЙ ФЛАН-		
	68	TO KE	TO WE K377x12-325×10	7	34,0	/02		ЦЕВЫЙ ДУ 65, PY25	1	25,0
	6.9 76			2	27,2	110	TO WE	TO WE DY 32, PY 25	8	8,0
-	76			3	12,2	111	154146P	TO WE Ay125, Py16	2	60,0
						112	15KY18n1	ВЕНТИЛЬ ЗАПОРНЫЙ МУФТО-		
1	73			1	13,1	//-	70.770.17	Вый ДУ 20, РУ16	11	0,9
	74	——————————————————————————————————————	- 1 - K 2/9x6-159x4,5	8	5,3	113	To ME	TO ME AY15, PY16	8	0,7
1	75			1/2	2,4	114		ВЕНТИЛЬ ВОЗДУШНЫЙ	~	
1	76		/K/33X5-108×4	3		774	T-26	ЦАПКОВЫЙ ДУ6, РУ/00	2	0,35
+	77			4	1,7	145	15 - 1001	ВЕНТИЛЬ ЗАПОРНЫЙ	1	-,
	78			1	1,6	115	15 Ky 18 N1	муфтовый ду40, Ру 16	1	3,7
1 -		71		4	1,0	111			30	1,4
	19			111	0,9	116	To XE	1 1 4 ME KY 45, PY10	~~_	7.7

Марка	O 503HAYEHUE	HAUMEHOBAHUE	Kan.	ПРИМЕ
117	5 10c-1	ВЕНТИЛЬ РЕГУЛИР НОЩИЙ		
		МГОЛЬЧАТЫЙ ДУ10, РУ64	7	0,8
118	6c-9-2	КЛАПАН РЕГУЛИРУЮЩИЙ,		
		РЫЧАЖНЫЙ, БЕСФЛАНЦЕВЫЙ		
		Qy 100; Py100	1	94,0
119	7-365	Клапан РЕГУЛИРУЮЩИЙ		
		ПИТАТЕЛЬНЫЙ ДЛЯ ВОДЫ		
		Ay 150; Py 64	1	115,0
120	YPPA-50	РЕГУЛИРУЮШИЙ КЛАПАН С		
		МЕМБРАННЫМ ИСПОЛНИТЕЛЬ-		
		HEIM MEXAHUBMOM A 450, Py6	1	45,0
121	17435P1	КЛАЛАН ПРЕДОХРАНИТЕЛЬНЫЙ		
		МАЛОЛОДЪЕМНЫЙ ОДНОРЫЧАЖ.		
		ный Ду100, РУ16	1	43,0
122	16436P	КЛАПАН ОБРАТНЫЙ ПОДВЕМ-		
		ный фланцевый Ду25, Ру%	6	<i>3</i> ,3
1220	16465P	Тоже ДуЮО;РуЮ	_1_1	35,5
123	45c13HX	KOHREHCATOOTBORYUK TEPMO-		
		ДИНАМИЧЕСКИЙ ДУ 25, РУЧО	2	5,8
124	FOCT14167-69	СУЕТЧИК ГОРЯЧЕЙ ВОДЫ		
		ТУРБИННЫЙ ВТ-80Г, РУ10	1	19,72
125	TO WE	TO WE. BT-50r, Py10	1	12,2
126	FOCT 12830-67	ФЛАНЕЦ 125-16	4	6,75
127	TO WE	TO WE 400-25	2	64,81
128	/	80-25	32	4,44
129		65.25	6	3,71
130	1/		44	2,78
131	——- <i>ŋ</i> ——	/ 32-25	40	1,83
132	<i>I</i> J	300-16	4	22,75
133	//	250-16	8	17,36
134		11 200·16	18	11,79
135	— II——·	150·16	28	8,3
136		-11- 100-16	5	4,9
730		МАССА УКАЗАНА ОДНОГО ИЗДЕЛИЯ		

				TN 903-1-159		<u>41</u>	
ИзмЛист	ИДОКУМ .	ПОДЛИСЬ	<u> AATA</u>	КОТЕЛЬНАЯ С 4 КОТЛАМИ	AE-2	5-141	M VIHCTOB
To you no					MT.	JINCI	- Fried
HAY.OTA.	ЗИЛЬБЕРШТЕЙ	sty.			P	7	36
Гл. СПЕЦ Рук.гр. Испали	Гаврилова Якшинский Яровая	sula.	// 18	(00000000000000000000000000000000000000	CAH,	TEXTIF	DEKT
H.KOHTP.	HAYMOB	34/04	KO	MAPOBAN: 89- 16175-04 9	2	POPMAT	221

MAPKA	O 603HAYEHNE	HAUMEHOBAHNE	KOA	Примечан	MAPKA	0503HAYEHUE	HAUMEHOBAHUE	Кол	PMME
137	FOCT 12830-67	Фланец 80-16	16	4,21	184	FOCT 14911-69	<i>ΠΠΟΡΑ</i> <u>0ΠΠ·2</u> 150×325	6	8,99
138	To XE	TOKE 50-16	18	2, 28	185	TO WE	10 KE 150×273	1	3, 65
139			24	1,85	186			7	2,86
140		— " — 32-16	20	1,54	187	—— <i>y</i> ——		1	3,08
141		25-16	14	1,05	188	<i>"</i>	-11 - OND-2 100×159	22	1,93
142		— //— 2 <i>50·10</i>	1	14,64	189	//	# - OND-2 100X133	8	1,60
143		//- 50·10	2	2,26	190			20	1,15
144	//		1	4,66	191		II	23	1,19
145			3	3,35	192		II 0/1/1-1 100x 38	4	0,52
146			1	1,53	193			24	0,51
147		" 80·2,5	1	2,43	194	//-		32	0,51
148	roct 7798-70	50AT M 30 × 120	32	0,889	195			33	0,43
149	To WE	TOKE M24 X80	144	0,39	196		II ONN-I 70×18	12	0,43
150	— //—		332	0,237	197	—-// ——	-11 - 100 2 159	2	1,32
151		- 11 -M16×65	280	0./33	198	//		4	0,56
152		" M16×60	260	0,125	199	— // — . · · ·	1/ <u>006-2</u>	28	0,33
153		11 M16 x55	172	0,117	200		!/	24	0,19
		II M16X50	196	0,11	201	//		1	0,12
154		14/04/20	50	0.059	202	//		4	0,37
155	 //		32	0,231	203		11 006-1	13	0,05
156	FOCT 5915-70	TAHKA M30	144	0,11	204		_ '- <u>'Uns-1</u>	4	0,06
157	TO WE	70 ME M24	392	0,064	205	— // ——	60 1- 0/15-1	39	0,06
158		M20	1008	0,034	206	 //	,, Ons-1	8	0,02
159			50	0,017	207		0051	40	0,0
160	//	— II— M12	4	0,061	208			16	0,00
161	FOCT 15180 · 70	Прокладка А- 125-16	2	0,282	209	——// ——		40	0,78
162	TO WE	TO HE A-400-25	32	0,04	210	OCT 34. 250-75	-4- 426-16	1	10,9
163		——————————————————————————————————————	6	0.033	211	TO ME	— y — 325-12	3	5,40
164	//		44	0,026	212		273-09	5	3,21
165			40	0,016	213		— "— 159-05	4	1,43
166		——————————————————————————————————————	40	0,144	214			2	1,23
167		——————————————————————————————————————	8	0,12	215	0CT 34.256-75		4	0,8
168			18	0.086	216	70 XE	57-01	1	0,53
169		A-200-16.	28	0,066	217	OCT 34.266·75	UNOPA OTBORA RH 325-12	1	18,35
170		11 A · 150 · 16	5	0,047	218	TO WE	TO WE QH273-09	2	7,11
171		" A · 100 · 16	16	0,04	219	06 0CT34.278-75	ВТУЛКА	8	24,5
172		" A-80-16	+		220	TOCT 16127-70	NORBECKA NMB-478	2	85,2
173		" A- 50-16	18	0,026	221	TO KE	TO WE NMB-219	1	25,8
174		" A-40-16	20	0,016	222			5	19,3
175		— "— A-32·16	14	0,013	223	——————————————————————————————————————		2	10,8
176		" A- 25-16	14	0,12	224		" NM- 219	11	8,3
177		1 A-250-10	2	0,026	225		- " - NM-159	9	4.7
178		" A-50-10	+	0,049	226			3	4,3
179		— " — A·125·6	3	0,049	227			13	2,1
180		" A· 100·6	-			FOCT 1627-70	TOURSECKA TIM-108	29	2,0
101			11	0,018	228	To WE	To KE 11M-89	3	1,5
182	/;	—— " — A·80·2,5	11	0,032	229			38	1,5
183	TOCT 14911-69	Chura 000-2	111	8,58	230		<i> </i>	201	כוי

MAPKI	O BOSHAYEHUE	Listanie un nouse	Kon	PUP
<u> </u>		HAMMAHOBAHNE	-	
231	TOCT 16127-70	NOQBECKA NM-45	4	1,3
232	TO HE	TO HE NM-38	5	1,3
233		II ЛМ-32	49	1,2
234	17 OCT 34. 290-75	325-1-2000	1	52,
235	15 OCT 34. 290-75		1	48,
236	11 007 34, 290-75	11159 -1-1000	8	26,
237	07 001 34.290-75		1	22
238	05 OCT 34. 290-75	// 89-1-1000	1	22,4
239	01 OCT 34. 290-75	"57-1-2000	4	22,
240	To WE	// 57-1-1000	4	10,5
241	330CT 34.287-75	377-1-1000	2	59,
242	13 007 34. 287-75	— // —325-1-1000	//	32,
243	09 007 34. 267-75	/ 273-1-1000	8	30
244	07 OCT 34. 287-75		18	23,
245	05 OCT: 34. 287-75	159-1-1000	1	21,
246	0100734.287-75	108-1-1000	11	10,
247	FOCT 2590-71	Kpyr 26 M	3,0	4,
248	To WE	TO WE 20	34,0	2,4
249		" 16	21,0	1,5
250	//	 " 12	94,0	0,8
251		10	157	0,6
252	TOCT 19903-74	CT. NUCT. 5=14	-	18
253	29 3KY-4-75	ЗАКЛАДНАЯ КОНСТРУКЦИЯ	1	
254	10 3KY · 1 · 75	To WE	g	
255	5 3×4.53-76		7	
256	1 3K4-145-75		1	
257	3K4-46-70		7	
258	38 OCT 34. 223-73	Фланцевое соединение	' -	
-	08 007 54: 225 75	16-300	1	143
259	24 007 34. 223-73	TO HE 10.325	1	143
260	23 OCT 34. 223-73	10 · 250	1	85
261	22 0CT 34. 223-73		1	63
20/	22 001 84. 2.23 73	МАССА УКАЗАНА ОДНОГО МЭДЕЛИЯ	-	- 00
	<u> </u>	TINCEN SKNONIN GUNGTO HONETHA		
	**.			
. •				

					· . ·		
				ТП 903-1-159	TI	M 1	
Mamvinct	Nº40KYM	ПОДПИСЬ	ZATA	Котельная с 4 котлак	чи ДЕ-	25-14	ГМ
		3auras			NUT.	ЛИСТ	// WCTOB
	3MALGEPLITENA TABOMAOSA	lei-			P	8	36
РУК.ГР. Исполн.	REMUNICAM RABCAR			ОБЩИЕ ДАННЫЕ (ПРОДОЛЖЕНИЕ)	EAH.	TEXT	DEKT

903-1-158 TMI

Tunoboň

HAUMEHOBAHUE STEMEHTA	1	TEMNEP. TENNOMO		Изоляции						OBO3HA4EHHE	
	,, _	00		Основной теппоизоляцион	ный		Покровный с	70H		NPHMEHAE.	PHME
ДИАМЕТР ИЛИ РАЗМЕРЫ, ММ	Кол.	MAKC.	СРЕДНЯ) ГОДОВАЯ	MATERIALI	ТОЛЩ. ММ	06444 0636M M ³	МАТЕРИА Л	Толщ. мм	OBYAA DOBEPX- HOCTO M2	MЫX ЧЕРТЕЖЕЙ	ЧАНИ
Abimococ AH-12,5	4	172		COBENUTOBBIE MNUTBI			CT TOHKONNCTOBAS			Albaom CEPHH	
		·		HA COBEJINTOBON MACTURE	100	5,4	OUNHKOBAHHAA FOCT 8075-56	0,8	54,4	2400·4;B.3; Л.44	
BEHTUNATOP BAH- 11, 2	4						ВибродемпФи рующая				
								IN D	34,6	1 2 2 4 4	
ГАЗОХОДЫ КОТЛА	4	378		ПЛИТЫ ТЕПЛОИЗОЛЯЦИ-			Maryini by 11 bs	,0,0	3,,0		<u> </u>
				OHHBIE MALKUE N3 MUHE		İ					
				РАЛЬНОЙ ВАТЫ НА СИНТЕ-					l	Альбом серии	-
				THYECKOM CBR39WWEM					<u> </u>	2.400-4; 8617.1	<u> </u>
				M75 FOCT 9573-72	100	29 0	Фольгоизол гост 20429-75	n 2	300.0	INCT6154-58	
Воздуховоды котла	4			TO HE	40	17.0			175,0	TO HE	
TPABEBUK AY 300; PKOPNYCA 630	1	70			40		CT. TOHKONUCTOBASI	70 11.0		ATO THE CEPHIN	
							DUHHKOBAHHAA TOCT 807556	08	4,0	3.903-s/13;e1,n252	
ТРУБОПРОВОД ф325 м	48.0	194		MATHI TENNOUSONAY MATRIE		 	UHANNUBANNAN IUCI 8U 1558	0,0	1,0		1
				H3 MHH. BATOI HA CUHTETUY.		 				ANGEOM CEPHH	
				CBR 3. M75 FOCT 9573-12	60	2 504	Man		677	3.903-5/73	-
То HE ф219	98,0	TOHE		Полносборные теплоизопяц	00	3,509	Фольгоизол гост 20429-75	0,2	01,2	Bып1; ЛИСТЫ 25,26	1
		10.00	-	MUNEPAJOBATHUE KONCTPYK-					 	Anbbom Cepun	
					50				ļ	2.400-4	
φ57	138,0	-,,-	 	ини мюо. 1936-1180-10 Ясбапухшнур	30	4,116	TO HE	TO HE	98,0	BBIN 1; NHCTB112,13	1
	1	-"-	 						-	Альбом серии	
	1			BONNETKE CTEKNAHHON HUTON		-			<u> </u>	2.400-4	
φ45	160,0	,	 	M200 TY36 1695-73	50	2,346		- " -		ВЫП. 1;ЛИСТ 30	
428	15,0	-"-	 	TO HIE	40	1,76		_9,	64,0	TO HE	
, 22	45,0	-,,-	-		40	0,15		-,, -			
	145,0	-97 -			40	0,405		-,, -	15,75	_,	ļ
— n — 418	44,0	-77-			40	1,16		-,, -	47, 85		<u> </u>
ЗАДВИНКА ДУ 200	4	- 27			40	0,352		,-	14,52	<u>_,,</u>	ļ
опроини досо-	+-	- >>	 	MATH MUHEPAJOBATH DIE	<u> </u>		Ст. тонколистовая			Альбом серии	
ВЕНТИЛЬ ДУ40	24	 		ПРОШИВНЫЕ ГОСТ 218 8 096. MSO		1	ОЦИНКОВАННАЯ ГОСТ8075-56	0,8	5,2	3903S/18 B.1; N.82	<u> </u>
ВЕНТИЛЬ И ОБР. КЛАПАН ДУ 25	14	->-	 	TO WE	40	0,322	TO HE	TOHE	11,04	TO HE	
Вентиль ДУ10	4	- 99	 -	,	40	0,14		- ,, -	5,32		<u>L</u>
TPYSONPOBOD 4426	1.5	174			40	0,04		,, -	1,52	,	
,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,3	1/4		MUTH TENDOUSONAY MAIKUE	 	 				Альбом серии	
	+	 	 	W3 MNH. BATHI HA CHHTETHY.		 				3.903-5/13	
		ــــــــــــــــــــــــــــــــــــــ	L	CBA3. M75 (OCT 9573-72	100	0,248	Фальгоизол ГОСТ 20429-75	102	2 96	BBID 1 DUCTO 25.26	;

ПРИМЕЧАНИЕ

ИЗОЛЯЦИЮ БАКОВ АККУМУЛЯ -ТОРЛЫХ V=300 M³ ВЫПОЛНИТЬ ПО СЕРИИ 100-3 АЛЬБОМ [

-				TN 903-1-159		M 1	
ISM TINCT	N AOKYM.	nonn.	DATA	КОТЕЛЬНАЯ С Ч КОТЛАМИ	AE-	25-14/	"M
		Janas			SHIT	SHET	SUCTOB
A4.OTA	Знльберштейн	log			D	9	36
	<i>PABPHITOBA</i>	sil.	Ĺ				1-0
	AKWHHCKH H	92		OBMUE MAHHHE	CALL	TEXNE	IUEKT
сполн.	PAPEH4	Mosor		(777-77			
KOHTP	HAYMOB .	Black	11.78	(ПРОДОЛНЕНИЕ)	1	r. Mocke	9A
	Кап	HPORA	$n \cdot 7$	SPEHTHERA MATE OU 11		POPMA	7 22

HAMMEURRAUME SASSES		ТЕМПЕР	ATYPA	Изоляцио	HHbI	EK	ОНСТРУКЦИИ			OBO 3 HAYEHHE	
HAUMEHOBAHUE SNEMEHTA		TENAGH PC	OCHTENA	Основной теплоизоляцион				пой		TPHMEHRE -	NPHME-
	Кол.	MAKC	СРЕДНЯЯ ГОДОВАЯ	МАТЕРИАЛ	Толщ. ММ	06ЩИЙ 06ЪЕМ M3	МАТЕРИА Л	ТОЛЩ. ММ	OSULAA NOBEPX HOCT b M ²	МЫХ ЧЕРТЕ НЕЙ	<i>YAHUE</i>
ТРУБОПРОВОД ф325 м	36,0	174		Плиты теплоизоляционны						Альбом серии	
				N3 MUH. BATHI HA CUHTETUY.						3.903-5/73	
				CBA3.M75 POCT 9573-72	60	2,63	Фольгоизол ГОСТ 20429-15	0,2	50,4	86M.1 NUCT.25,26	
<u> ΤΟ ΜΕ </u>	14,0	TO HIE		TO HE	80	1,61	TQ HE		23,66	10 WE	
— »— φ273	62,0	- 22		Полносборные теплоизоляц						Альбом серим	
				MUHEPANOBATHЫЕ KOYCTPYK.						2.400-4	
				ЦИИ M100 ТУ36-1180-70	60	3,91		- 99	76.26	B6:17.1; MACT 61 12,13	
—n — \$219	12,0	,_		TO HE	50	0,504		- ,,	12.0	TO HE	
	6,0	_,,_			50	0,234		-,,-	4,86		
————	12,0	,-			50	0,348		- ,,-	8,76		
\$\phi_108	38,0	,,_			50	0,95			24.7		
, φ89	16,0	,,-			50	0.352	11	>,	9,44	,	
φ16	14,0	_,,_			50	0,28	33	- > >-	7. 7		
φ57	60,0			Асбопчхшнчр		1 -, -0		-,		Antenn conun	
		,-	†	BONNETKE CTEKNAHHUN KUTUK						Альбом серии	
						400				2.400-4	
— 21 — \$ 45	10,0			M200 7936-1695-73	:50 40	1,02		- ,, -		BUN.1; NHCT30	
, <i>ф32</i>	80,0	- 27		TO HE	 	0,11			4,0	TO HE	
ЗАДВИНКА ДУ 400/300	30,0	>>		91	40	0,72	>,	-22-	28,8		
	-			MATHI MUHEPAJIOBATHOLE	L	ļ	CT. TOHKONHETOBASI			Альбом серии	
TO HE \$4 250	 _	├		ПРОШИВН. М150 ГОСТ 2188076	100	0,218	ОЦИНКОВАННАЯ ГОСТ 8075·56	0,8	5,24	3903-5 93.8 1; 11.82	
Вентиль Ду 125	2	- ,, -	ļ	TO HE	60	0,168	TO WE	TO HE	3,4	TO HE	
TO HE ASTO	3		ļ	,-	50	0,03		- ,,	3,0	· 2,	
ВЕНТИЛЬ, ОБР.КЛ. И КОНДЕНСАТООТ В. ДУ 25	1	- 27 -			50	0,029	,	,, _	0,66		
	13	-,,-			40	0,13	,,	_,,_	4,94	*;	
ТРУБОПРОВОД ф 325	40,0	150		Плиты теплоизопяц,пягки е						AJI660M CEPH H	
	<u> </u>			N3 MUH. BATHI HA CUMTETUY.						3.903-5/73	
-0 115 + 272				CBA3.M75 FOCT 9573-72	60	2,92	Фольгоизол гост 20429-75	0,2	56,0	Вып.1:лист.25,26	
TO HE \$273	8,0	TO HE		Полносборные теплоизоляц						Anbbom cephn	
				МИНЕРАЛОВАТНЫЕ КОНСТРУК						2.400-4	
				ции м100 1936, 1180-70	60	0,504	TO WE	TO HIE	9.84	Вып.1;листы12,13	
——,, —— <i>ф219</i>	26,0			TO HE	60	1,38			27,56		
ф21,3	10,0	-97 -		Асболухшнир		,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-,,		ATILBOM CEPHH	
				В ОПЛЕТКЕ СТЕКПЯННОЙ НИТЬЮ		<u> </u>				2.400-4	
			1			0.05			27	Вып.1 <i>пист30</i>	
ЗАДВИНКА ДУЗОО	1	 	 -	M200 TY 36-1695 73	30	0,05		-,,-	2,7		
	† <u> </u>	- 97-	 	MATHI MUHEPATIOBATHHE		 	Ст. ТОНКОЛИСТОВАЯ		0 =	ANDBOM TEPHN	
		L	<u> </u>	PROMINENDIE M150 POET 2188096	60	0,096	OUNHKOBAHHAA FOCT 8075-56	0,8	2,0	3 <i>903·5 13 8.</i> 1;, <i>118</i> 2	
									П		

Сводная спецификация на изоляцию оборудования и трубопроводов (продолжение)

				TN 903-1-159	T	M 1	
	N AOKYM.	Подп.	JATA	Котельная с 4 котлами Д	E-25-	14 PM	
	3AMAPHHA				JIHT	NHCT	THETO8
	ЗнЛьберштейн					10	7.5
	PABPH PORA					10	36
	Якшинский	-46.5	-	ОБЩИЕ ДАННЫЕ	DALL	TCVGC	
Исполн	PAPENY.	1.36		(ILIAH	TEXNE	1111-K [1
HKOHTP.	HAYMOB	OHOYA	11.78	(ПРОДОЛНЕНИЕ)	/	MOCKB	4
		• •	KONH	PORAN: TEPEHTBERA 16175	011 10	<i>m</i>	

Сводная	СПЕЦИФИКАЦИЯ	на изопяцию	050РУДС SAНИЯ	K.	TPSEQNPQBOACB	(ПРОДОЛНЕНИЕ)

HARMEHOBARNE STEME YTA	ì	EMILE	PATYPA	Изоляцио	HHbil	F KOH	СТРУКЦИИ			OBO3HA4EHHE	
HARREHUBARNE SHERE TIA	1	VEIIIUN OC	YUCHIENH	Основной теплоизоляции	ПНЫЙ	CION	NOKPOBHHIM CHOW			PHHEHAE-	PRIME
DUAMETP UNU PASMEPHI MM	KOT.	MAKC.	Cacavac	M a	ТОЛИЈ. ИМ	06 Ъ ЕН М ^{,3}	MATEPHAJI	Толиі. пп	DEWAR DOSEPX HOCTO MC	МЫХ ЧЕРТЕ- НЕЙ	YAHUE
Вентиль Ду 15	2	150		Асбапухшнур						Альбом СЕРИН	
		<u> </u>		В ОПЛЕТКЕ СТЕКЛЯННОЙ НИТЬЮ	<u> </u>		CT. TOHKONHCTOBAS			2.400-4	
	ļ	<u> </u>	<u> </u>	M200 TY36-887-67	30	0,005	OUNHKOBAHHAA FOCT 80 75-75	0,8	0,17	8611.1 1140730	
TPYBONF2BOR \$123 M	61,0	104	ļ	Полносборные теплои зо -						Альбом серин	
	 	ļ	ļ	ЛЯЦ МИНЕРАЛОВАТНЫЕ КОН-					<u> </u>	2.400-4	
	 	ļ	ļ	CTPYK!WW M100 1436-1595-13	40	1,34	Фельгоизол гост 20429-15	0,2	40,87	BBID 10HCT 12,13	
70 HE \$108	16,0	TO HE		TO WE	40	0,304	TO HE	TO HIE	9,44	70 HE	
— ,,— <i>ф89</i>	170,0	- >>-		9;	40	2,72		- 27 -	90,1		
<i>ф18</i>	3,0	- 27		Асьопухшнур		, 				Альбом СЕРИН	
	<u> </u>	ļ		В ОПЛЕТКЕ СТЕКЛЯННОЙ Н:ТЬЮ						2.400-4	
-	 	ļ		M200 TY36-1695-73	30	0,015		->>-	0,81	вып.t;лист 30	
Задвинка ду100	1	_,,_		MATH MUHEPANOBATHHE			CT. TOHKONHCTOBAS			Альбом серни	
	L			ПРОШИВНЫЕ M150 ГОСТ 2188076	40	0,017	<u> 0444КОВАННАЯ : ОСТ 8075-75</u>	0,8	0,64	3.903·5/73 B.1 J .82	
Вентиль Ду10	2_	_,, _		TO ME	30	0,002	TO HE	TO HE	0,076	TO HE	
ТР УБ ОПРО ВОД ф325	37,0	80-70		Плиты теплоиз мягкие из мин.						Альбон серин	
				BATHI HA CNH. C8. M75 [OCT 9573:72	60	2,7	Фольгонзол гост 20429-15	0,2	51,8	3.903·5/73 B1л.2525	<u>:</u>
<i>ТО НЕ ф213</i>	90,0	70 H E		ПОЛНОСБОРНЫЕ ТЕПЛОИЗ, МИНЕ-						Альбом серий	
				PAT. KOHCTP. M100 TY36-1180-70	50	4,5	TO HE	TO HE	105,3	2.400-4 B 1; J. 12,13	
—— » —	60,0	- >>		» —	50	2,52		- >> -	60,0	,,	
<i>n φ159</i>	162,0	-,,-			40	4,05		- >7	121,5		
ф108	23,0	-,,-			40	0,44			13,57	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
, <i>φ89</i>	113,0	- ,,-			40	1,81	99	-97 -	59, 9	9,	
φ57	43,0	- 92-		Асбопухшнур						Альбом серии	
				ВОПЛЕТКЕ СТЕКЛЯННОЙ НИТЬЮ						2.400-4	
•	<u> </u>			M200 TY 36 1635-73	40	0,52		- 99	18,49	BbIN, 1 NHCT 30	
Задвинка Дузоо	1.	- ,, -		MATH MUHEPANOBATHHE			CT. TOHKOJUCTOBASI			Альбом серни	
		,		/IPOWN8HbIE M150	60	0,096	OUNHKOBAHHAA FOCT 8 075:75	0,8	14,78	3.903·5/73,8.1,n82	
70 H E [] 4250	2	-,,-	<u>.</u>	TO WE	50	0,168	TO HE	TO HE	25,96	TO HE	
,, Дугоо	3	-,, -		,,	50	0,183		97	30,72	,,	
— " — ДУ 150	10 .	-,,_			40	0, 28	97	- 97	73,2		
п ДУ80	8	-97-	ļ		40	0,133	n	n	4,64		
ВЕНТИЛЬ ДУ50	4				40	0,058		n	1,92		
TO HE	2	-,,-	ļ	Нсболухшнур						Альбон серци	
	<u> </u>	ļ	ļ	В ОПЛЕТКЕ СТЕКЛЯННОЙ НИТЬЮ				<u> </u> -	ļ	2.400-4	
	1			M200 TY36-1695-73	30	0,02		- 27	0,76	ВЫП 1; лист 30	
TPY50nP080A \$21,3	10,0	- 22	<u> </u>	TO WE	30	0,05	Фольгонзол ГОСТ 20429-75	0,2	2,7	TO HE	

SPHMEYAHHE:

ДЛЯ ТРУБОПРОВОДОВ МЕЖДУ БАКАМИ АККУМУЛЯТОРНЫМН И КОТЕЛЬНОЙ ТОЛЩИНУ H30 AR 444 OCHO8HOTO TETAOH30 AR 440H-HOPO CAOR PHHATE;

7846A \$273 -50MM 4159 - 50MM 489 - 30MM

\pm				TN 903-1-159	T	M 1	
Man Sinct	N AOKYM.	Подп.	GATA	Котельная с 4 когла	YN DE	-25-1	4 PM
I'A. HH. IIP.	BAMAPHHA SKIIBBEPLITER	Jangas			1147	THET	MACTOS
PA. C954.	CASPHITOSA	Jely			P	11	36
нспали	AKWESTER MA PROPERTY MAHMOB	Miles	778	ОБЩИЕ ДАННЫЕ (продолжение)) EXTIF	POEKT
	KONHPO			THEBA 16175-04 1		. MOCKE	

WOPMAT 22 r

СВОДНАЯ СПЕЦИФИКАЦИЯ НА ИЗОЛЯЦИЮ ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ (ОКОНЧАНИЕ)

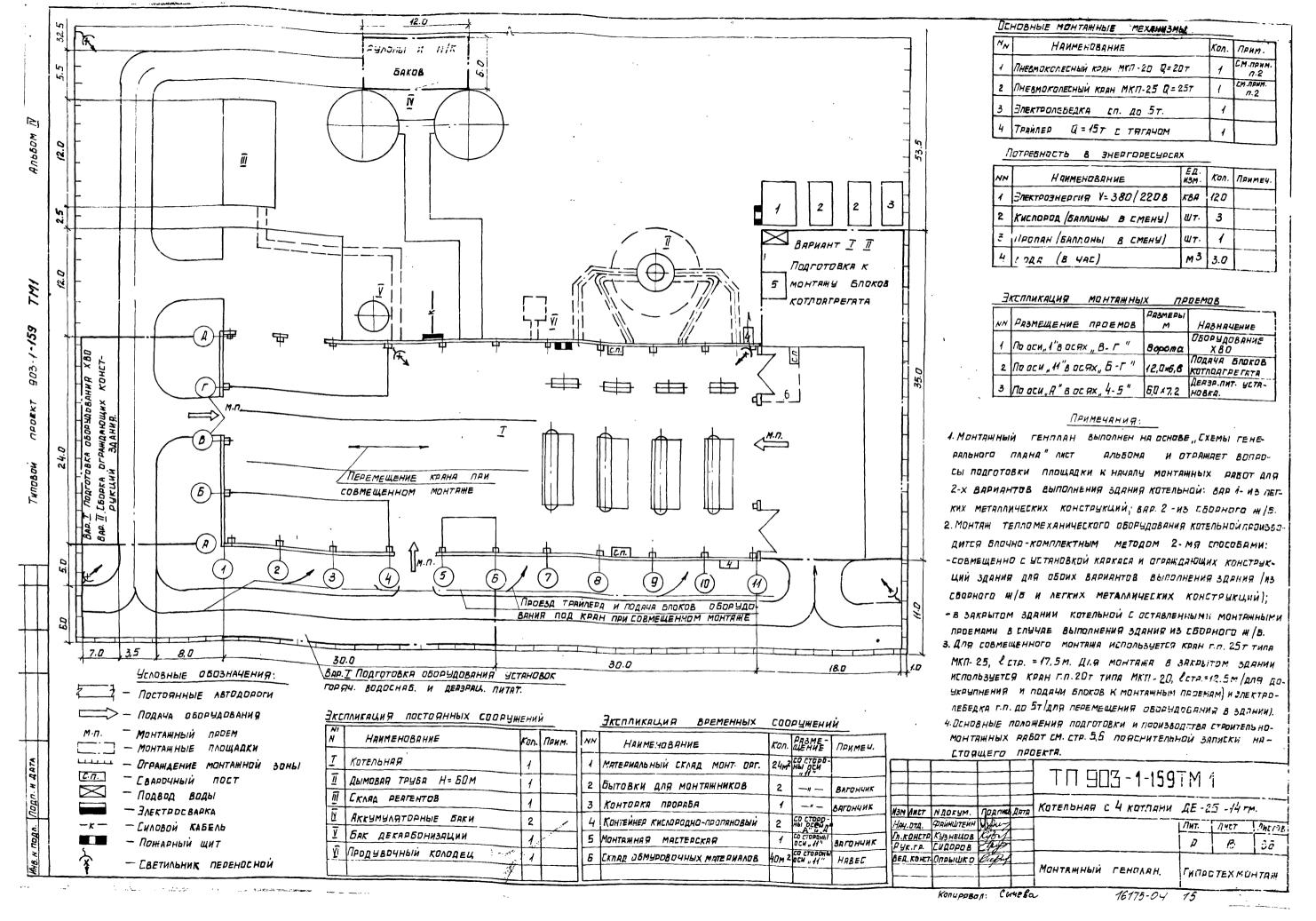
И			TEMNEP		Изоляці			нструкции			<i>ОБОЗНАЧЕНИЕ</i>	
HAUMEHOBAHU	IE ƏJEMEHTA	Кол.	TENJOHOCHTEJI. . °C		В Основной теплоизоляционный слой			Покровный сл	гой		DPUMENOE -	PUME-
ДИАМЕТР ИЛИ	PA3MEPbI, MM	p, 457.	<u> </u>	[PE][HRR [O][OB] AS			0544Й 058ЕМ М ³	MATEPHAJI	Толщ. ММ.	DEWAR DOBEPX HOCTO M 2	Mbix YEPTE IHE Й	RNHAP
ТРУБОПРОВОД	ф478 м	l .				T_		OKPACKA. FPYHT		1.		
					-			[P-020 KPACKA 5T-177		—		
								3A ABA PA3A		20,86		
TO HE	φ273	5,0						TO HE		4, 3		
	ф219	36,0								24, 84		
	φ159	86,0					Ī			46,0		
	φ108	3,0						>,		10,0		
·	<i>ф76</i>	42,0								10,8		
	φ57	330,0	7							59,4		
	ф38	240,0	7				<u> </u>			31, 2		
	ф32	250,0	2			<u> </u>	_			25,0		
	φ25	120,0	7				T-		•	9,6		
	φ14	60,0	2				T			3,6		
Вентиль	Дч32	8				· _	T			2,4		
TO HE	Д у 15	4								0,4		

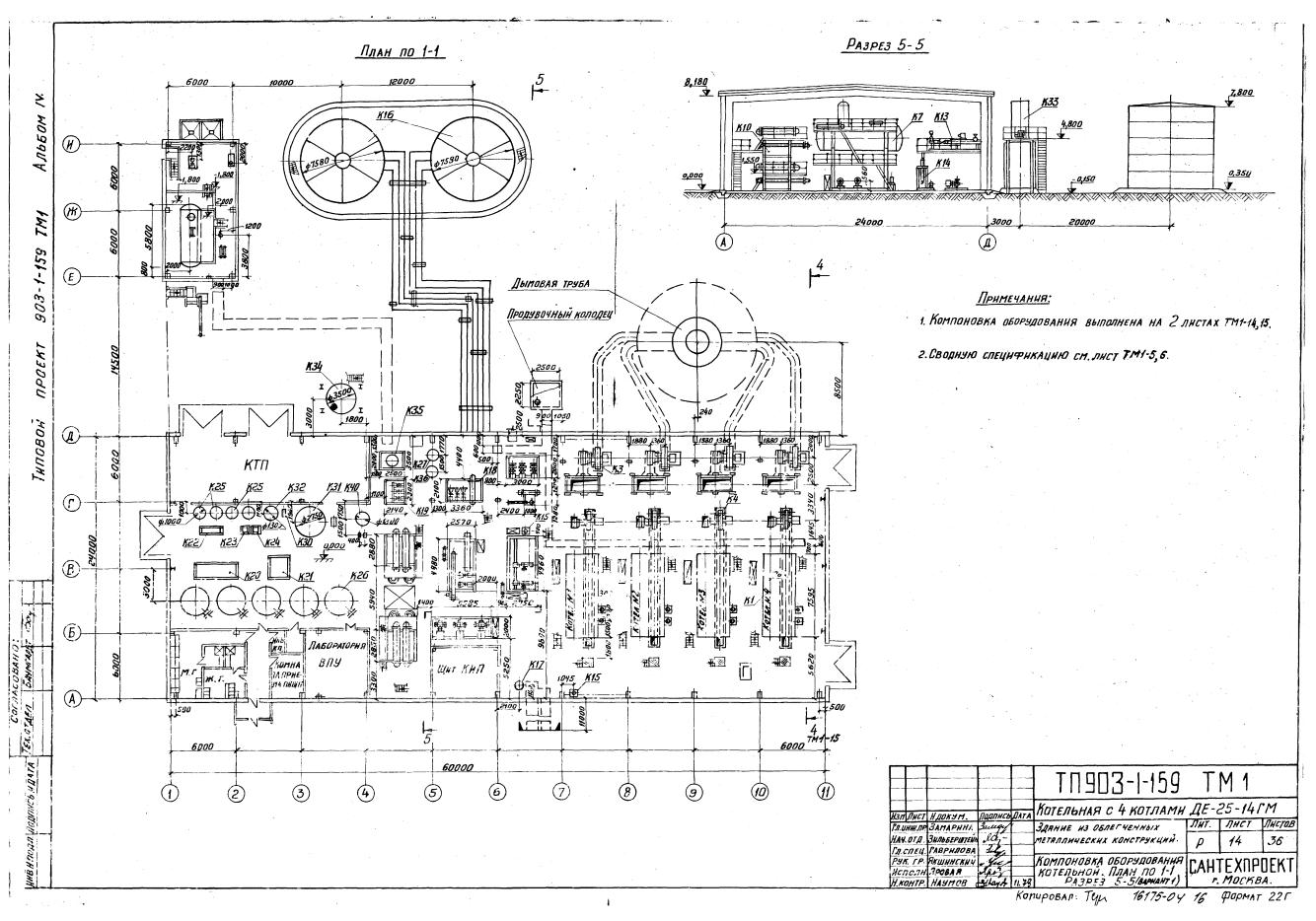
RPUMEYAHUE:

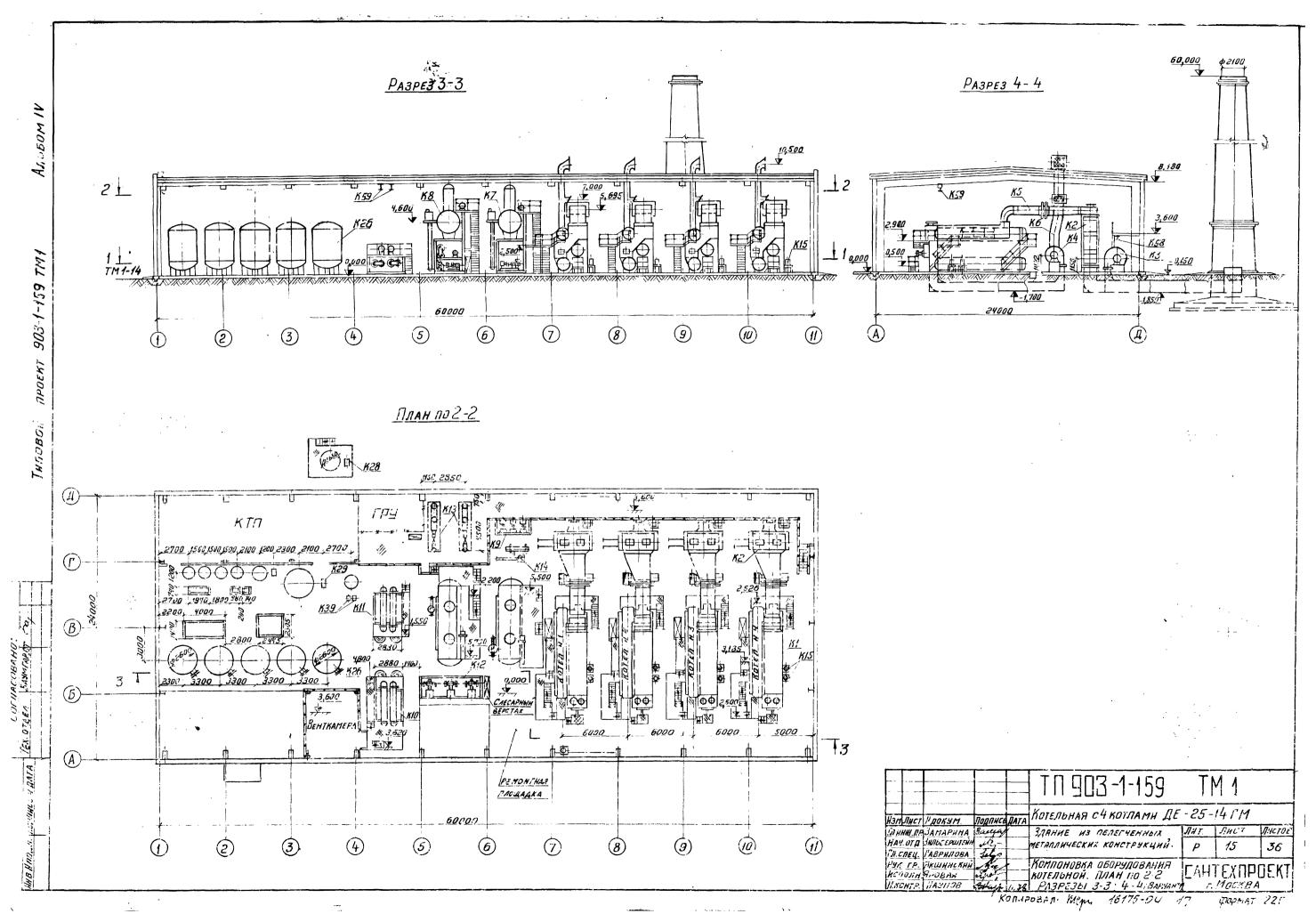
В сводной спецификации РАСХОД МАТЕ-РИАЛОВ ДАН С УЧЕТОМ КОЭФФИЦИЕНТА УПЛОТНЕНИЯ: ДЛЯ МАТОВ —1,2 ДЛЯ ПЛИТ МИНЕРАЛО-- 1.5 BATHOIX

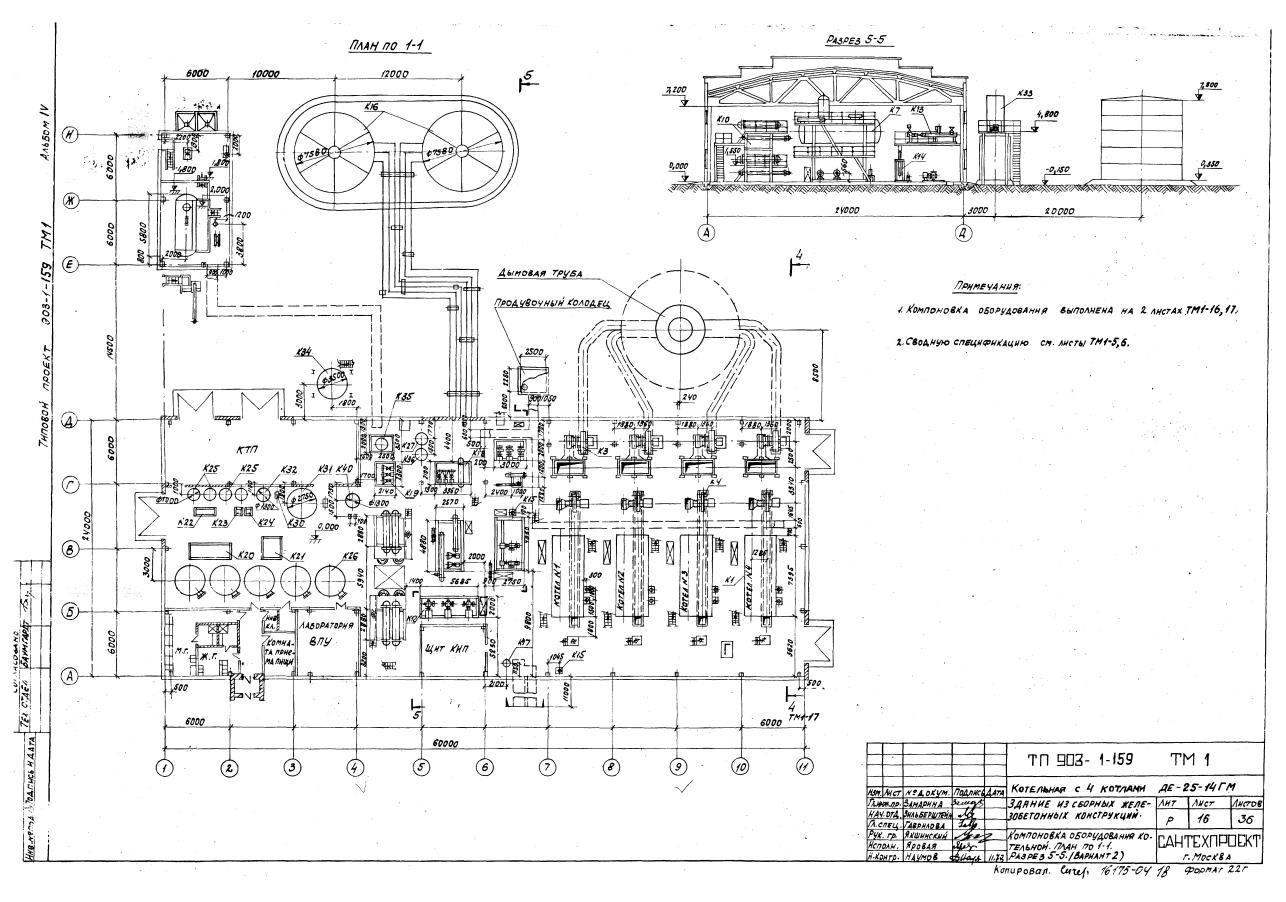
		MAPKA	<i>Ο</i> ΔΟ3ΗΑΥΕΗ ΗΕ	HAUMEHOBAHUE	Кал.	PHME-
		MENA		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		YAHHE
		1	FOCT 9573-72	<i>Плиты теплоизоляцнонные</i>		-
				MARKHE H3 MUH. BATHI HA CUHTE:		
	_			ТИЧЕСКОМ СВЯЭЧЮЩЕМ M75		
	11			<i>ТОЛЩИНА-100</i> М ³	44,0	
t	1	2	TO HE	TO HE -80	2,5	
		_ 3		-60	17,8	
اد	44	4			26,0	
3		5	roct 21880-16	MATHI MUHEPATIOBATHHIE NPOWNS		
3			~	НЫЕ СОБКЛАДКОЙ МЕТАЛЛИЧЕС-		
= }	++			КОЙ СЕТКОЙ М150 (ТОЛЩИНА-100)	0,3	
		6	TO WE	TO HE (TOHE -60	0,43	
1		7		(50	0,85	
1		8			1,35	
	9	9			0,03	
	M ,7147A	10	<u> 1936 - 1180 - 70</u>	Полносборные теплоизоляц		
	2			MUHEPANOBATH	30,3	
		" -	<u>74 36 - 1695-73</u>	Асьапухшнур		
	1			ВОПЛЕТКЕ СТЕКЛЯН.НИТЬЮ М200	8,7	
	zoc N SH	12	FOCT 6788-74	Плиты совелитовые толучна 100	5,4	
	WH8)	13		МАСТИКА СОВЕЛИТОВАЯ	0,3	

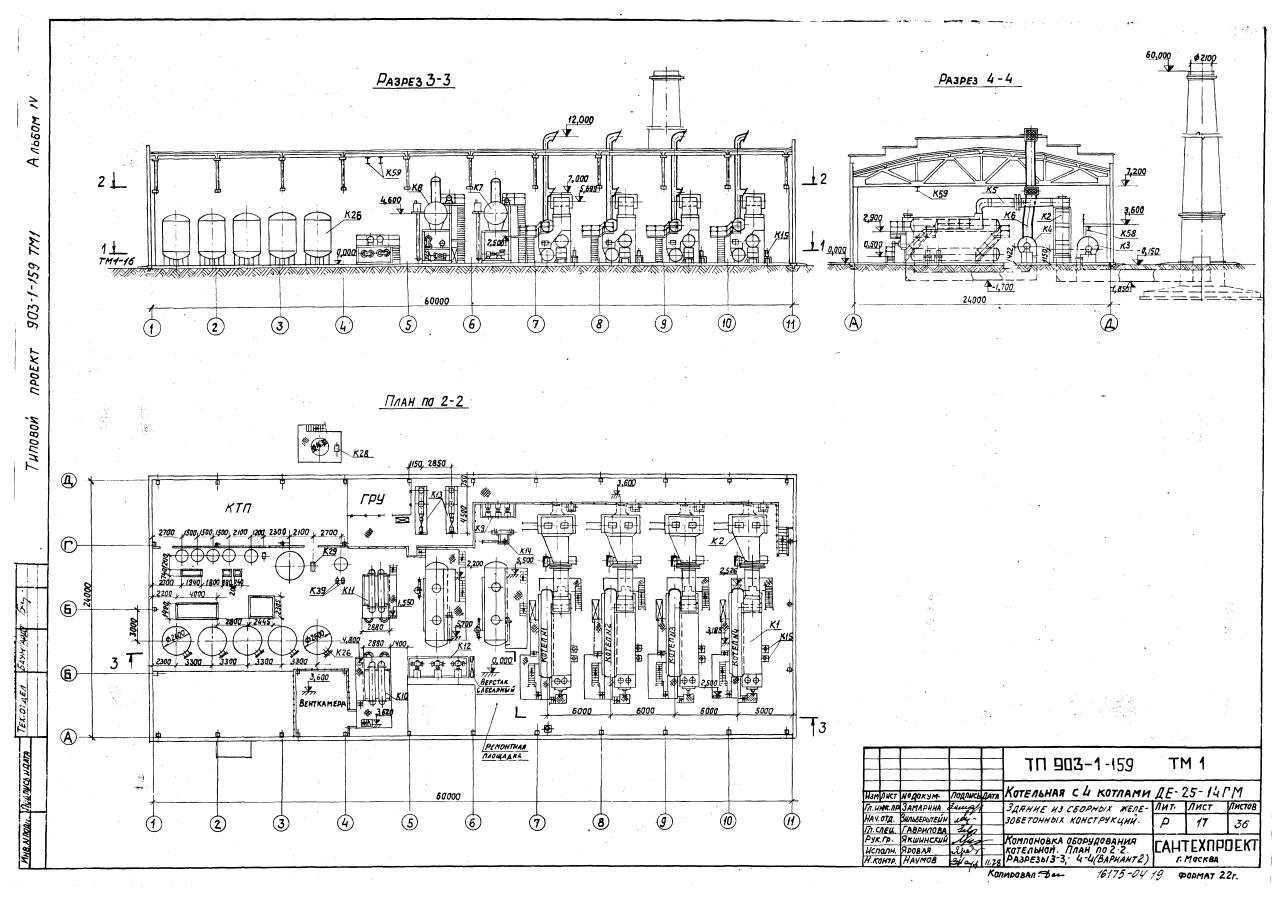
MAPKA	O503HA4EHHE	HAUMEHOBAHNE	Кол.	NPUME- YAHUE
14	roct 6009-74	DEHTA CTANBHAR 3×30 KT	177,0	
15	TO HE	10 WE 2×30	85,0	
16	FOCT 3560-73	NEHTA CT. YNAKOBOYHAA 0,7×20	90,0	
17	TO HE	TO HE 0,5×12	40,0	
18	FOCT 3282-74	ПРОВОЛОКА СТ. УПАКОВОЧНАЯ 0,8	30,0	
19	TO HE	TO HE 1,2	1,0	
20	>,	,, 2,0	122,0	
21			150,0	
22	ract 20429-75	Фольгоизол м2	2100,0	
23	FOCT 5631-70		55,0	
24	FOCT 4056-63	ΓΡΥΗΤ ΓΦ -020	32,0	
25	FOCT 9812-74	Битум	77,0	
26	[OCT 8075-56	СТАЛЬ ТОНКОЛИСТОВАЯ ОЦИН-		
		KOBAHHAA TOAWUHA-Q8 m2	254 Q	
27	FOCT 8481-75	CTEKNOTKAHB KT	50,0	
28		Винт самонарезающий		
		4×12-011 0444K.	1,0	
29	FOCT 10299-68	ЗАКЛЕПКА	1,0	
ļ		Вибродемпфирующая мастика		
		BJJ-17-59 JOJUJUHA-1UMM M	34,6	

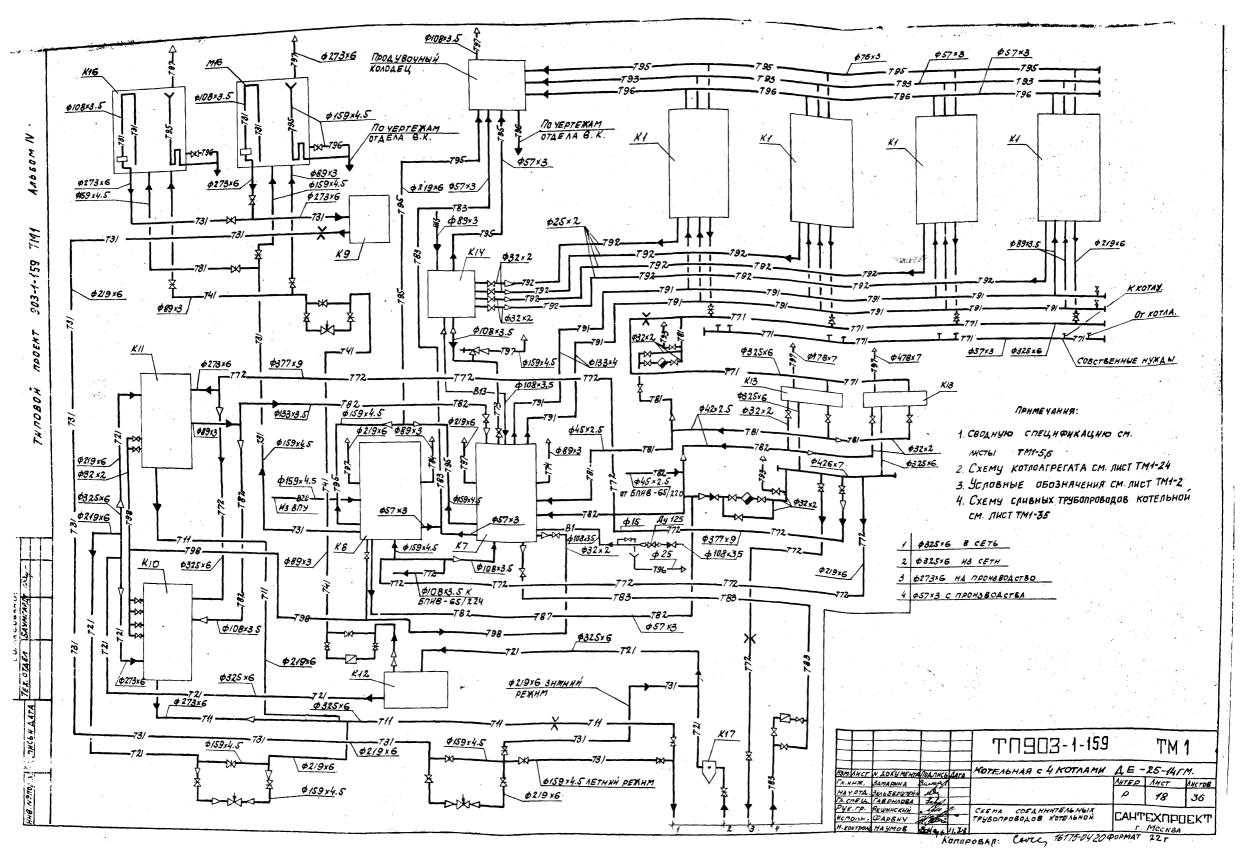

MAPKA	ОБОЗНАЧЕНИЕ	HAUMEHOBAHUE	Knn	NPUME: YAHUE
30	10CT 1779 - 72	ШнУР АСБЕСТОВЫЙ ф20 n	32,0	
31		TOPKPETHAN MACCA M3	1,2	
32	1926-02-592-75	SEPMETUK "AS-4" KE	33840	

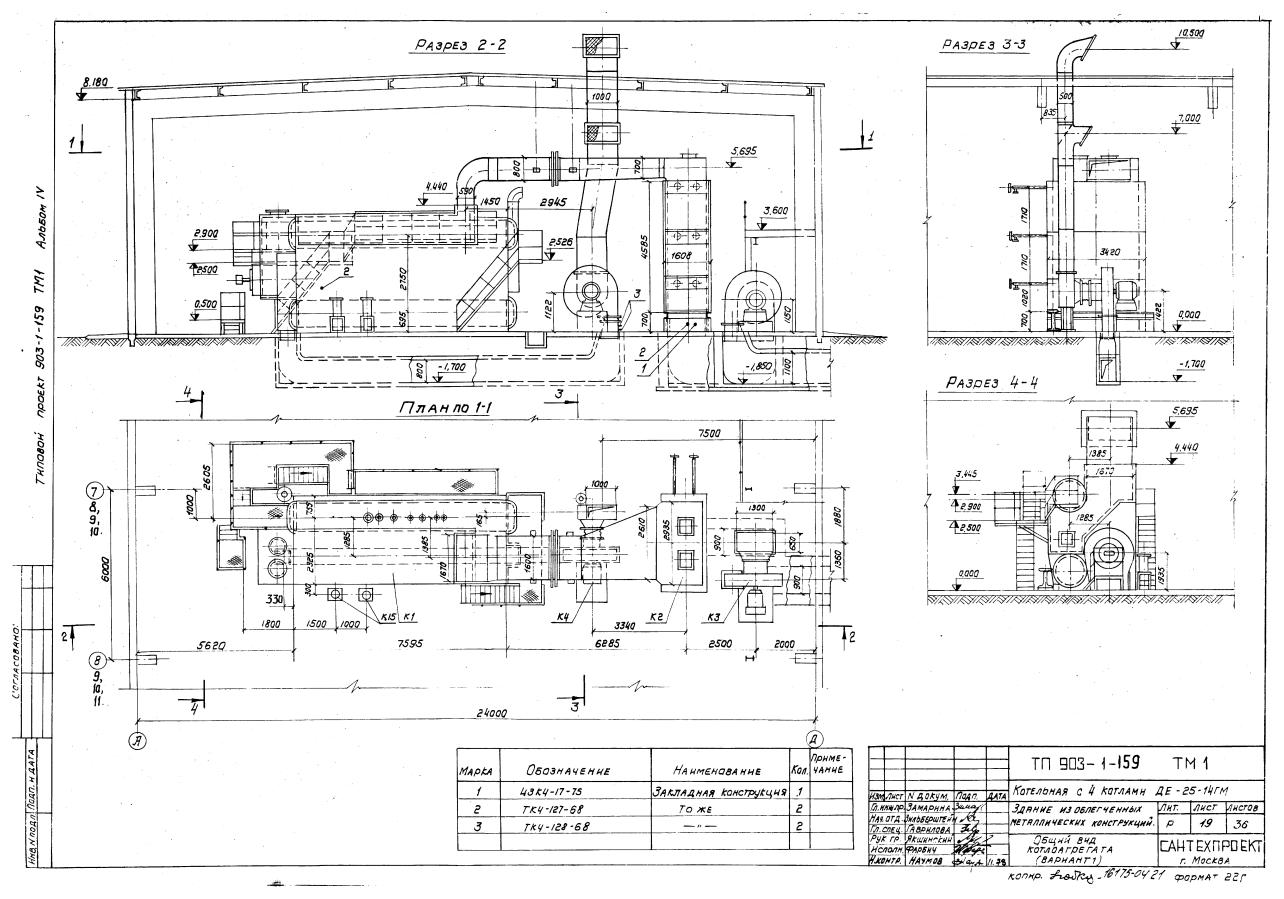

	TN 903-1-159	T	M 1	
HAM THET N HOKY M TORN DA	KOTENBHAR C 4 KOTNAMI	A DE-	25-14	IM
TA HH. TO BAMAPHHA Bulley		SUT	THET	NHCTOS
PAY.OTA JANGEPWIENH LOG-	-	P	12	36
PUK. TP PRIJUHEKUR	Общие ДАННЫЕ	CAH	TEXNE	DEKT
H.KOHTP HAYMOB SHEN III			MOCKB	A

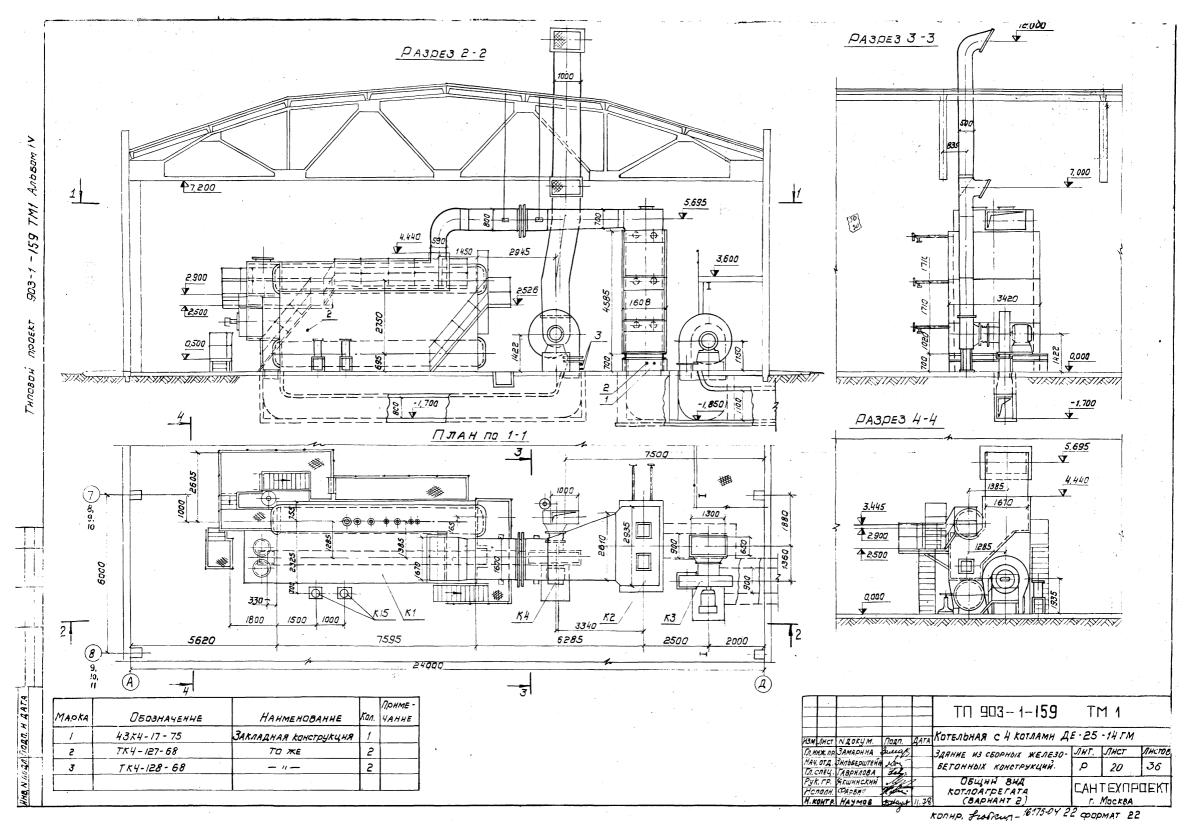

KON. IEPEHTHEBA

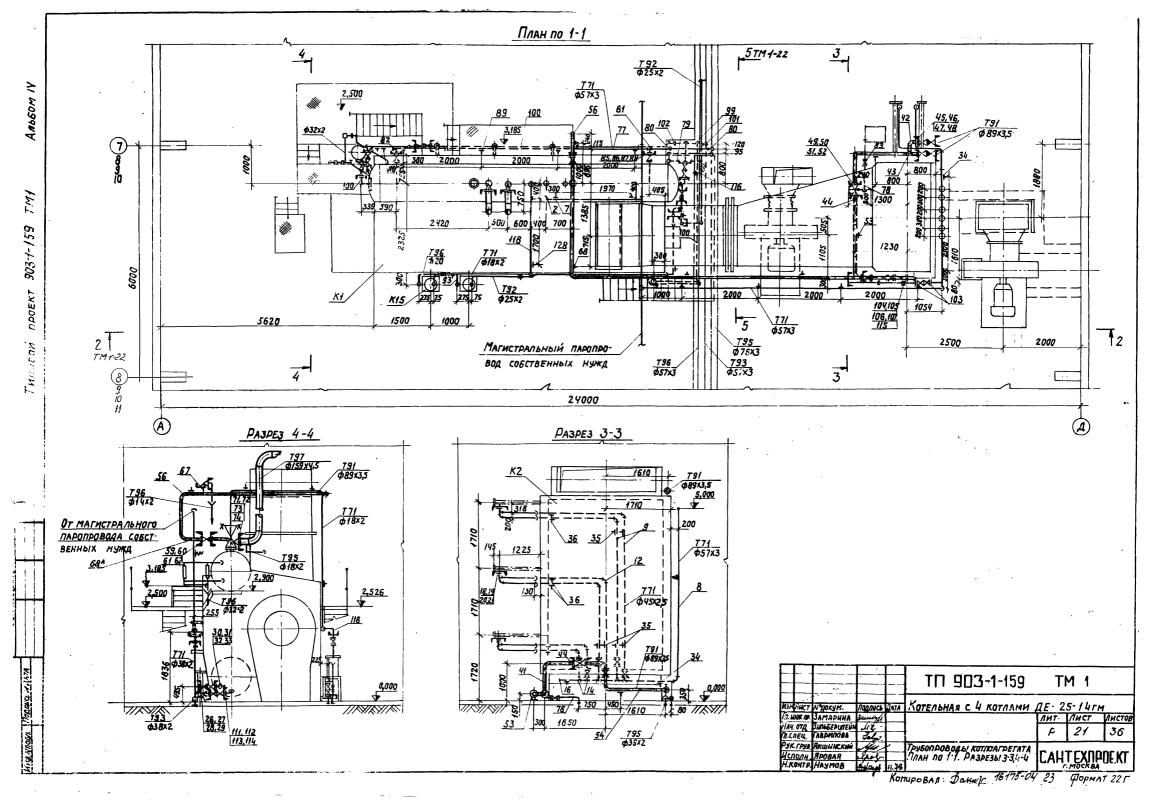

16175-04 14

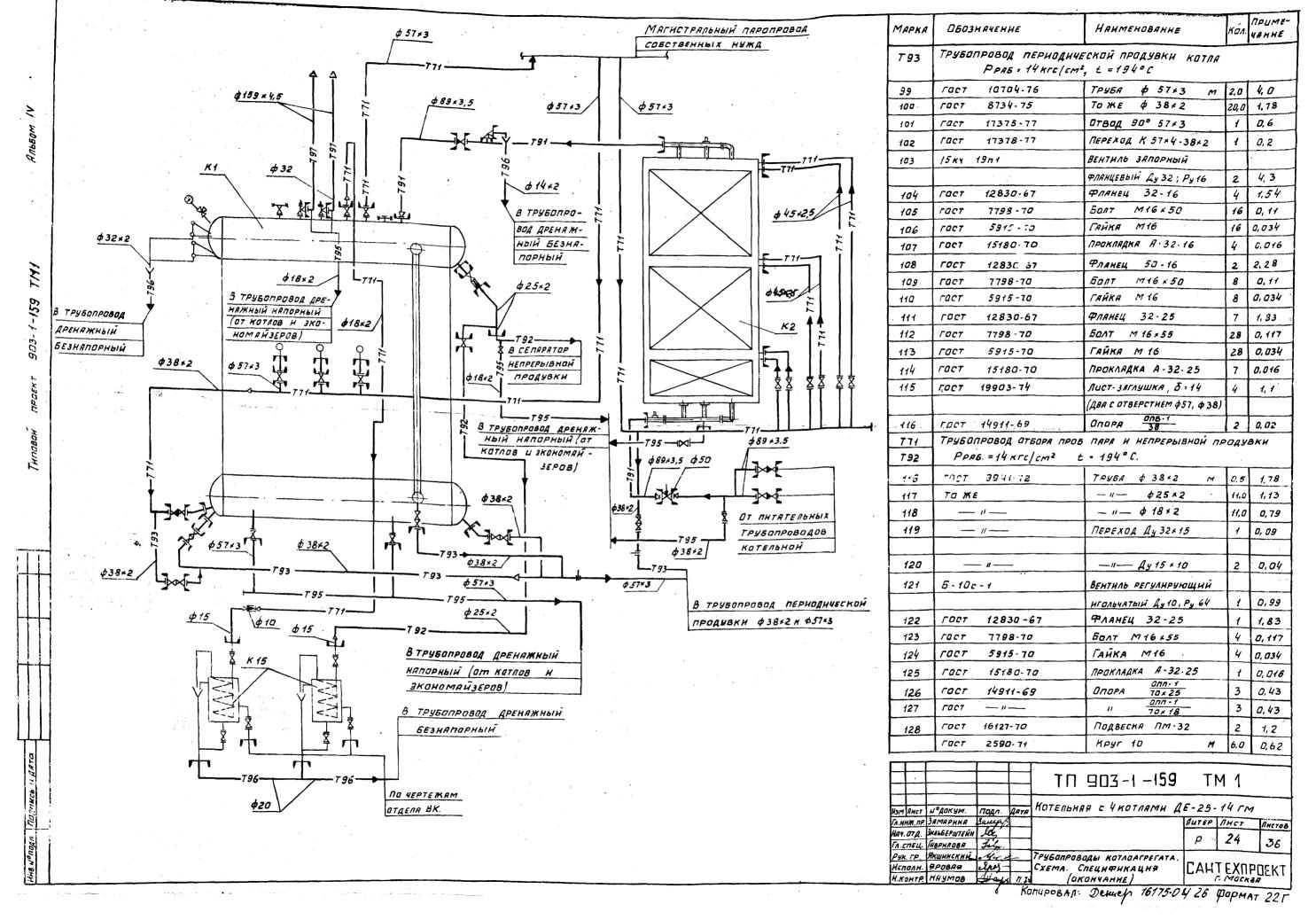

POPMAT 221

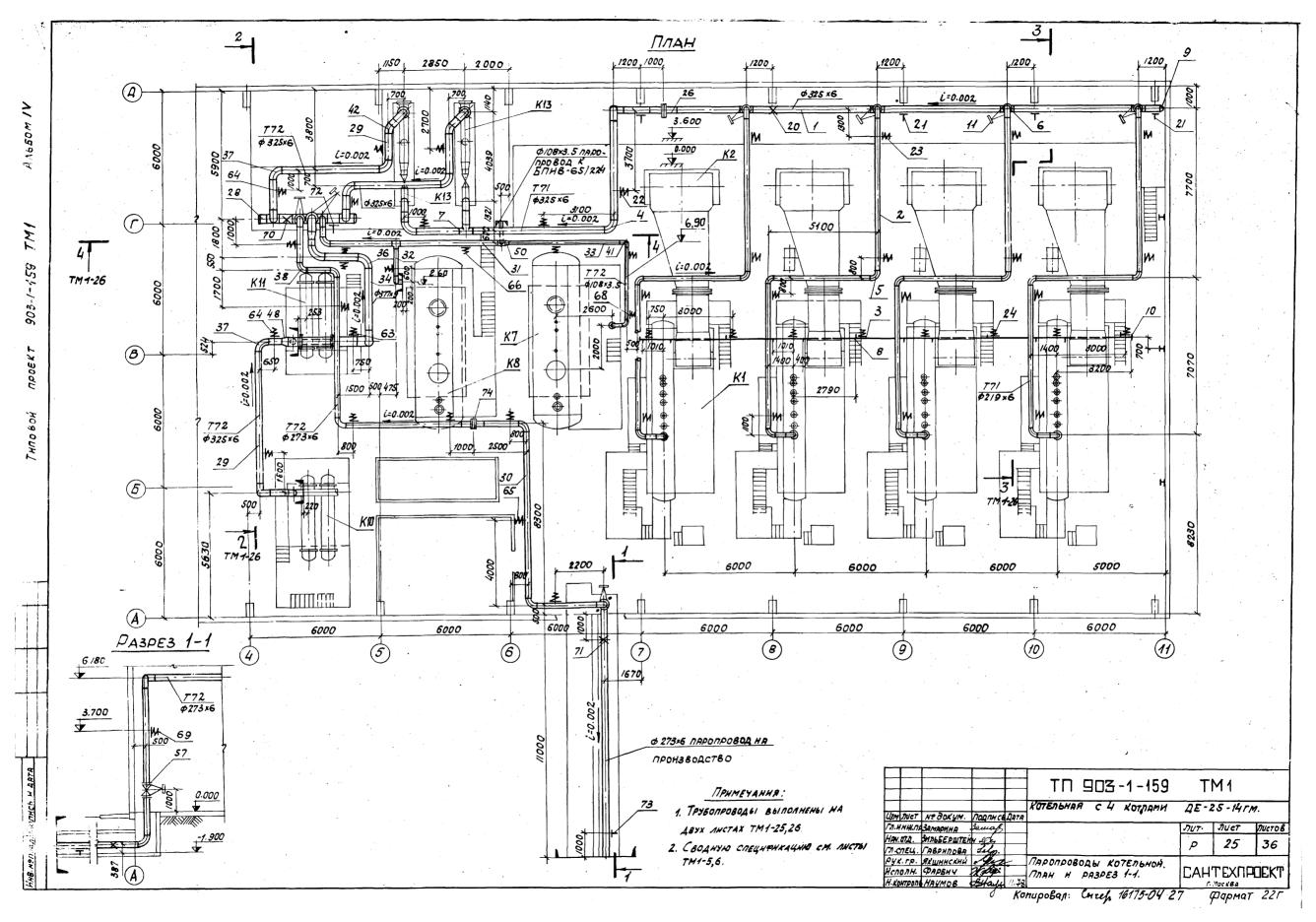


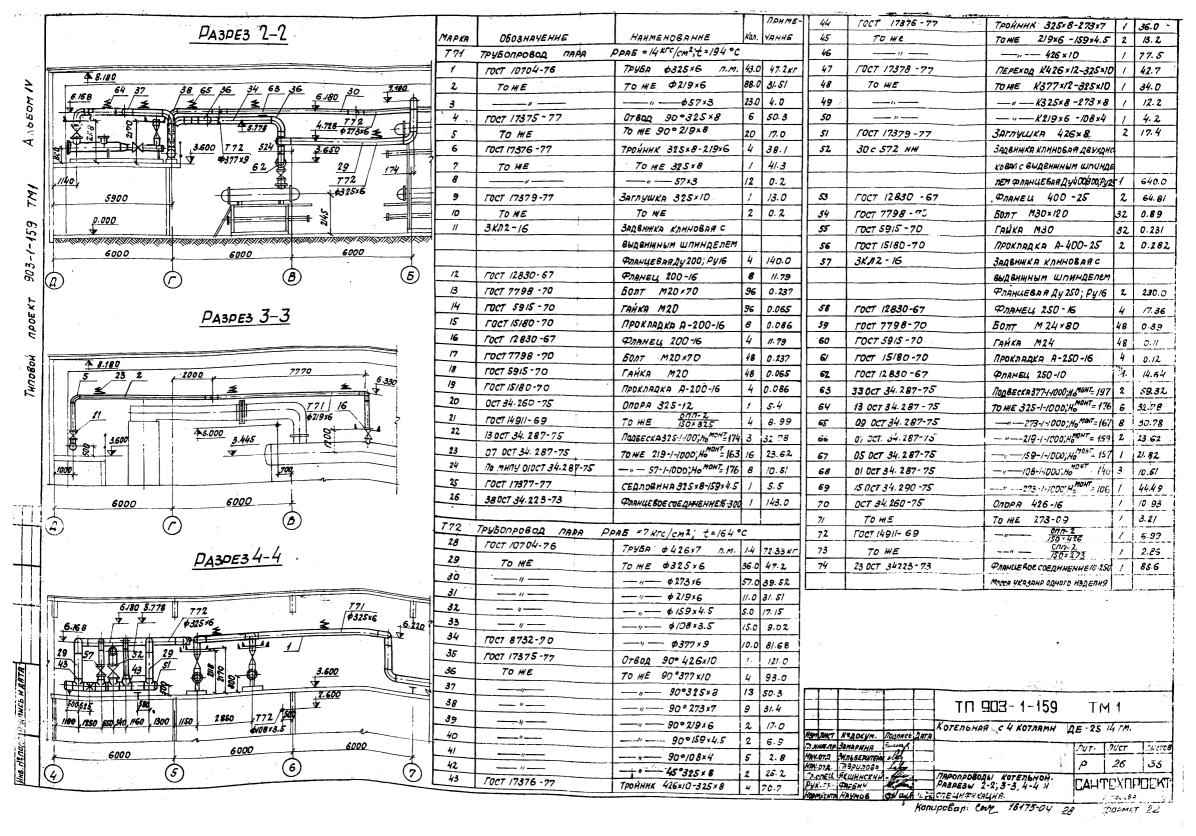


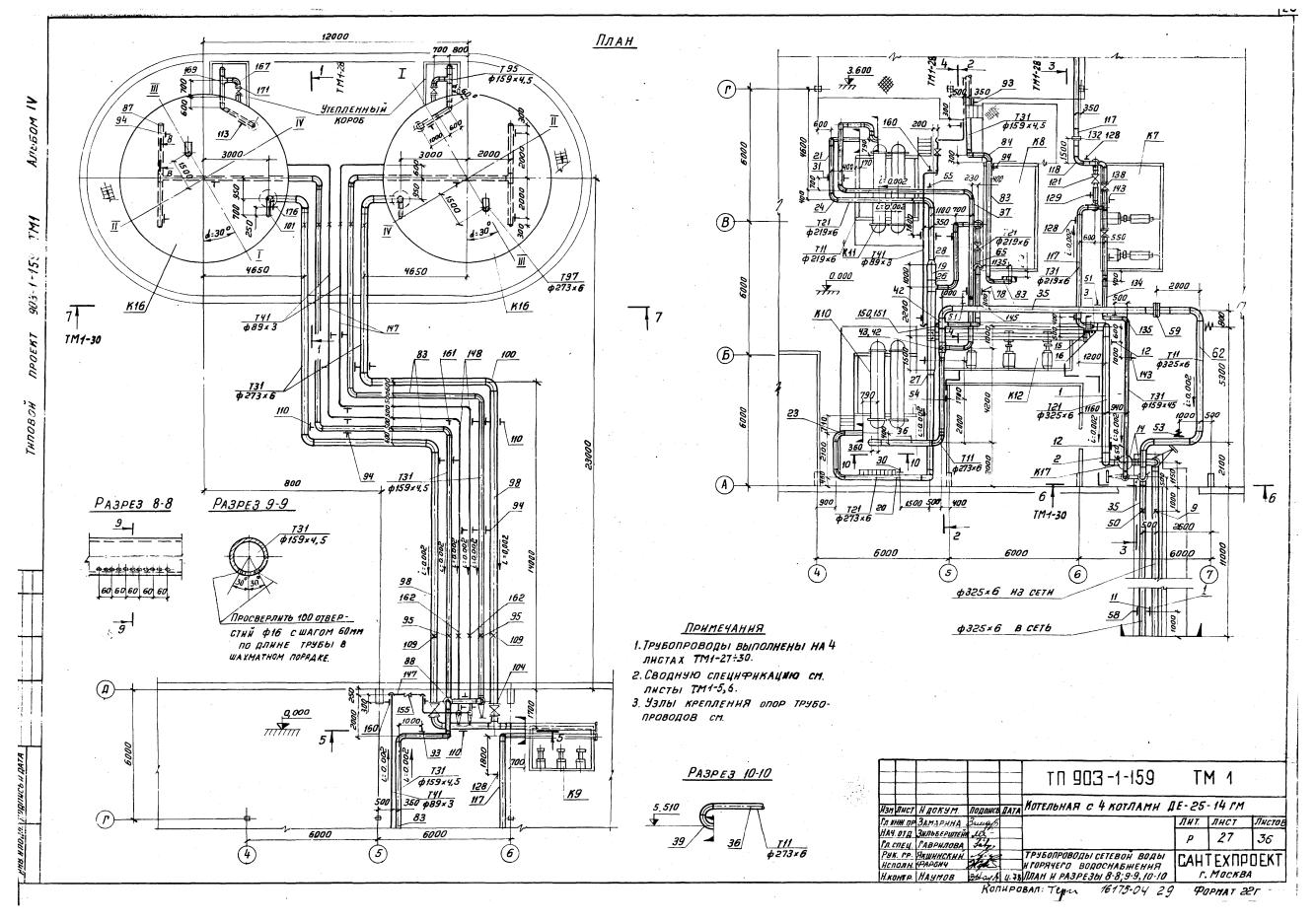


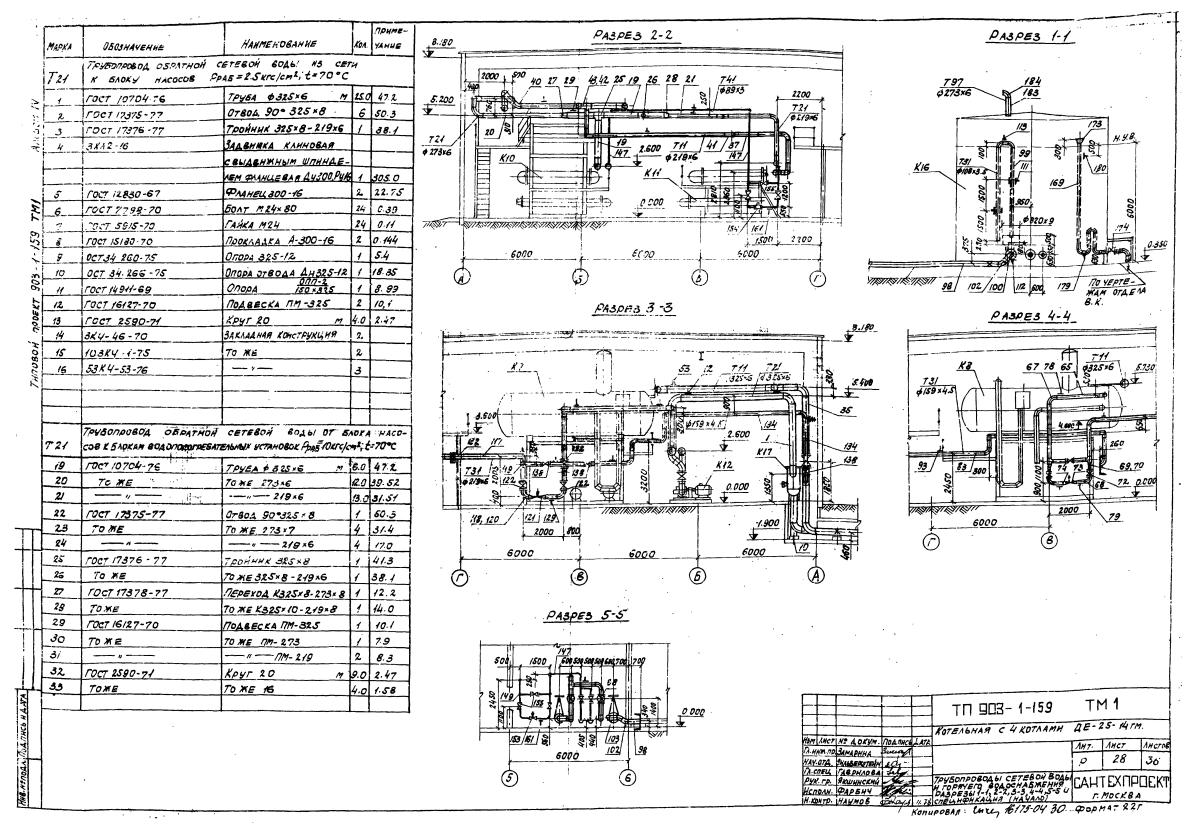



į				T-	ПРИМЕ
	MAPKA	0503HA4EHHE	HANMEHOBAHHE	Кол.	
	T71	TPYBONPOBOA NAPA OT KOTNA PPAB = 14 Krc/cm², t	bIX A	УНД	
	1	FOCT 10704-76	TP46A \$57x3 M	7.0	4,0
	2	FOCT 17375-77	Отвод 90° 57×3	2	0,6
	3	ract 12830-67	ФЛАНЕЦ 50-25	1	2,78
	4	roct 7798-70	5011 M16 x 60	4	0,125
:	5	roct 5915-70	PAHKA M16	4	0,034
	6	FOCT 15180-70	ПРОКЛАДКА А-50-25	1	0,026
	_ 7	FOCT 16127-70	ПОДВЕСКА ПМ-57	2	1,5
		roct 2590-71	KPYF 10 M	7,0	0,62
. !	T 71	ТРУБОПРОВОЯ ПАРА НА 05. РРАБ = 14 кгс/ст², t = 15	<i>ДУВКУ КОТЛА И ЭКОНОМАЙ</i>		
	8	FDC7 10704-76	ΤΡΥ5A φ57×3 M	27,0	4.0
i	9	roct 8734-75	TO HE \$45x2.5	38,0	4,62
	10	TO HE	\$38×2	2,5	1,78
	11	FOCT 17375-77	Отвод 90°57x3	4	0,6
	12	TO HE	TO WE 90° 45×2,5	24	0,3
	13	roci 17376-77	ТРОЙНИК 57×3	3	0,8
	14	TO IHE	TO HE 57×3 - 45×2,5	6	0,0
	15	FOCT 17378-77	NEPEXOA K57×4-38×2	1	
	16	FOCT 17379-77	ЗАГЛУШКА 57×3	1	0,2
Ì	17	15 KY 19n1	BEHTHAL BAROPHOLA	-	0,2
			ФЛАНЦЕВЫЙ ДУЧО, РУ16	6	F 0
	18	FOCT 12830-67	ФЛАНЕЦ 40-16	6	5, 8 1,85
1	19	FOCT 7798-70	500T M16×50	24	0,11
	20	POCT 5915-70	Гайка M16	24	0,034
Ì	21	FOCT 15180-70	ПРОКЛАДКА А-40-16	6	0,02
١	22	TOCT 12830-67	Фланец 50-25	6	2,78
1	23	FOCT 7798-70	Болт M 16×60	24	0,125
	24	FOCT 5915-70	PAHKA M16	24	0,034
and and	25	FOCT 15180-70	ПРОКЛАДКА А-50-25	6	0,031
i	ĉô	FOCT 12830-67	Фланец 32-25	2	1,83
	27	roct 7798-70	Болт м16×55	8	0,117
	28	FOCT 5915-70	PAHKA MIG	8	0,034
	29	1007 15180-70	ПРОКЛАДКА А-32-25	┝╌╌	
-	30	POCT 12830-67	Фланец 32-16	2	0,016
	31	FOCT 7798-70	50AT M16×50	4	1,54
	32	FOUT 5915-70	PAHKA M16	4	0,11
-	33	FOCT 15180-70	ПРОКЛАДКА А-32-16	1	
Ì	34	FOCT 14911-69	Onn.2	5	1,19
7	35	TO HE	To WE 006.2	6	
-	36	70 ME	onn-1	6	0,19
	37			1	
1	2.F	1001 16127-70	NOABECKA NM-57	4	0,51
•		FOCT 2590-71	Kaus 10	14,0	1,5
ţ	39		RODBECKA 57-1-1000 Ho : 1255	14,0	0,62
ł		01 OCT 34.290.75	INUMBERNA S FFTUUU Ho : 125,6	1	20,48


		1 MONT		
40	01 001 34 290 75	ПОДВЕСКА 57-1-2000 Ho =124	1	22,26
	roct 2590-71	KPYT 12 N.M		0,89
T91	PPAG=20 KIC/CM2, 1	ОЙ ВОДЫ К ЭКОНОМАНЭЬ = 104°C	PY	
41	roct 8732-70	ТРУБА Ф89×3,5 M	7,0	7,38
42	roct 17375-77	Отвод 90° 89×3,5	6	1, 6
43	roct 17376-77	ТРОЙНИК 89×3,5	1	2,6
44	roct 17378-77	ПЕРЕХОД К89×3,5-57×3	2	0,6
45	rac7 12830-67	ФЛАНЕЦ 80-25	3	4,44
46	roct 7798-70	Болт M16×65	12	0,133
47	roct 5915 - 70	SAKKA M16	12	0,034
48	POCT 15180-70	ПРОКЛАДКА А-80-25	3	0,04
49	POCT 12830-67	ФЛАНЕЦ 50-25	2	2,78
50	ract 7798-70	БОЛТ M16×60	8	0,125
5 f	roc7 5915-70	SAHKA M16	8	0,034
52	roct 15180-70	ПРОКЛАДКА А-50-25	2	0,026
53	roct 14911-69	000PA 000.2	2	1,15
54	3K4 -46-70	BAKAAAHAR KOHCTPYKUHR	1	
	·		ļ	
<i>T91</i>	Трубопровод питательной Рраб : 15 кгс/см ² , t		KK	OTAY
55	FOCT 8732-70	ΤΡΥ5A Φ89×3.5 M	15.0	7,38
5 6	FOCT 17375-77	Отвод 90° 89×3,5	4	1,6
57	FOCT 17378-77	ПЕРЕХОД К89×3,5-76×3,5	1	0,6
58	FOCT 17379-77	ЗАГЛУШКА 38×3	,	0,1
59	roct 12830-67	ФЛАНЕЦ 80-25	3	4,44
60	roci 7798-70	Болт M16×65	24	0,133
61	FOCT 5915-70	PAHKA M16	24	0,034
62	ract 15180-70	ПРОКЛАДКА A·80·25	3	0,04
63	FOCT 12830-67	ФЛАНЕЦ 65-25	1	3,71
64	roct 7798·70	Болт M16×65	8	0,133
65	FOCT 5915-70	PANKA MIG	8	0,034
66	FOCT 15180-70	ПРОКЛАДКА А-65-25	1	0,033
67	5 3K4-53-76	ЗАКЛАДНАЯ КОНСТРУКЦНЯ	1	
68	roct 16127-70	Подвеска ПМ-89	4	2,0
	FOCT 2590-71	KPYF 12 M	14.0	
684	10 3K4-1-75	BAKAAAHAA KOHCTPYKUHA	1	3,00
7 97	Трубопровод	<i>АТМОСФЕРНЫЙ</i>	L	
69	FOCT 10704-76		13,0	17,15
10	POCT 17375-77	ПРУБА Ф 139×4,5 М ОТВОД 90° 159×4,5	4	6,9
71	roct 12830-67	ФЛАНЕЦ 150-16	2	8,3
12	roct 7198-70			
73	1007 5915-70	БОЛТ M20×70 ГАЙКА M20	16 16	0,237
74	roct 15180-70	ПРОКЛАДКА А-150-16	2	0,065
75	11007 34.290-75	Падвеска 159-1-1000 Ho = 130	2	0,066 24,5
76	06 007 34. 278-75	BTYNKA	2	
	,	LUIJIIM	-	24,5

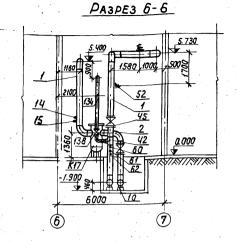

795	ТРУБОПРОВОД ДРЕНАН	ННЫЙ НАПОРНЫЙ		Contractor
77	FOCT 10704-76	ΤΡΥ5A φ57×3 M	10,0	4,0
78	roct 8734-75	TO HE \$38×2	5,0	1,78
79	TO HE	—»— φ18×2	20,0	0,789
80	FOCT 17375-77	Отвод 90° 57x3	3	0,6
81	ract 17376-77	ТРОЙНИК 57×3	2	0,8
82	ract 17379-77	ЗАГЛУШКА 57×3	1	0,2
83	15 64 16 11	ВЕНТИЛЬ ЗАПОРНЫЙ		
		ФЛАНЦЕВЫЙ ДУЗ2, РУ25	2	8,0
84	15 K4 18 N	ВЕНТИЛЬ ЗАПОРНЫЙ		
		муфтовый Ду15,Ру16	1	0,7
85	roct 12830-67	PAAHEY 50-25	2	2,78
86	FOCT 7798-70	5011 M16×60	8	g,1 2 5
87	roct 5915-70	PAHKA M16	8	0,034
88	roct 15180 - 70	ПРОКЛАДКА А-50-25	2	0,026
89	roct 14911-69	Опора <u>Опб. I</u> 57	4	0,06
90	TO HE	70 HE 70x18	10	0,78
196	Трубопровод дрем	НАННЫЙ БЕЗНАПОРНЫЙ		
91	POCT 8734-75	TP46A \$32x2 M	20,0	1,48
92 .	TO WE	TO HE \$14x2	15,0	0,59
93	roct 3262-75	-»- φ26,8×2,8	10,0	1,66
94	ANDEOM VII HEPT. 7	Воронка сливная	2	0,3
95	FOCT 14911-69	Onopa 005.1	10	0,02
96	TO HE	TO HE 006.1	4	0,03
		· ·	-	
<i>192</i>	ТРУБОПРОВОД НЕПРЕР	ывной продувки котла Рраб: 14к	rc/cr	î,t:194°
97	FOCT 8734-75	TP45A 425×2 M	3,0	1,13
98	roct 14911-69	ONOPA OND-1	1	0,43
		Масса Указана одного издел.		

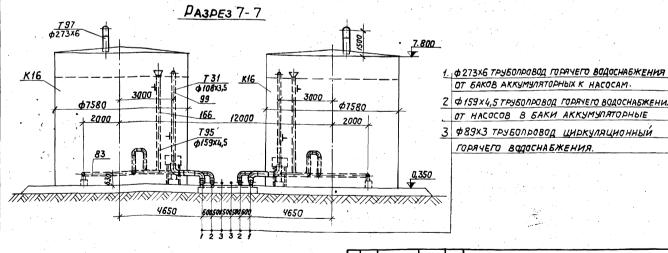

					TN 903-1-159	T	M 1	
13/1	ANCT	HAOKYM.	Падпись	DATA	КОТЕЛЬНАЯ С 4 КОТЛАМИ ДЕ	F - 25 -	14 rm	i.
SILM	нин. ПР	3AMAPHHA	Bauge			SHIT	JHCT	SOTUNI
	OTA	ЗИЛЬБЕРШТЕЙН ГАВРИЛОВА	Id.			P	23	36
Heri	олн.	Якшинский Яговая	Jus				TEXT	
TI.KO	HTP.	HAYMOB	odast	11.78	(HAYANO)	1 /	r. Mackb	A


Копировал: Тер 16175-04 25 Формат 22r

•	MAPKA	O 503HAYEHUE	Наименование	кол.	Приме Чание
	T11	Трубопровод подающей ГРЕВАТЕЛЬНЫХ УСТАН	СЕТЕВОЙ ВОДЫ ОТ БЛОКОВ В ОВОК <i>В СЕТЬ РРАБ</i> =8,8 КГС/	040	1040-
	35	ΓΟCΤ 10704-76	ТРУБА Ф 325X6 M	40.0	47.2
	36	Tome	TO ME 273X6	_	39,52
)	37				31,51
)	38	FOCT 17375-77	Отвад 90° 325×8	6	50,3
	39	TO HE	TO ME 273×7	3	31,4
	40	//	45° 273×7	1	15,7
	41	//		7	17,0
	42	FOCT 17376-77	Тройник 325×8-219×6	3	38,1
	43	FOCT 17378-77	ПЕРЕХОД К 325×8-273×8	1	12,2
	44	To WE	To WE 219X6-159X4,5	1	5,3
	45	3K/12·16		<u> </u>	
		0.072 70	ЗАДВИЖКА КЛИНОВАЯ С ВЫДВИЖНЫМ ШПИНДЕЛЕМ		
			ФЛАНЦЕВАЯ ДУ-300 Ру=16	1	305,0
	46	ΓΟCT. 12830-67	ФЛАНЦЕВНЯ 19300 F9-16 ФЛАНЕЦ 300-16	2	22,75
	47	FOCT 7798-70	Болт M24×80	24	0,39
	48	FOCT 5915-70	TANKA M24	24	0,11
	49	TOCT 15180 70	ПРОКЛАДКА А- 300-16	2	0,144
	50	OCT 34.260-75	**************************************	1	5,4
	51	ΓΟCT 16/27-70	Подвеска ПМ-325	2	10,1
	52	17 0CT 34.290-75	TO WE 325-1-2000 Ho = 106	1	52,4
	53	13 OCT 34.287-75	-11 -325-1-1000; Ho MOHT 2	2	32,78
	54	ΓΟCT /6/27-70	Подвеска ЛМ-273	1	7,9
	55	TO WE	TO WE TIM- 219	3	8,3
	56	FOCT 2590-71	KPYF 20 M	10,0	2,47
	57	TO WE	70 KE 16	3,0	1,58
	58	TOCT 14911-59	O ПОРА 011-2 150x325	1	8,99
	59	24 OCT 34. 223-74	ФЛАНЦЕВОЕ СОЕДИНЕНИЕ 10-325	<u> </u>	143,0
ĺ	60	3K4-46-70	ЗАКЛАДНАЯ КОНСТРУКЦИЯ	1	
	61	13KY-145-75	TOWE	1	
	62	103KY-1-75		2	
				_	
-					
	' <i>T21</i>	ТРУБОПРОВОД ПЕРЕПУСКА ВАТЕЛЬНЫХ УСТАНОВО	A СЕТЕВОЙ ВОДЫ ПОМИМО ВОД К P=10 Krc/cm², t=70°C.	ona	OFPE-
	65	FOCT 10704-76	TPY5A \$ 2/9×6 M	12,0	31,51
	66	To WE	TO WE \$ 159×4,5	2,0	17,15
	67	roct 17375-77	Отвод 90° 219 x6	6	17,0
	68	TO WE	TO HE 90° 159×43	2	6,9
	69	FOCT 17376-77	Тройник 219×6-159×4,5	2	13,2
	70	TOCT 17378-77	Переход к 219×6-159×4,5	2	5,3
	71	TO WE	TO >KE K 159×4,5-108×4	2	2,4

		المحسدات فالمريب		. –
72	ЗКЛ2-16	BARBUKKA KNUHOBARC		<u> </u>
		Выдвижным шпинделем	_	
		ФЛАНЦЕВАЯ ДУ 150; Ру 16	3	105,0
73	6c-9-2	KAAAAH PETYAMPYHUUM	L	
		By 100, Py 100	1	94,0
74	TOCT12830-67	PANEL 150-16	6	8,3
75	FOCT 7798-70	Болт M20×70	48	0,237
76	FOET 5915-70	TANKA M20	48	0,065
77	FOCT 15180-70	ПРОКЛАДКА А-150-16	6	0,066
	FOCT 16127-70	MODBECKA MM-219	2	8,3
78			2	1,93
79	FOCT 14911-69	ОпорА <u>000×159</u>		
80	FOCT 2590·71	Kpyr 20 m	6,0	2,47
T31	ТРУБОПРОВОД ГОРЯЧЕГО В БАКИ АККИМИХА МАКБ	040CHAEKEHUR OT HACOC PPA6=2,3KTC/CM2, t=70°	08 6	3
83	FOCT 10704-76			17,15
84	FOCT 17375-77	Отвод 90° 159×4,5	19	6,9
85	TO #E	TO ME 45° 159×4,5	2	3,5
	10 KE 1007 17376-77		3	6,6
86		TPONHUK 159×4,5	4	1,5
87	FOCT 17379-77	ЗАГЛУШКА 159×4,5	4	1,5
88	3K/12-16	Задвижка клиновая с		
	·	Выдвижным шлинделем		
		ФЛАНЦЕВАЯ ДУ 150, РУ16	2	105,0
89	FOCT 12830-67	ФЛАНЕЦ 150-16	4	8,3
90	FOCT 7798-70	50AM M 20×70	32	0,237
9/	FOCT 5915 - 70	TANKA M20	32	0.065
92	FOCT 15180-70	ПРОКЛАДКА А-150-16	4	0,065
93	FOCT 16127-70	NOABECKA NM- 159	3	4,7
94	TOCT 14911-69	Onopa 900-2		1,93
95	OCT 34, 260-75	TO ME 159-05	4	1,43
	ract 8509-72			4,81
96				
T31	ТРУБОПРОВОД ГОРЯЧЕГ АККУМУЛЯТОРНЫХ К НА	COCAM PPAB=0,5 KFC/CM2	t= 70	7°C
98	FOCT 10704-76			39,52
99	TO WE	TO WE \$108x3,5		9,02
100	ΓΟCT 17375-77	Отвод 90°-273×7	7	31,4
101	TO ME	То жЕ 90°-108×4	4	2,8
102		45°-273×7	4	15,7
103	TOCT 17376-77	Троиник 273×8	1	32,0
104	3K/12-16	Задвижка клиновая с		<u> </u>
104	0.072.10	ВЫДВИЖНЫМ ШПИНДЕЛЕМ		l
ı		ФЛАНЦЕВАЯ Ду 250; РУ 16	2	230,0
		I THINHUL BANK HY LOU! FYIO	15	
105	505T (2077s 67		1/.	17736
105 106	FOCT 12830- 67	ФЛАНЕЦ 250 16 Болт М 24×80	48	17,36 0,39

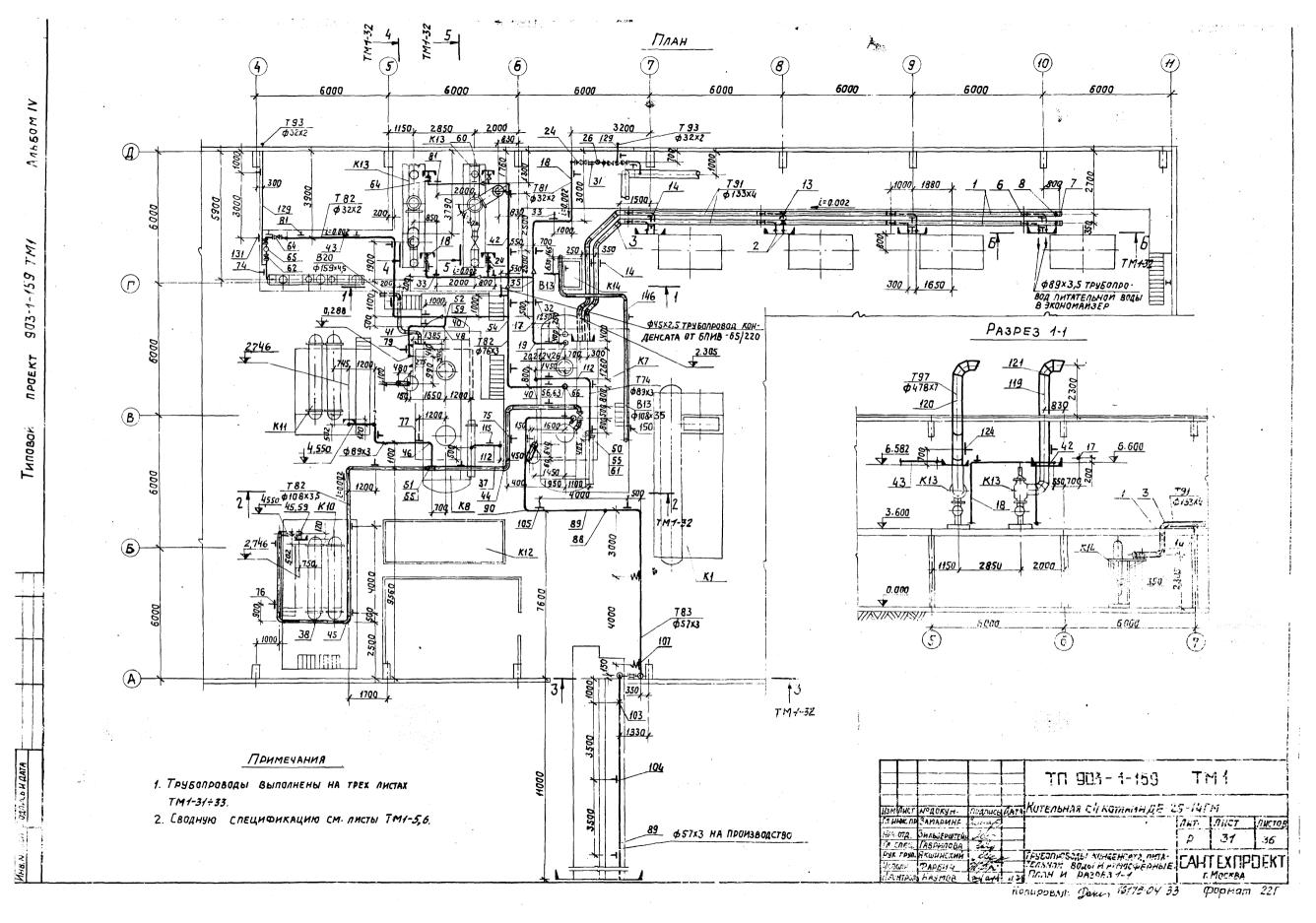

107	1001 5915-70	TAURA M24	148	911
108	FOCT 15180-70	ПРОКЛАДКА А- 250-16	2	0,12
109	OCT 34.260-75	UNOPA 273-09	4	3,21
110	FOCT 14911-69	TO KE 100x273	7	2,86
111	TO HE	— 11—— <u>01.5-2</u>	4	0,56
112	OCT 34. 266-75	— "Дн 273-09	2	7,11
113	FOCT 16127-70	NORBECKA /IM-108	2	2,1
114	FOCT 2590 -71	KPYT12 M	1.0	0,888
	SWAY			
	* 133		L_	
T31	TPYEONPOBOR TORAYETO BOR CETEBLIX HACOCOB	OCHAGMEHUR OT HACOCOB 1 PEMUM) PAAG=Q5 KTC/C	HA E M², t	3CAC = 70°0
117	FOCT 10704-7F	TPY5A \$ 219X6 M		31,51
118	FOCT 17375-77	OTBOR 90° 219×6	10	17,0
119	FOCT 17376-77	ТРОЙНИК 219×6-159×4,5	2	13,2
120	FOCT 17378-77	PEPEXOAK 219×6-159×45	2	5,3
121	T-355	Клапан РЕГУЛИРУЮЩИЙ		
		Ly 150, Py64	1	91,0
122	3 K12-16	BARBUXKA KNUHOBARC		
		Выдвижным шпинделем		
		PAAHUEBAR A y 200; Pyl6	3	140,0
123	ΓΟCT 12830-67 .	ФЛАНЕЦ 200-16	6	11,79
124	FOCT 7798-70	50AM M 20×70	72	0,23
125	FOCT 5915-70	TAHKA M20	72	0,06
126	FOCT 15180:70	Прокладка А200-16	6	0,086
127	ΓΟCT 16127-70	NOABECKA AMB-219	1	25,8
128	Το κε	TO XE NM 219	3	8,3
129	FOCT 14911-69	UNODA 100×219	1	3,08
130	FOCT 2590-71	KPYT 20 M	3,0	2,47
131	To ME	TO XE 16	5,0	1,58
132	22 OCT 34 223-73	Фланцевоесоединение10-200	1	63,3
	FOCT 8509-72	Уголок 63×63×5 м	2.0	4,81

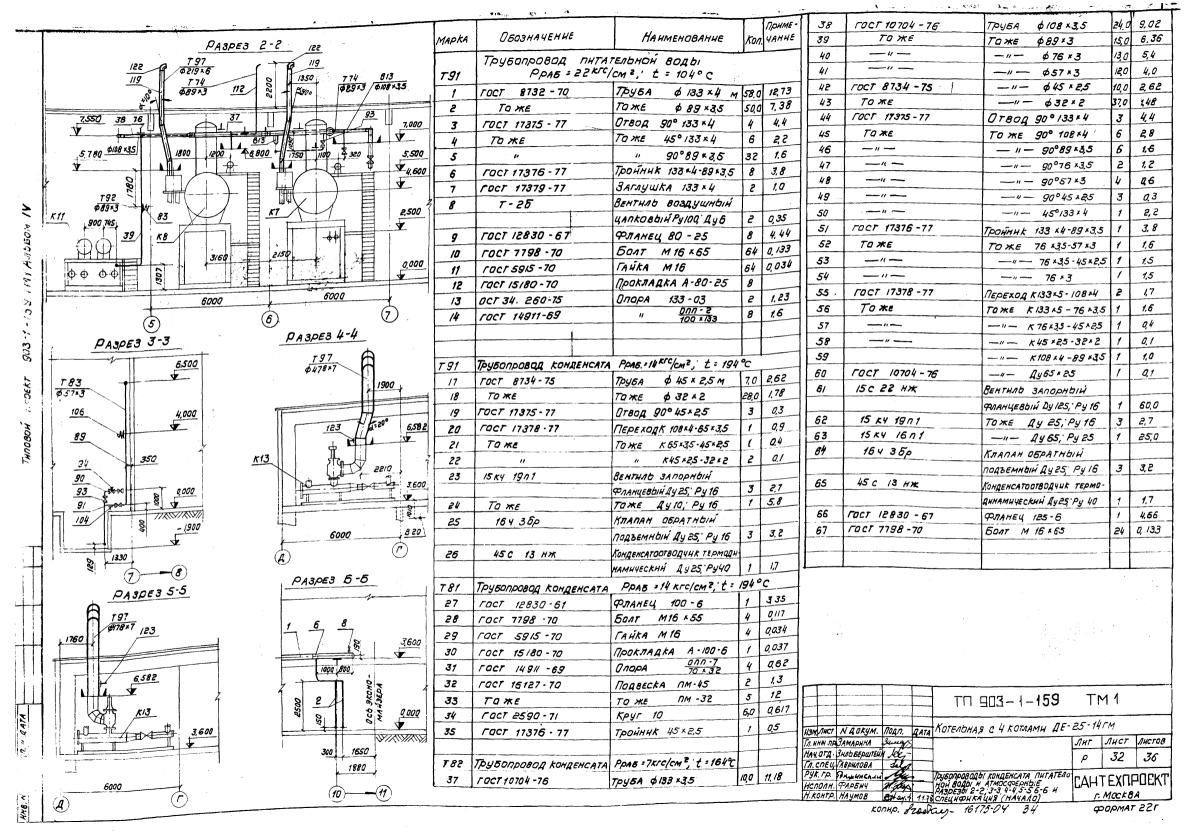

				TO 903-1-159 TM 1				
Изнист	NAORYM.	подп.	QATA	KOFENSHAR C4 KOTNAMU QE -25-14 FM				
Гаинка	AHNDAMAE	Belliag		. ;	ЛИТ	ЛИСТ	ЛИСТОВ	
	Зильберитейн			-	P	29	36	
IЛ СПЕЦ РУКГР. Исполи	PREMINOBA PREMINERAM PAPENY	ife	7	TPYSONPOBOQUI CETEBON BOQUI N TOARVETO BOQOCHASKEHNA	САНТЕХПРОЕКТ		יםפאד	
		BHOULS	21.78	СПЕЦИФИКАЦИЯ (ПРОДОПЖЕНИЕ)	T.	MOCK BA		

KONMPOBAN 84 - 16175-04 31 . POPMATZZI.

	Mapka	0 603HAYEHUE	Наименование	кол.	ПРИМЕ: ЧАНЙЕ
	77/	TPYBONDOBOA FORNETO BOAD	CHAEMEHUR OT HACOCOB BTP	y500	POBOA
	T31	NODAHOWEN CETEBON BOAL	(ЛЕТНИЙ РЕЖИМ)РРАБ=6,ЗКГС	/cm²	£=10°0
	134	ΓΟCT 10704-76	TPYEA \$ 159 X 4,5 M		17,15
4	135	ΓΟCT 17375-77	<i>Птвод 90° 159х4,</i> 5	8	6,9
Anssom IV	136	ract 17376-77	ΤρούΗΝΚ 159×4,5	1	6,6
20	137	TOCT 17378-77	ΠΕΡΕΧΟΩ κ 219X6-159×4,5	1	5,3
18	138	3K/12-16	BARBUNKA KANHOBARC		
A			выдвижным шпинделем		
			PAAHUEBAAAY 150 Py 16	3	105,0
	139	ГОСТ 12830-67	PARHEU 150-16	6	8,3
TM1	140	ΓΟC 7 7798-70	50nm M 20×70	48	
7	141	ГОСТ 5915-70	TANKA M20	48	0,065
53	142	FOCT 15180-70	ПРОКЛАДКА A -150-16	6	0,066
- 7	143	ΓΟC716127-70	NOABECKA NM-159	5	4,7
		ΓΟCT 2590 -71	KAUF 16 M	6,0	
903-1-153	144 145	10 3 KY - 1-75	ЗАКЛАДНАЯ КОНСТРУКЦИЯ	1	-
3	140	10 01/1 1/10	KANTAKALDHOV WHENTHER	 	
F.			 	-	
NPOEKT					
00	-/.	TPY500POBOA LUPKYARL	ионный горячего водосн a6 = 3,4 кгс/cm²; t= 70°C	АБЖ	ЕНИЯ
	T41				6.76
2'	147	FOCT 10704-76	TPY5A \$89X3 M	105,0	
9	148	FOCT 17375-77	Отвод 90° 89×3,5	24	1,6
0.	149	TOCT 17376-77	ТРОЙНИК 89×3,5	5	2,6
Типо вой	150	FOCT 17378-77	ΠΕΡΕΧΟΔ Κ 325×10-108×4	1	13,1
7	151	То же	To we K 108×4-89×3,5	1	1,0
	152	. ———	K 89×3,5-57×3	2	0,6
	153	YPPA-50	KNANAH PETYNUPYROWUH		<u> </u>
			Ay 50; By = 16	1	45,0
	154	TOCT 14167-69	CYETYNK TOPAYEN		
			ВОДЫ ТУРБИННЫЙ		
	,		BT-80F; Py10	1	19,72
 	155	3KJ2-16	ЗАДВИЖКА КЛИНОВАЯ С		
	100	0.10.2 10	Выдвижным шлинделем		
+++			PRAHUEBAR LY 80; PY16	8	40,0
	150	FOCT 12830-67	Фланец 80-16	16	4,21
	156	TOCT 7798-70	500T M16×60	64	0,125
	157		TANKA MIG	64	0,034
	158	FOCT 5915-70	ПРОКЛАДКА А- 80-16	16	0,04
	159	FOCT 15180 · 70	MODBECKA MM-89	7	2.0
	160	FOCT 16127-70	Onopa 000 2	12	1,15
╆┼┼┤	161	FOCT 14911-69		4	0,8
12.0	162	OCT 34256-75	·Onopa 89·03	_	
9119	/63	TOCT 2590-U	KPYF 12 M		0,89
X	164	TOCT 12830-67	ΦΛΑΗΕЦ 50·16	2	2,28
3	165	FOCT 7798-70	50AT MI6X50	8	0,11
Si . >	100	ΓΟCΤ 59 15 · 70	TANKA MIG	8	0,034
НИВ МОДО ПОДЛИСЬИ ДАТА	166 167	FOCT 15180 70	ПРОКЛАДКА А-50-16	2	0,026

<i>795</i>	ТРУБОПРОВОД ДРЕ! РРАБ=0,6 KIS/CH	нажный НАПОРНЫЙ 1 ² , t= 70°C		
169	FOCT 10704-76	TPYEA \$ 159×4,5 M	14,0	17.15
170	TOCT 17375-77	Отвод 90° 159×4,5	14	6,9
171	TO WE	TO WE 45°159×4,5	2	
172	FOCT 17376 -77	ТРОЙНИК 159Х4,5	2	
173	FOCT 17378-77	ПЕРЕХОД К 377×12-159×6	2	27,2
174	3KJ 2-16	ЗАДВИЖКА КЛИНОВАЯ С		
		Выдвижным шпинделем		
		PANHUEBAR AY150; PY16	2	105,0
175	FOCT 12830-67	Фланец 150 -16	4	8,3
176	TOCT 7798-70	50/1T M20×70	32	0,237
177	FOCT 5915-70	TANKA M20	32	0,065
178	TOCT 15 180-70	ПРОКЛАДКА А-150-16	4	0,066
179	FOCT 14911-69	Unopa Onn-2	2	1,93
180	TO WE	TO HE 0/15-2	2	1,32
<i>T9</i> 7	Трубаправад АТМО	СФЕРНЫЙ		
183	10CT 10704-76	7PYEA \$ 273×6 M	4,0	39,52
184	ΓΟCT 17375-77	Отвод 90° 273×7	2	31,4
		МАССА УКАЗАНА ОДНОГО ИЗВЕЛИЯ		
L				

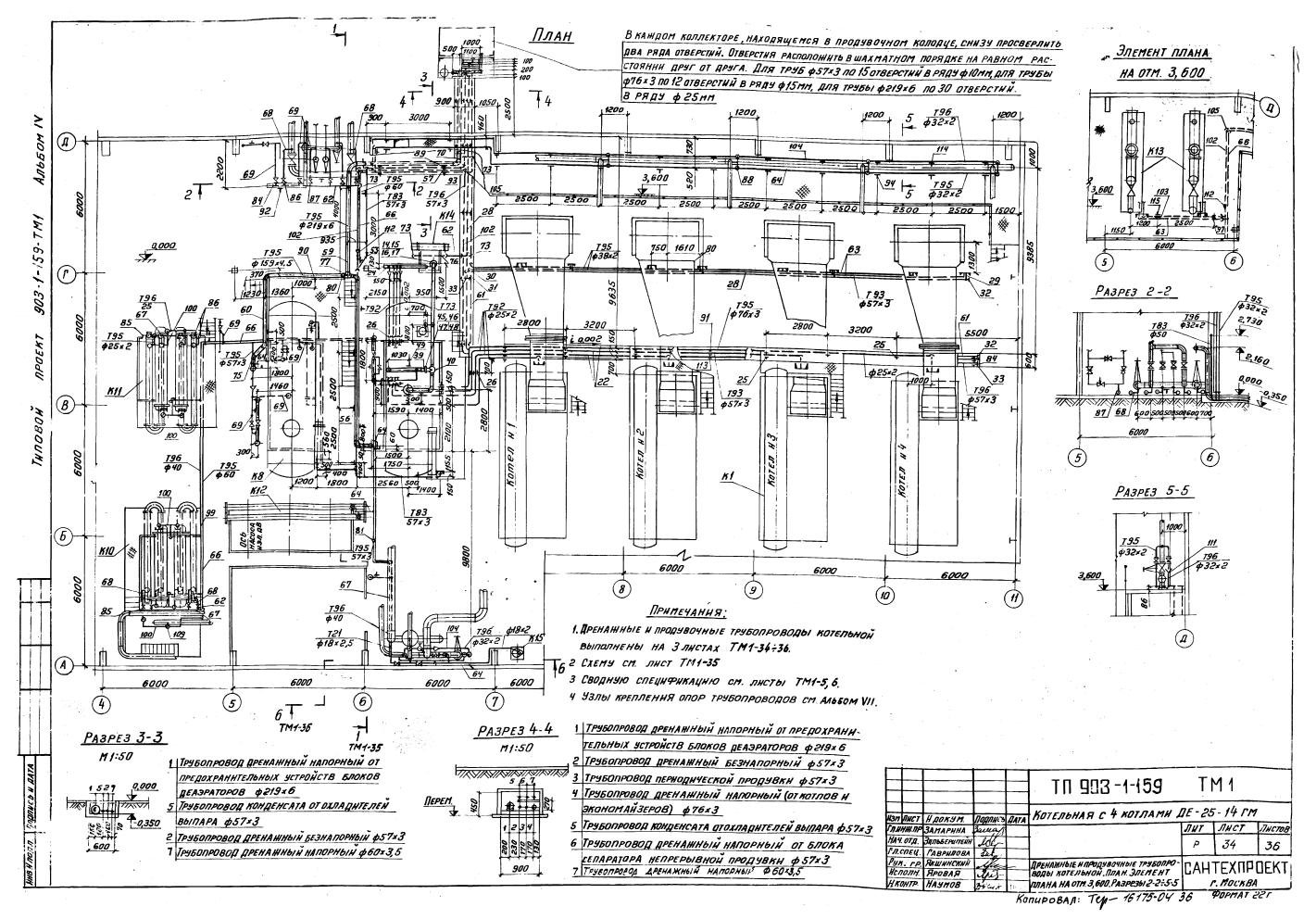


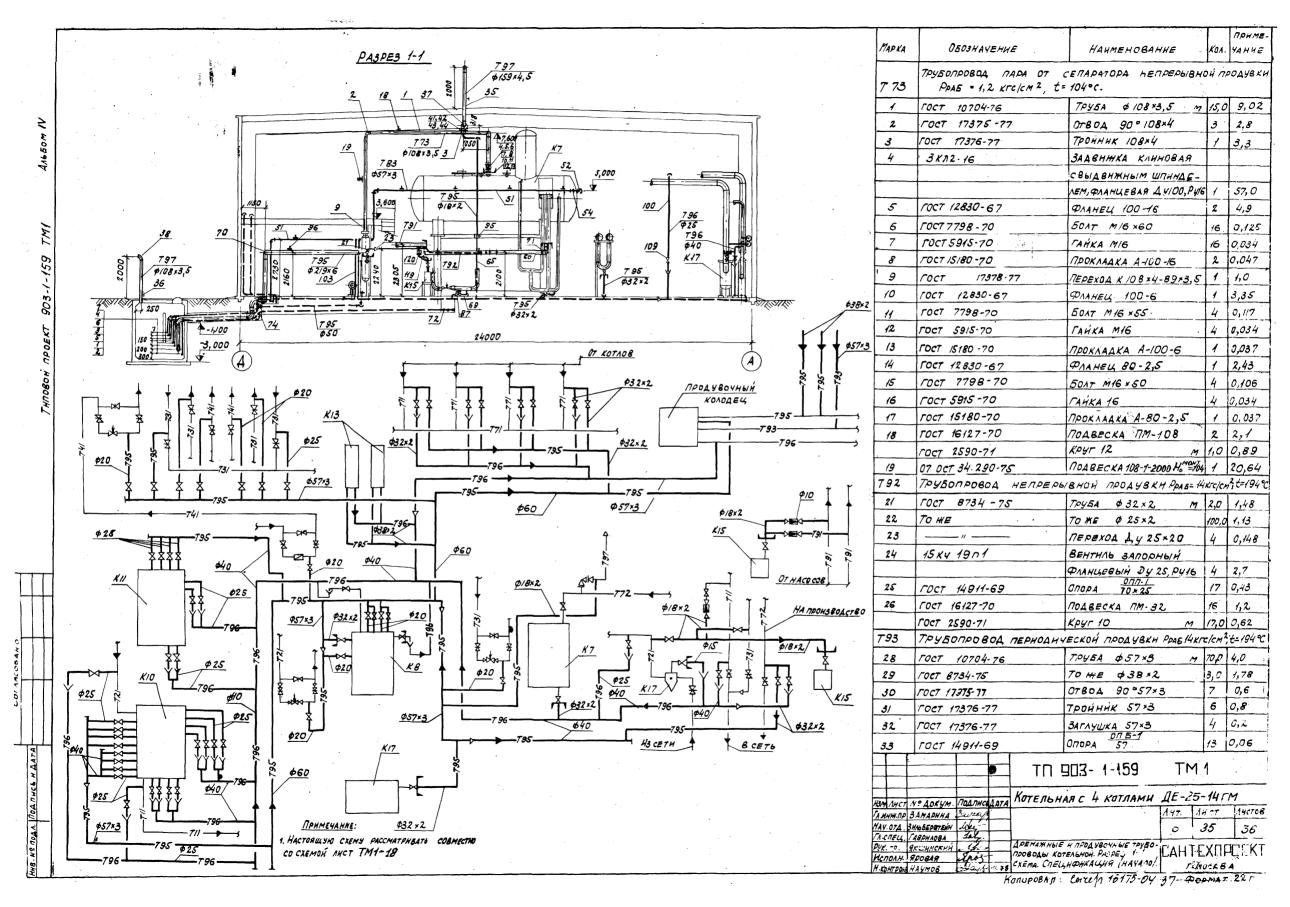

OT BAKOB AKKYMYNATOPHIN K HACOCAM. Z Ф 159 x 4,5 ТРУБОЛРОВОД ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ

POPMAT 221

Ф89х3 ТРУБОПРОВОД ЦИРКУЛЯЦИОННЫЙ

TN 903-1-159 TM1 . HAMNET N° AORYM - ПОДПИСВИТА
ПЛИМЕЛЬ ЗАМАРИНА - SELLOS
HAV. OTA, ЗИВЬЕРШТЕЙ
ПТ. СПЕЦІ ПАРЫПОВА
РУК. ГР. ТКИНККИМ
ИКПОЛИ ФАРБИЧ
ИКОНТЬ. НАУМОВ KOTENBHAR C 4 KOTNAMU DE - 25-14 FM ANT. AUCT MICTOE 30 36 ТРУБОПРОВОДЫ СЕТЕВОЙ ВОДЫ И ГОРЯЧЕТО ВОДОСНАВЖЕНИЯ РАЗРЕЗЬ 6-6 /- / СКОМ-11-Ж СЛЕШФОИКАЦИЯ (ОКОНУЯНИЕ) КОЛИРОВАЛ-БЫ - 16175-04 32 CAHTEXPPDEXT

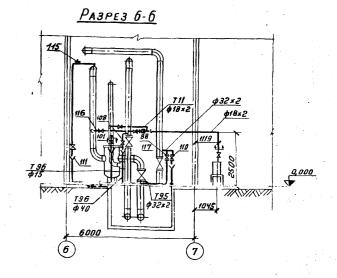



	MAPKA	Oboshayehue	HAUME HOBAHUE	Кол.	NPHME- YRHUE
	T82	ТРУБОПРОВОД КОНДЕНСЯ	TA POAS=Tricker2: t=164°C.		
	68	FOCT 5915 - 70	TRUKA MIE	24	0,034
	69	TOCT 15180-70	MPOKARAKA A-125-8	1	0,049
7	70	FOCT 12830-57	PARHEY 125-16	2	6,75
ANDBOM IV	7/	FOCT 7798-70	50AM MI6 × 65	16	0,133
7/10	72	FOCT 5915-70	TOUKA M16.	16	0,11
4	73	TOCT 15180-70	ΠΡΟΚΠΑΔΚΑ A-125-16	2	0,061
	74	FOCT 14911-69	0110PA 0111-1	2	0,51
	75	FOCT 18127-70	NOQBECKA NM-133	3	4,3
7M1	76	TO KE	TO WE 111-108	5	2,1
_	77	— n—		2	2.0
903-1-159	78	,	— "— MM-76	3	15
7	79		n 17M-57	2	15
13-1	80	— " —	n nm-45	2	1,3
8	81	— » —	— "— пт-32	7	1.2
	82	05 OCT 34.290-75	ПОДВЕСКА 89-1-2000	1	22,46
L	83	TOCT 2590-71	KPYT 16	3,0	1,58
NPOEKT	84	TO KE	TO WE 12	10,0	0,888
001	85	FOCT 2590-71	KPYT 10	13.0	0,617
	86	FOCT 12830-67	PAAHEY 65-25	2	3,71
•	87	TOCT 15180 - 70	ПРОКЛАДКА Л-65-25	2	0,025
2011	88	29 3K4-4-75	ЗАКЛАДНАЯ КОНСТРУКЦИЯ	1	,
Типовой	T83	ТРУБОПРОВОД КОНДЕНС	ATA PPAS = 2KIC/CM2	t = h	20°C.
Z	89	TOCT 10704-76	TP45A \$ 57×3 M	43,0	
	90	FOCT 17375-77	OT BOA 900 57x3	9	0,5
."	91	FOCT 17376-77	TPOHHUK 57x3	2	0,8
	92	FOCT 17378-77	NEPEXOA K 76x35-57x3	1	0,4
	93	15 KY 19n 1	ВЕНТИЛЬ ЗАПОРНЫЙ	 	- °, '
			ФЛАНЦЕВЫЙ Ду 50; Ру 16	4	2,7
	94	TOCT 14167-69	CHETHUK TOPAHEN		
TT			ВОДЫ ТУРБИННЫЙ		
┝┼┼╾			BT - 50F; Py 10	1	12,2
	95	FOCT 12830- 67	PARHEL 50-16	8	2,28
	96	TOCT 7798-70	50AT M 15 x 50	32	0,11
	97	TOCT 5915-70	TAHKA M16	32	0,17
	98	FOCT 15180-70	ПРОКЛАДКА А-50-16	8	
	99	TOCT 12830-67	PARHEU 50-10	2	2,26
	100	FOCT 7798-70	50AT M 16×50	8	0,11
	101	FOCT 5915-70	TAĤKA M15	8	
	102	FOCT 15180-70	ПРОКЛАДКА A-50-10	2	0,034
1		OCT 34.258-75	ОПОРА 57-01	+	0,026
487	103	TOCT 14911-69	TO WE OND- 2	1	0,63
0 11 0	104	100/ 17311 03	100x57.	8	1.6
ORNWES W ARTR		•			

105	roct 18127-70	ПОДВЕСКА ПМ-57	4	1,5
106	01 OCT 34.290-75	ПОДВЕСКА 57-1-2000	1	22,26
107	по типу 010CT 34.287-75	TO WE 57-1-1000	2	10,51
108	FOCT 2590-71	KPYT 10	6,0	0, 517
	•			
•				
774	TPY50 TPOBOA BUTTA	9PA P= 1,2 Krc/cm2 t=	1040	<i>'C</i>
112	FOCT 10704-76	TP45A \$ 89x3 M	15,0	6, 36
113	FOCT 17375-77	Отвод 90° 89 x 3,5	17	1.6
114	TO KE	TO WE 45089 x 3.5	1	0,8
115	roct 16127-70	NOABECKA NM-89	4	2,0
116	FOCT 2590-71	KPYF 12	2,0	0,888
<i>T9</i> 7	ТРУБОПРОВОД АТ	тмосферный.		
119	FOCT 10704 - 76	TP46A \$ 478x7 M	10,0	81,31
120	TO WE	TO KE \$ 219 x 6.	10,0	31,51
121	24 OCT 34. 206-73	GEKTOP C YFAOM 22030'	4	21,88
122	FOCT 17375-77	OTBOR 900 219×6	2	17,0
123	FOCT 16127-70	MOABECKA MM8-478	2	86,2
124	TOCT 2590-71	KPYF 26	3,0	4, 17
125	TO KE	TO XE 20	2.0	2,47
			1	
<i>793</i>	TOURARDORNA AFOUR	QUYECKOÙ NPOQYBKU PPAS=14		-2+: 10U
129	10CT 8734-15	Tour to do a	15.0	
130	15 KY 19 N 1	ВЕНТИЛЬ ЗАПОРНЫЙ	13,0	1,70
	i	COMBHUERNIN 1425: PUIS	ا و ا	
131	FOCT 16127-70	ФЛАНЦЕВЫЙ ДУ 25; РУ 16	2	2,7
13/	ΓΟCΤ 16127-70 ΓΟCΤ 2590-71	Подвеска ПМ-32	3	1,2
132	TOCT 2590-71	Подвеска ПМ-32 Круг 10	3 8,0	1,2 0,617.
132 T98	ГОСТ 2590-74 ТРУБО ПРОВОД ПАРОВОЗДИ	ПОДВЕСКА ПМ-32 КРУГ 10 шной смеси Р _{РАБ} = ТКГС/СМ ²	3 5,0 t=13	1,2 0,617. 54°C
132 T98 133	ГОСТ 2590-74 ТРУБО ПРОВОД ПАРОВОЗДУ ГОСТ 8734-75	ПОДВЕСКА ПМ-32 КРУГ 10 ШНОЙ СМЕСИ Р _{РАБ} = 7 КГС/СМ ² ТРУБА Ф32×2 м	3 5,0 t= 13 40,0	1,2 0,617. 54°C 1,48
132 T98 133 134	FOCT 2590-74 TPY60TP0804 TAP080344 FOCT 8734-75 FOCT 17378-77	ПОДВЕСКА ПМ-32 КРУГ 10 ШНОЙ СМЕСИ Р _{РАБ} = ТКГС/СМ ² ТРУБА Ф32×2 М ПЕРЕХОД К57×4-32×2	3 5,0 t=13	1,2 0,617. 54°C
132 T98 133	ГОСТ 2590-74 ТРУБО ПРОВОД ПАРОВОЗДУ ГОСТ 8734-75	Подвеска ПМ-32 Круг 10 шной смесн Р _{РАБ} = Ткгс/см ² ТРУБА ф32×2 м Переход К57×4-32×2 ВЕНТИЛЬ ЗАПОРНЫЙ	3 6,0 t = 13 40,0	1,2 0,617. 54°C 1,48 0,2
132 T98 133 134 135	ГОСТ 2590-74 ТРУБО ПРОВОД ПАРОВОЗДУИ ГОСТ 8734-75 ГОСТ 17378-77 15 КУ 19 П 1	ПОДВЕСКА ПМ-32 КРУГ 10 ШНОЙ СМЕСИ РРАБ = ТКГС/СМ2 ТРУБА Ф32×2 М ПЕРЕХОД К57×4-32×2 ВЕНТИЛЬ ЗАПОРНЫЙ. ФЛАНЦЕВЫЙ ДУ25; РУ16	3 8.0 t= 13 40.0 /	1,2 0,617. 54°C 1,48 0,2
132 T98 133 134	FOCT 2590-74 TPY60TP0804 TAP080344 FOCT 8734-75 FOCT 17378-77	Подвеска ПМ-32 Круг 10 шной смесн Р _{РАБ} = Ткгс/см ² ТРУБА ф32×2 м Переход К57×4-32×2 ВЕНТИЛЬ ЗАПОРНЫЙ	3 6,0 t= 13 40,0 / 8 14	1,2 0,617. 54°C 1,48 0,2
132 T98 133 134 135 136 137	TOCT 2590-74 TPY50 TP 080 Q TRP0803 QY FOCT 8734-75 FOCT 17378-77 15 KY 19 n 1 FOCT 12830-67 FOCT 7798-70	ПОДВЕСКА ПМ-32 КРУГ 10 ШНОЙ СМЕСИ РРАБ = ТКГС/СМ2 ТРУБА Ф32×2 М ПЕРЕХОД К57×4-32×2 ВЕНТИЛЬ ЗЯПОРНЫЙ. ФЛАНЦЕВЫЙ ДУ25; РУ16 ФЛАНЕЦ 25-16 БОЛТ М 12×50	3 6,0 t = 13 40,0 / 8 14 60	1,2 0,617. 54°C 1,48 0,2 2,7 1,05 0,055
132 T98 133 134 135 136 137 138	FOCT 2590-74 TPY50TP0804 TRP080344 FOCT 8734-75 FOCT 17378-77 15 KY 19n1 FOCT 12830-57 FOCT 7798-70 FOCT 5915-70	ПОДВЕСКА ПМ-32 КРУГ 10 ШНОЙ СМЕСИ РРАБ = ТКГС/СМ2 ТРУБА Ф32×2 МЕРЕХОД К57×4-32×2 ВЕНТИЛЬ ЗЯПОРНЫЙ ФЛАНЦЕВЫЙ ДУ25; РУ16 ФЛАНЕЦ 25-16 БОЛТ М 12×50 ГАЙКА М12	3 6,0 t=13 40,0 / 8 14 60	1,2 0,617. 54°C 1,48 0,2 2,7 1,05 0,055 0,018
132 138 134 135 136 137 138 139	TOCT 2590-74 TPYBOTP POBOLATION TOCT 8734-75 TOCT 17378-77 15 KY 19n1 TOCT 12830-67 TOCT 7798-70 TOCT 5915-70 TOCT 15180-70 ПОДВЕСКА ПМ-32 КРУГ 10 ШНОЙ СМЕСИ РРАБ = ТКГС/СМ2 ТРУБА Ф32×2 М ПЕРЕХОД К57×4-32×2 ВЕНТИЛЬ ЗЯПОРНЫЙ. ФЛАНЦЕВЫЙ ДУ25; РУ16 ФЛАНЕЦ 25-16 БОЛТ М 12×50	3 6,0 t = 13 40,0 / 8 14 60	1,2 0,617. 54°C 1,48 0,2 2,7 1,05 0,055 0,018 0,013	
132 798 133 134 135 136 137 138 139 140	TOCT 2590-74 TPYBOTP POBOLATION TOCT 8734-75 TOCT 17378-77 15 KY 19n1 TOCT 12830-67 TOCT 7798-70 TOCT 5915-70 TOCT 15180-70 ПОДВЕСКА ПМ-32 КРУГ 10 ШНОЙ СМЕСИ РРАБ = ТКГС/СМ2 ТРУБА Ф32×2 ВЕНТИЛЬ ЗЯПОРНЫЙ ФЛАНЦЕВЫЙ ДУ25; РУ16 ФЛАНЕЦ 25-16 БОЛТ М 12×50 ГАЙКА М12 ПРОКЛЯДКА 25-16	3 6,0 t=13 40,0 / 8 14 60 60 14	1,2 0,617. 54°C 1,48 0,2 2,7 1,05 0,055 0,018 0,013 1,53	
132 138 134 135 136 137 138 139	FOCT 2590-74 TPYBOTP POBOG IMPOBOSAY. FOCT 8734-75 FOCT 17378-77 15 KY 19n1 FOCT 12830-67 FOCT 5915-70 FOCT 15180-70 FOCT 12830-67 FOCT 12	ПОДВЕСКА ПМ-32 КРУГ 10 ШНОЙ СМЕСИ РРАБ = ТКГС/СМ2 ТРУБА Ф32×2 ВЕНТИЛЬ ЗЯПОРНЫЙ. ФЛАНЦЕВЫЙ ДУ25; РУ16 ФЛАНЕЦ 25-16 БОЛТ М 12×50 ГАЙКА М12 ПРОКЛЯДКА 25-16 ФЛАНЕЦ 50-6	3 6,0 t=13 40,0 / 8 14 60 60 14	1,2 0,617. 54°C 1,48 0,2 2,7 1,05 0,055 0,018 0,013 1,53 0,026

146	РИЛЬТРОВ 2 СТУПЕНИ. ГОСТ 10704-76	TP45A \$ 108 x 3,5 M	25.0	9,02
147	TO WE	TO HE \$ 89×3	5.0	6,36
148	FOCT 17375-77	0780A 90° 108×4.	3,4	2,8
149	TO ME	TO WE 90° 89×35	1	1,6
150	FOCT 16127-70	NOABECKA NM-108	3	2.1
151	TOCT 2590-71	KPYF 12 M	3.0	0,89
152	FOCT 8509 - 72	УГОЛОК 63×63×5	5.0	4.81
153	FOCT 17378-77	REPEXOR K 108×4-89×35	1	1.0
8-20	 	CONE DEKAPEDHUSATOPA	<u></u>	
154	FOCT 10704-76	TP45A \$ 159 x 4,5 M	5,0	17,15
155	FOCT 17375-77	OTBOA 90° 159×45	3	6,9
B1	Водопровод хозяйствен ПИТАТЕЛЬНЫХ НАСОСОВ	ино - питьевой на всас Р _{РАБ} = 2,5 кгс см²	·	
157	FOCT 10704-76	TP46A \$ 108x35	10	9,02
158	FOCT 3262-75	TO HE \$ 213 x 2,8	1,0	1,28
159	TO KE	\$33.5 x 3.2	2.0	2,39
150	FOCT 17375-77	0780A 900-108×4	1	2,8
151	FOCT 17378-77	NEPEXOA K133 x 5-108 x 4		× 1,7
162	164 6 5P	KARARH OSPATHUN NOADEM		
		ный фланцевый Ду 100; Ру 16	- 17	35,5
163	15 4 14 5P	ВЕНТИЛЬ ЗАПОРНЫЙ ФЛАН-	-	/-
		ЦЕВЫЙ ДУ 125; РУ 16	1	50.0
164	TOCT 12830-67	PARHEU 100-16	2	4.9
165	TO KE	TO ME 125-15	2	5,75
166	FOCT 7798-70	501T M 16×60	15	0, 125
100	TO KE	TO WE M 16 × 65	15	0.13
167		FANKA M 16		0034
	FOCT 5915-70	I JAMAN 1910	30	
167	FOCT 5915-70 FOCT 15180-70	TPOKTAAKA 100-16	32	
167 168			2 2	0,047

						•	~
				TN 903-1-159		TM	1
	N AOKYM.	Подпись	AATA	KOTEABHAR CHKOTAAMH.	AE-2.	5-1411	7
		Barca!			SHT.	AHCT.	AHETO
	BUNGSEPWTEÑA TABPUNDBA	de -			P	33	36
НСПОЛН.		2/1		ТРУБОПРОВОДЫ КОНДЕНСАТА, ПИТЯ- ТЕЛЬНОЙ ВОДЫ И АТМОСФЕРНЫЕ	CAH	ΓΕΧΠΡ	NEKT
H. KOHTP.	HAYMUB.	House	11.38	спецификация (окончание)	Γ.	MOCKB	A



MAPKA	O503HA4EHHE	HAUMEHOBAHHE	KON	TPHM 4AHH
197	ТРУБОПРОВОД	ATMOS 40 EPH bi H		
35	FOCT 10704-76	7/46A \$159x45M	3,0	17,15
36	To He	TO HE \$ 108 x 3,5	2,5	9,02
37	POCT 17375 - 77	0180A 90° 159×4,5	2	6,9
38	To He	TO HE 90° 108×4	1	
39	1'007 17378-77	ПЕРЕХОД K159×4.5-108×4	1	2,8
40	174 35P1	КЛАПАН ПРЕДОХРАНИ-		2,4
	177 087 1		-	
		ТЕЛЬНЫЙ МАЛОПОДЪЕМ		
		НЫИ ОДНОРЫЧАШНЫЙ	-	
11/	0007 1000	Ду 100; Ру 16	1	43,0
- 41 	FOCT 12830-67	ФЛАНЕЦ 100-16	1	4,9
42	1007 7798-70	Болт M16×60	8	0,125
43	FOCT 5915-70	PANKA M16	8	0,034
44	CCT 15180-70	ПРОКЛАДКА А-100-16	1	Q047
45	1907 12830-67	ФЛАНЕЦ 100-6	1	3,35
46	PUCT 7798-70	БОЛТ M 16×55	4	0,117
37 .	roct 5915-70	PAHKA M16	4	0,034
чВ	FOCT 15180-70	ПРОКЛАДКА А-100-6	1	0,037
49	roct 16127-70	ПОДВЕСКА ПМ-159	1	4.7
51	PPA5=7Krc/cm²; t	<i>ТРУБА ф57×3</i> м	45,0	4,0
52	1007 17375-77	Отвод 90° 57×3	16	0,6
53°	TO WE	TO HE 60° 57×3	1	0,4
54	rect 17376-77	ТРОЙНИК 57×3	2	0,8
55	POCT 17379-77	ЗАГЛУШКА 57×3	2	0,2
56	FCCT 16127-70	NODBECKA NM-57	8	1,5
57	roct 14911 - 69	Onopa <u>ons-1</u>	4	0,06
	roct 2590-71	KPYF 10 M	0,5	0,62
195	Трубопровод дре	НАННЫЙ НАПОРНЫЙ		
59	[OCT 10704-76	TP45A \$219×6 M	20,0	31,51
60	TO HE	TO HE \$ 159 x 4,5	18,0	17,15
61		— » — φ76×3	40,0	5,4
62	,,	φ57x3	35,0	4,0
		1.202	60,0	1,18
63	roct 8734-75	—,,— \$38×2		
63 64	roci 8734-75 To me	— "—	50,0	1,48
64	TO HE	— »— ф 32×2	50,0 15,0	0,789
64 65	70 HE	— »— ф32x2 —»— ф18x2	50,0 15,0 48,0	0,789 4,88
64 65 66	TO HE FOCT 3262-75 TO HE	- " - φ32x2 - " - φ18x2 - " - φ60x3,5 - " - φ48x3,5	50,0 15,0 48,0 20.0	0,789 4,88 3,84
64 65 66 67 68	TO HE POCT 3262-75 TO HE	— " — \$32x2 — " — \$18x2 — " — \$60x3,5 — " — \$48x3,5 — " — \$33,5x3,2	50,0 15,0 48,0 20.0 25,0	0,789 4,88 3,84 2,39
64 65 66 67 68 69	TO HE FOCT 3262-75 TO HE	- " - \$32x2 - " - \$18x2 - " - \$60x3,5 - " - \$48x3,5 - " - \$933,5x3,2 - " - \$26,8x2,8	50,0 15,0 48,0 20.0 25,0 25,0	0,789 4,88 3,84 2,39 1,66
64 65 66 67 68 69 70	TO HE	- " - \$32x2 - " - \$18x2 - " - \$60x3,5 - " - \$48x3,5 - " - \$48x3,5 - " - \$6,8x3,2 - " - \$26,8x2,8 01800 90°219x6	50,0 15,0 48,0 20.0 25,0 7	0,789 4,88 3,84 2,39 1,66 17,0
64 65 66 67 68 69 70 7!	TO HE FOCT 3262-75 TO HE FOCT 17375-77 TO HE	— "— \$32x2 — "— \$18x2 — "— \$60x3,5 — "— \$48x3,5 — — \$48x3,5 — — \$33,5x3,2 — — \$26,8x2,8 01800 90°219x6 10 HE 90°159x4,5	50,0 15,0 48,0 20.0 25,0 25,0 7	0,789 4,88 3,84 2,39 1,66 17,0 6,9
64 65 66 67 68 69 70	TO HE	- " - \$32x2 - " - \$18x2 - " - \$60x3,5 - " - \$48x3,5 - " - \$48x3,5 - " - \$6,8x3,2 - " - \$26,8x2,8 01800 90°219x6	50,0 15,0 48,0 20.0 25,0 7	0,789 4,88 3,84 2,39 1,66 17,0

74	FOCT 17375-77	Отвор 60° 76 x 3	2	0,8
75	TO HE	TO HE 45° 159x4,5	2	3,5
16	,,		2	0,3
77	POCT 17376-77	ТРОИНИК 21926	2	13,8
78	TO HE	TO HE 76×3,5	1	1,5
79	,,	57x3	4	0,8
80	1001 17378-77	ПЕРЕХОД К219х6-159х4,5	2	5,3
81	TO HE	TO HE K57x4-45x2,5	1	0,2
82	FOCT 17379-77	ЗАГЛУШКА 219×8	2	5,2
83	TO HE	TO HE 76 x 3,5	3	0,3
84	"	57x3	6	0,2
85		" 45×2,5	5	0,1
86	15 KY 18 N	BEHTUNG BANDPHOIN		
		МУФТОВЫЙ ДУ 25; РУ 16	16	1,4
87	TO HE	TO HE. Ay 20; Py 16	11	0,9
88	15 64 19 11	ВЕНТИЛЬ ЗАПОРНЫЙ		
		ФЛАНЦЕВЫЙ ДУ 25; РУ 16	5	2,7
89	roct 14911-69	DNOPA 219	4	0,37
90	TO HE	TO HE 100x159	4	1,93
91	;;		13	0,05
92	<i>»</i>	<u>005-1</u>	4	0,06
93	,,	_ »	4	0,06
94	,,	_,	13	0,51
95	,,	- " - <u>008.5</u>	1	0,03
96	FOCT 16127-70	Подвеска ПМ-219	1	8,3
	roct 2590-71	KPYP 20 M	0,5	2,47
97	ract 16127-70	NODBECKA NM. 38	2	1,3
98	FOCT 17376-77	ТРОЙНИК 76×3,5-57×3	4	1,6
196	Трубопровод дренан			
99	roct 3262-75	7P46A 448×3.5 M	60,0	3,84
100	TO HE	TO HE \$ 33,5 x 3,2	40,0	2,39
101		— " — ф21,3x2,8	25,0	1,28
102	roct 10704-76	-, - \$57x3	60,0	
103	roct 8734-75	 	10,0	1,78
104	TO HE	-,- p32×2	50,0	
105	FOCT 17375-77	Отвод 90° 57×3	7	0,6
106	FOCT 17376 - 77	ТРОЙНИК 57×3	3	0,8
107	roct 17379-77	BALDYWKA 57×3	3	0,2
108	15 4 180	BEHTUNG SANOPHOIN	-	
		муфтовый ДУЧО; РУ16	1	3,7
109	TO HE	TO HE Dy25; Py16	14	1,4
110	15 K4 19 n 1	ВЕНТИЛЬ ЗАПОРНЫЙ		**
		ФЛАНЦЕВЫЙ ДУ25; РУ16	5	2,7
111		Воронка сливная	24	
112	FOCT 17378 - 77	ПЕРЕХОД K57×4-45×2.5	1	0,2
113	FOCT 14911 - 69	005	15	0,06
114	То же	70 000-1	13	0,51
115	POCT 16127-70	NORBECKA NM-38	3	
	FOCT 2590-71		2,5	0,62
		1.45, 15		5,02

T 11 T 21	ГРУБОПРОВОДЫ 0750РА ПРОБ ПОДАЮЩЕЙ И ОБРАТНОЙ СЕТЬВОЙ ВОДЫ. РАБ 11=8,8KrC/cm², t=150 C; PPAБ.21=2,5 KrC/cm², t=70°C					
116	roct 8734-75	T.ºYEA \$18×2 M	15,0	0.789		
117	15K4 18 n	ВЕНТИЛЬ ЗАПОРНЫЙ				
		муфтовый Ду 15; Ру 16	3	a, 7		
118	FOCT 3262-75	ΤΡΥ5A Φ21,3×2,8	1.0	1,28		
791	ТРУБОПРОВОДЫ ОТБОР! РРАБ= 21 Krc/cm², 1	А ПРОБ ПИТАТЕЛЬНОЙ ВОД				
119	FOCT 9941-72	TP46A \$18x2 M	3.0	0.956		
120	5-10c-1	ВЕНТИЛЬ РЕГУЛИРУЮЩИЙ		<u> </u>		
		ИГОЛЬЧАТЫЙ ДУ10; РУ 64	3	0, 8		
121	FOCT 9941-72	ПЕРЕХОД ДУ 15×10	4			
		МАССА УКАЗАНА ОДНОГО ИЗДЕЛИЯ				

					•		
				TN 903-1-159	TI	41	
		Падлись	DATA	Котельная с 4 котламн	DE-2	25-14 1	M
	<i>BAMAPHHA</i>				JHT	JHCT	Листов
PA.CREY.	ЗИЛЬБЕРШТЕЙ ГАВРИЛОВА	Til			p	36	36
Исполн.	Якшинский Яровая	tros		ПРЕНАМНЫЕ И ПРОПУВОЧНЫЕ ТРУБОПРО ВОДЫ КОТЕЛЬНОЙ. РАЗРЕЗ 6-6	CAH"	LEXUB	OEKT
H. KOHTP.	MAYMUB	34 24.4	Ļ_	CHEUH PHKAUHA (OKOHYAHHE)	7.	MOCKE	Α

Капировал Туп 16175-04 38 ФОРМАТ 221