ГОСУДАРСТВЕННЫЙ КОМИТЕТ по гражданскому строительству и архитектуре **ПРИ ГОССТРОЕ СССР**

ДНИИЭП жилища

серия 86

КИРПИЧНЫЕ ЖИЛЫЕ ДОМА С ПРОДОЛЬНЫМИ НЕСУЩИМИ СТЕНАМИ

ЧАСТЬ 10

изделия заводского изготовления

РАЗДЕЛ 10.1-2

ПАНЕЛИ ПЕРЕКРЫТИЙ С КРУГЛЫМИ ПУСТОТАМИ

ЦЕНТРАЛЬНЫЙ ИНСТИТУТ ТИПОВОГО ПРОЕКТИРОВАНИЯ ГОССТРОЯ СССР

Москва, А-445, Смольная ул., 22

Сдано в печать 1977 года 38×5753 Тираж 3200 экз.

	MAPKA	ЛИСТ	стр. 2
	Содержание	61-62	9,3
	Пояснительная записка	N4- N5	4-8
	Рабочие черпежи:		
	Предварительно напряженные		
	панели, армированные стержинии		
	изстали класса А- 🗓 (коэффициент та=1.0)		
	6280 × 990 × 220 ∏ 63- 40	1 2	9 10
	6280 × 990 × 220 ПС63-10	3 4	11 12
A ADENIUM	5280 v 4490 x 220 NY 63-1 5	4 5 6	12 13 14
2.1600	6280 × 1190 × 220 ПУ63-12	7 8	15 16
W I WHI	6280 × 990 × 22 0 N365-10	9 10	17 18
3 S DE BAR	Детали сечений	11	19
NAMES TOWNED STATES OF A CONTROL OF THE STATE OF THE STAT	ПРОФИЛЬ ПРСДОЛЬНЫХ БОКОВЫХ ГРАНЕЙ ПАНЕЛ	N 12	20
< <u>></u>	ильнал адчот отомоумчоф киточовто блатод	13	21
11.0	в ичеграма кинэжолополя илатяд		
A. M. R. FORDER	краиних и средних ребрах	14	22
A. MH	ПАНЕЛИ ГЕРЕКРЫМИЙ С УСИЛЕННЫМИ		
18 7 H	<u> ФОРЦАМИ</u>		
- conc	Деталь заделки торцов и характе-		
MAJI HANNED A FORMER	РИСТИКА И ЗДЕЛИЙ	15	23
N KILL	THE THE ASE OF THE	16	24
Ĭ.Z			
13		PHR YACK	15 10 AV. 5
=±: =±:		PASA	EV V
		36 PA31 10.1	2 5/1 C1
	170	11/ 57	۵

серия часты п лист PA31,81 10.1 - 2

C2

86

11011-04

WIND THE PHACENCE OF

В альбом включены рабочие чертежи предварительно напряженных панелей перекрытий длиной 628 см с круплыми пустотами, шириной 149, 149 и 99 см, разработанные в соответствии с СНи Π Π -B. Γ -62.

Панели армированы спержневой горячекатаной сталью класса $A-\overline{\mathbb{Q}}$ периодического профиля (ГОСТ 5781-61) Ma=1.0, $R_a^4=6000$ кг/см 2 , $R_a=5100$ кг/см 2 .

Каждому изделию присвоена определенняя марка, так например 10 5-68 кл чамипан пратотами претотами усиленную и меняр, ухагутан онунный 119 см.

РАБОЧИЕ ЧЕРТЕЖИ РАЗРАБОТАНЫ НА РАСЧЕТНЫЕ НАГРУЗКИ (БЕЗ УЧЕТА СОБСТВЕННОГО ВЕСА) 450, 600 И 1000 КГ/М? СОСТАВ НАГРУЗОК, ПРИНЯТЫХ ПРИ РАСЧЕТЕ ПАНЕЛЕЙ ПЕРЕКРЫТИЙ, ПРИВОДИТСЯ В ТАБЛИЦЕ 1.

РАБОЧИЕ ЧЕРТЕЖИ ПАНЕЛЕЙ РАЗРАБОТАНЫ С УЧЕТОМ ЭЛЕКТРОТЕРМИЧЕСКОГО МЕТОДА НАТЯЖЕНИЯ. КАТЕГОРИЯ ТРЕЩИНОСТОЙКОСТИ З

Величины контролируемых предварительных напряжений в арматуре определялись исходя из принятой на заводах поточно-апрепатной или конвейерной технологии с натяжением арматуры на упоры.

В ТАБЛ. 2 ДАНЫ ПРИНЯТЫЕ В РАСЧЕТХ ЗНАЧЕНИЯ КОНТРОЛИ-РУЕМЫХ ПРЕДВАРИТЬНЫХ НАПРЯЖЕНИЙ В ЭРУТАМИРЕ И ПОТЕРИ НАПРЯЖЕНИЙ ДО И ПОСЛЕ ОБЖАТИЯ БЕТОНА.

На рабочих чертежах, наряду со значениями G_o , приведены $\Delta \dot{G}_o$ — допустимого предельного отклонения предварительного напряжения от заданного

АЗЗИПАЕ КАНОЛОТИЙОКОП

CEPHA LACTO ANGT

86 PA3AeA

проволочной и прядевой арматуры железобетонных конструкций электротермическим способом" (НИИЖБ Госстроя СССР, 1962 г.), с учетом особенностей технологии, принятой на заводах.

Панели запроектированы с одним закрытым торцом, заделываемым в зародовсу химодовае в мимовылодовае, от ихимодовае в мимовым плименение чимостотостой комподато изивенение поторых поторых в тех случах, когда ванчина расчетного попротиваем в стенх на чровне поверхности настил не превышает 17 кр/см².

При величине расчетного сопротивления в стенах, превышающей 17 кг/см², открытые торцы панелей должены быть усилены в заводеких условиях заделкой бетонными вкладышами; эти панели обозначаются с индексом "А". В чертежах приводятся дета и заделки торцов и величины расчетных нагрузок, допускамых на торцы.

Раубина опирания панелей дохисна быть не менее 400 мм Места опирания пилочий при екладировании и транспортиров мм от торцов.

Чертежи амьбома не предусмативности изготовление панель с "коммищимися" упорами в бетоне торцевой части панели.

Концы напрягаемой арматуры должны быть защищены слоем раствора не менее 5 мм.

Верхние сетки приняты по РОСТ 8478-66 "Сетки сварные для армирования железобетонных конструкций"

Изготовление каркасов и сеток должно производиться контактной почечной электросваркой в соответствии с тревованиями действующих нормативных документов.

для подъемных петель следоет применять горячека панний армантурную сталь класса A-I мочи ВМ Ст. 3сп, ВМ Ст. 3пс, ВК Ст. 3сп и ВК Ст. 3пс. Сталь мочи ВМ Ст. 3пс и ВК Ст. 3пс в случах мочтом конструкций при температуре минус 40° и

Пояснительная записка

86 PA3 A EA 102

ниже не применять

Условные обозначения арматурных сталей в рабочих чертежами инпримения в рабочих чертежами хазж 12-8.4-62.

илянал вынжеме ан ихтечтан кин вледеленая кин вредово кл Δ и гребования по звуковской индехобновуют, в проектах конжы интехар в кин в положения в интехар ин в кин в стар об в стар в их об в стар в стар

Изготовление, приемку, паспортизацию, хранение и транспортирование панелей производить по гост 9561-66 с учетом указании СНиП I-B. 5-62 и I-B. 5.I-62, проверку прочности, жесткости и трещиностойкости по гост 8829-66, монтаж по СНиП II-B. 3-62.

AMILA REPRIENCE THE TOWN AND THE TOWN AND A NOT THE TOWN AND A NOT THE TOWN A CONTROL A NOT THE TOWN A CONTROL A NOT THE TOWN AND AND THE TOWN AN

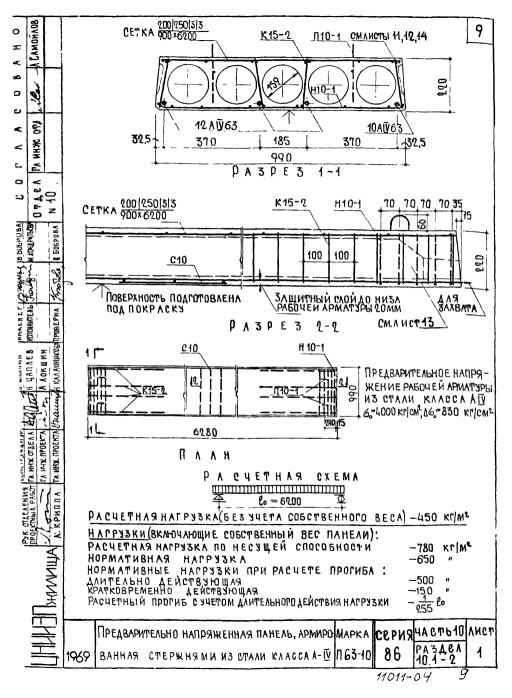
1969

Пояснительная записка

Серия часть 10 чист 86 РАЗДЕЛ ПЗ

Пояснительная записка

1969

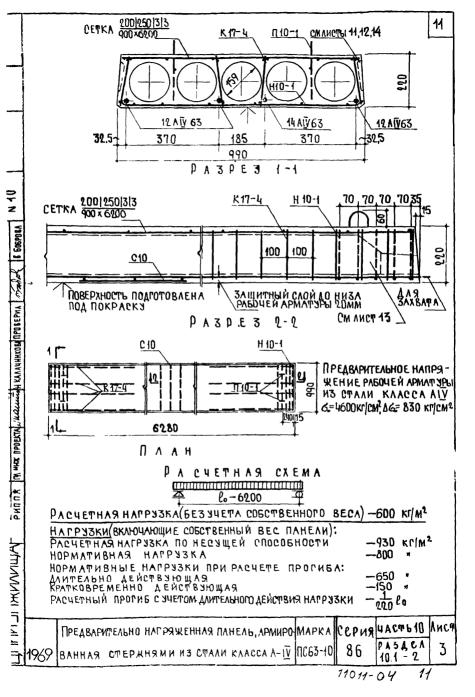

11011-04

86

PABLEA

101-2

Вид Дрмирования	Марки	ПР ед вар Напряже			ительноп - Ажао о, Кр/ем ²	MILCHDAL		
ПАНЕЛЕЙ	панелей	KD) GWS			Дефорн форны	HATTPRICE	УСАДКА Бетона	ПОЛЗУЧЕС Бетой
	П63-40	4000	128	640	3 00	2932	400	86
С т а л ь класса Å- <u>lV</u> тα≈1.0	ПС 63- 40	4600	197	640	300	3463	400	166
	-15							308
	ПУ63-12 -10	5170	274	640	300	3956	400	304 333
	1			1	1	l		
1969	Поясн	итсльн	NAE RA	иска	*****	серия 86	4A С Т Ь Р А З Д Е 10.1 -	2A n5

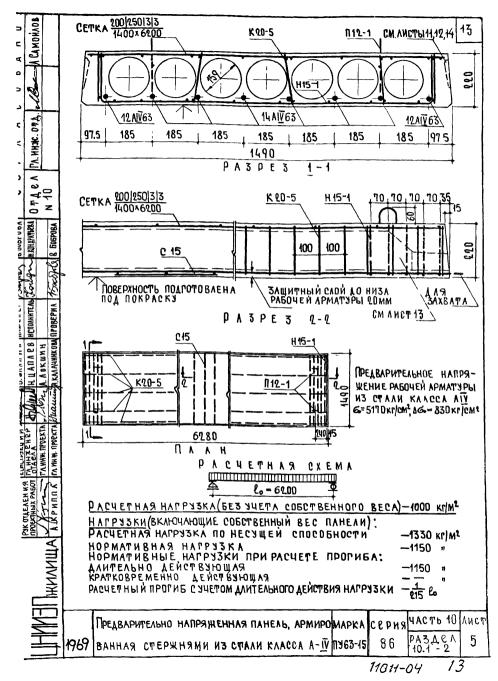


Х А Р АКТЕРИСТИКА И	3 A	Е Л И Я
BEC	KΓ	1825
ОБЪЕМ БЕТОНА	M3	0.730
ПРИВЕДЕННАЯ ТОЛЩИНА БЕТОНА	CM	11.72
ВЕС СТАЛИ	Kr	33.45
РАСХОД СТАЛИ НА 1M2 ИЗДЕЛИЯ	KP	5.38
PACKOL CTANH HA 1M3 BETOHA	Κľ	45.8
МАРКА БЕТОНА		200
-ОМ Х АНОТЭН АТООНРООП РАВОЯ И В КОВ-	KP/ CM ²	140

Спецификация	C T	A	BAEMEH	T 0 B
W A D W W	колич.	BEC	Кľ	nn
МАРКИ	ወሞ.	191EM EHT A	ОБЩИЙ	лист о в
101,1063	1	3.87	3.87	22
12A[763	3	5.58	16.74	22
H10-1	2	1. 27	2.54	24
CETKA 200(250/3 3 900×6200 00 0 8478-66	1	3.40	3.40	26
K15- Q	8	0.41	3.28	23
c 10	1	0.50	0.50	25
П10-1	4	0.78	3.12	22
		ОТОТО	33.45	

Вь	Выборка стали							
ДИ АМЕТР КХАССЫ СТ	Ы И Али	ΨIA OF Φ	412 V I	φ5 BI	φ48I	φ38I	IAOP Φ	
AHNAA	М	6.28	18.84	13.44	21.97	99.64	5.00	
BEC	Κľ	3.87	16.74	2.06	2.18	5.48	3.12	
RaH		60	6000		5500			
ቦ 0 ርጥ	0 CT 5781-61		6727-53			5781-61		

ı				
	ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННАЯ ПАНЕЛЬ,АРМИРО МАРКА	CEPUS	4AC#610	VNC
	 ВАННАЯ СТЕРЖНЯМИ ИЗ СТАЛИ КЛАССА А- Ū. ХАРАКТЕРИСТИКА И СПЕЦИФИКАЦИИ. П63-10	9	- 1 - 1	2



ХАРАКТЕРИСТИКА И	3 A	ЕЛИЯ
BEC	ΚP	1825
OBBEM BETOHA	M3	0.730
ПРИВЕДЕННАЯ ТОЛЩИНА БЕТОНА	CM	11.72
ВЕС СТАЛИ	Κľ	39.49
PACKOA CTAAN HA 1M2 N3AEAN9	KΓ	6.35
PACKOA CTAAN HA 1M3 BETOHA	Κľ	54.1
МАРКА БЕТОНА		200
КУБИКОВАЯ ПРОЧНОСТЬ БЕТОНА К МО- МЕНТУ ОТПУСКА НАТЯЖЕНИЯ НЕ МЕНЕЕ	KP/CM2	140

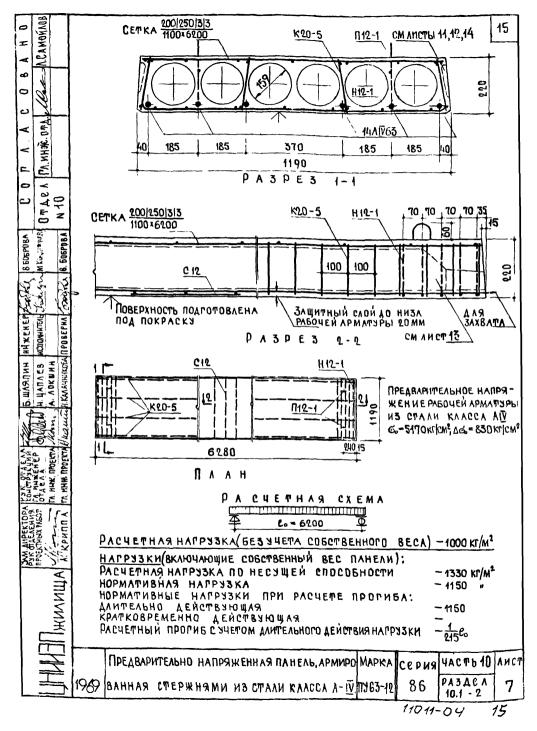
СПЕЦИФИКАЦИЯ	ия стальных элементов				
	колич.	8 E C	Kr	nn	
Марки	שיד.	191EMEHTA	Овщий	лист о в	
12 A 🗓 63	3	5.58	16.74	22	
14 A 🗓 63	1	7.59	7.59	22	
H10-1	2	1.27	2.54	24	
CETKA 200/250/3/3 700x 6200 FDCT 8478-66	1	3.40	3.40	26	
K 17-4	8	0.7.0	5.60	23	
C 10	1	0.50	0.50	25	
n 10-1	4	0.78	3. { Q	22	
		итого	39.49		

Выборка стали							
ANAMET KAACCLI OI	РЫ И	φ12A 1 <u>y</u>	φ14 A Ŵ	φ5BI	фЦВI	фЗВI	φ10 AI
Длина		18.84	6,28	13.44	66.13	61.88	5.00
BEC	Κľ	16.74	7.59	2.06	∂ .58	3.40	3.12
RaH		6000		5500			2400
гост		578	1-61	6727-53			5781-61

на сть 10 лист ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННАЯ ПАНЕЛЬ, АРМИРО МАРКА серия ВАННАЯ СТЕРЖНЯМИ ИЗ СТАЛИ КЛАССА А-<u>17</u>. Характеристика и спецификации ПС63-10 рдздел 10.1 - 2 4 86 1969

Спецификация	C A	ЛЛЬНЫХ	9 A E M E H	T 0 B
МАРКИ	колич	8 E C	K P	ии
MAPKN	ידש	19AEMEHTA	общий	ANCTOB
1211963	2	5.58	11.16	22
1411 63	6	7.59	45.54	22
H 15-1	2	1.62	3.24	24
CETKA 200/250/3/3 1400x 6200 10 CT 8478-66	1	4.80	4.80	26
K 20-5	10	0.93	9.30	23
c 15	1	0.73	0.73	25
N12-1	4	1.15	4.60	22
		ИТОГО	79.37	

Вы ворка стали								
₹ ₩₩€₩₽₩ ₩ ₩₩₩₽₩₽₩		ф14 A 🗓	ф5ВІ	Ф 4ВІ	фзві	442 AI		
ДЛИНЛ М	12.56	37.68	37.36	75.55	87.36	5.20		
BEC KP	11.16	45.54	5.74	7.53	4.80	4.60		
Ram	60	6000		5500				
roc# 5781-61		67 27 - 53			5781-61			


1969

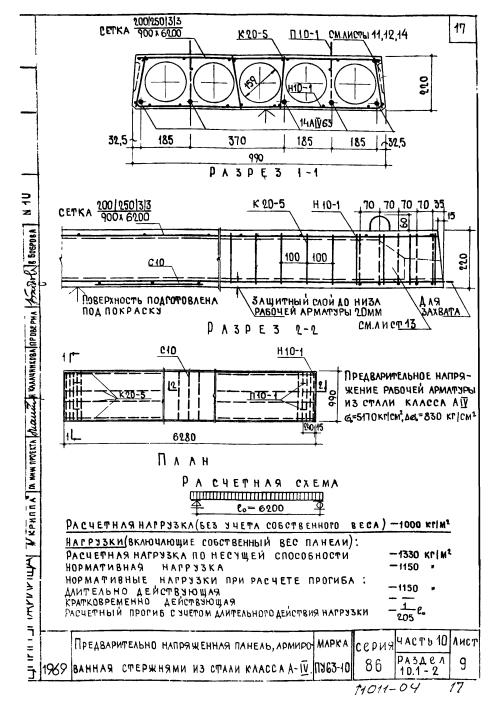
XV AVILLA PANHY PROPRIA LIFOTILLE HIMANYALORI POBEPHA

ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННАЯ ПАНЕЛЬ, АРМИРО МАРКА ВАННАЯ СТЕРЖНЯМИ ИЗ СТАЛИ КЛАССА А-Т. ХАРАКТЕРИСТИКА И СПЕЦИФИКАЦИИ. 11163-15

CEPHA YACTOIL 86

AUCT РАЗДел 10.1-2 6

ХАРАКТЕРИСТИКА И	3 Д	ЕЛИЯ
BEC	Κľ	2210
ОБЪЕМ БЕТОНА	M3	0.884
ПРИВЕДЕННАЯ ТОЛЩИНА БЕТОНА	CM	11.8
BEC CTAAN	Κľ	65.11
PACKOA CTAAN HA 1M2 N3AEANA	Κľ	8.71
PACKOA CTANN HA 1M3 BETOHA	Κľ	73.6
МАРКА БЕТОНА		300
КУБИКОВАЯ ПРОЧНОСТЬ БЕТОНА К МО-	Kr CM2	200


Спецификация	СТ	ANGHBIX	9 N E M E H	т О В		
МАРКИ	колич	CONNA BEC KL				
MAPKN	ሠጥ	19A E M E H T A	ОБЦИЙ	A MCTOB		
14 A [V 63	6	7.59	45.54	22		
ዘ 12-1	2	1.45	2.90	24		
CETKA 2001250 313 1100x 6200 POCT 8478 66	1	4.03	4.03	26		
K 20-5	8	0.93	7.44	23		
C12	1	0.60	0.60	25		
N12-1	4	1.15	4.60	82		
		Итого	65.11			

TA A OK IL MH

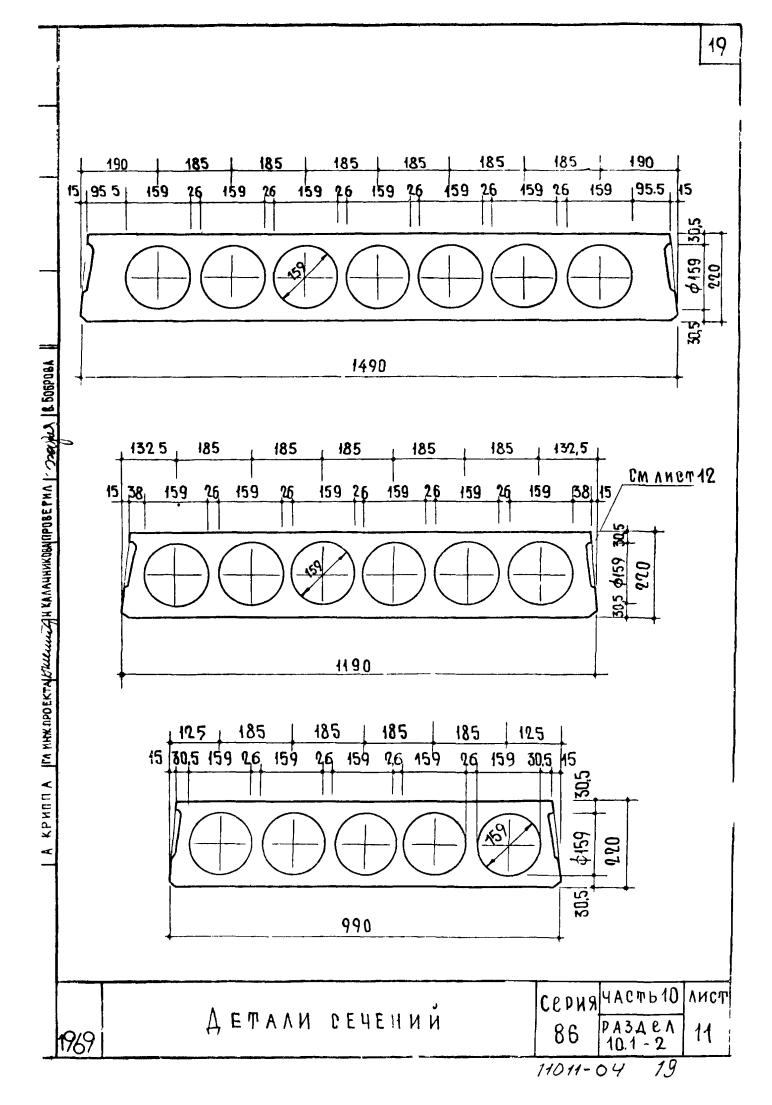
AMAZINIA POPENINISTINA COLONIA

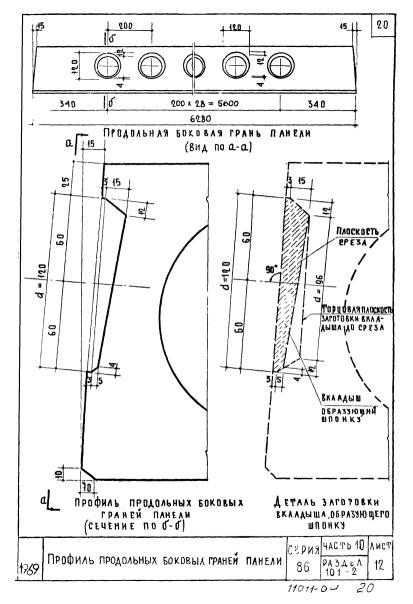
Выб	0 P k	: A	ር ጥ	АЛИ	
ДИАМЕТРЫ И КЛАССЫ СТАЛИ	φ14 Α ፻ ፻	φ5 BI	448I	фЗВІ	412 AI
м анилд	37.68	31.46	61.19	73.32	5. 20
BEC KT	45.54	4.84	6.10	4.0 3	4.60
Rat	6000		5500		2400
Гост	5781-61		6727 - 53		5781-61

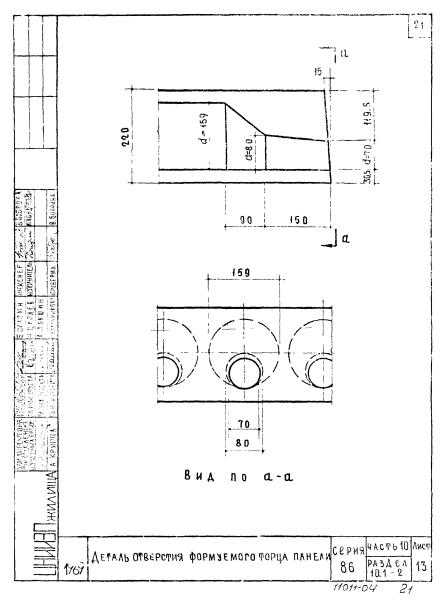
ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННАЯ ПАНЕЛЬ. АРМИРО МАРКА ССР ИЗ ЧАСТЬ 10 ЛИСТ ВАННАЯ СТЕРЖНЯМИ ИЗ СТАЛИ КЛАССА Л- $\overline{\mathbb{N}}$ ПУВЗ-12 86 РАЗДЕЛ 8

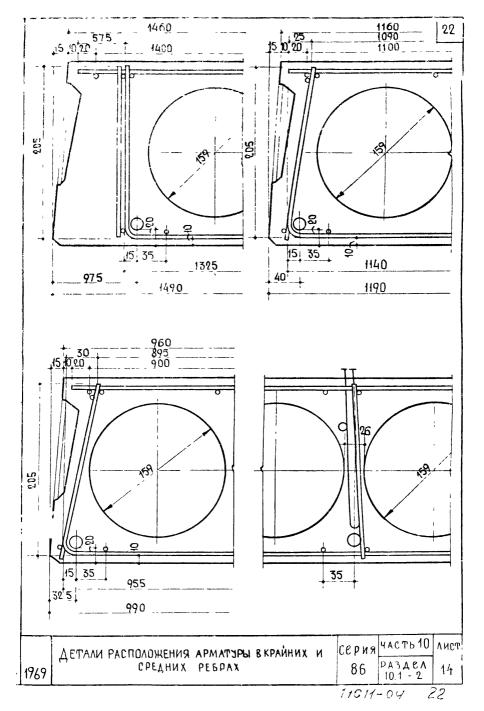
СПЕЦИФИКАЦИЯ	СТ	АЛЬНЫХ	злемен	т О в
N A O 14 H	колич.	ич. BEC Kr		นน
МАРКИ	ም.	3AEMEHTA	Общий	листов
14 A [V 63	5	7.59	37.95	22
H40-1	2	1.27	2.54	24
CETKA 200 250 3 3 900×6200 POCT 8478-66	1	3.40	3.40	26
K20~5	8	0.93	7.44	23
C10	_1	0.50	0.50	25
N10−1	4	0.78	3.12	22
		ИФОГО	54.95	

8 Suspora


THE WITH THOEKTAL MATTER A NOW WITH THE THE WHITH THOEKTAL BULLING IN SALAHHINGORA TO PREPARE


EZ/ZX


Выб	орк	Α .	c ጥ	АЛИ	
ДИАМЕТРЫ И КАЛССЫ СТАДИ	\$14 A [V	φ58I	ф48І	φ38I	ф 10 AI
ДЛИНАМ	34.40	29.60	59.57	61.88	5.00
BEC KP	37.95	4.54	5.94	3.40	3.12
Ram	6000		5500		2400
rocr	5781 - 61		6727 - 53	<u> </u>	5781-61


	ОЧИМЧА, АЛЭНАП КАННЭЖ КЧПАН ОНАЛЭТИЧАВДЭЧП Т. — А АООВАХ ИЛАТО ЕН ИМКНЖЧЭТО КАННАВ ИНДЕХИФИДЕЦО И А И МООВИЧЭТУ АЧАХ	MAPKA
	ВАННАЯ СТЕРЖНЯМИ ИЗ СТАЛИ КЛАССА А-1У.	
١	I ХАРАКТЕРИСТИКА И СПЕЦИФИКАЦИИ. I	NY 63-10

серия ЧАСТЬ 10 ЛИСТ 86 РАЗАВА 10

	μ, υ	THE SALK	лки	" U P IL, U	RILA	n e // e r				
B. EOGPOBA M.Kohapanesa B. Eogpoba	Вид	Марки	ХАРАКТЕРИСТИКА ИЗДЕЛНИ							
LCDIII	RN H ABOGNMGA NG N G H A N	ПАНЕЛЕЙ	Be C Kr	05%em 5070HA M3	Привед. Толщ бет См	866 64974 64	AD X 3 AP CTANN HÅ CMP MBAE- NNX KP	PACXOA CTANN HA CMA TMA TMA TMA TMA AHOT		
E. MANNH BHACEREP Foods HILANAE HORONHIPS FOOGS		Π 63 - 10 ^α	1855	0.742	11.93	33.45	5.38	45.2		
E. WASTHH H. U.A.TAEB A. AOKWHH H. KAAAYHMWA		NC63-10ª	1855	0.742	11.93	39.49	6.35	53.2		
Munn K	Сталь	ПУ63-15∝	2985	1.194	12.75	19.31	8.48	66.4		
A MINIC A	(m a = 10)	ηγ6 3 - 12 ^α	2250	0.899	12.0	65.44	8.71	72.5		
JAM AHPEKMOPA POCKMOIX PAGON TOWN MALL A. KPHIII A.		ПУ63-10а	1855	0.742	41.93	54.95	8.83	74.1		
1				1						

Примечания:

Панели, обозначенные марками с индексом об отличаются от (проделжение ем. лист 16)

1969 ДЕПАЛЬ ЗАСЕЛКИ ТОРЦОВ И ХАРАКТСРИСТУКА ИЗДЕЛИЙ

СЕРИЯ ЧАСТЬ 10 ЛИСТ 86 РАЗДЕЛ 40.4-2 15

40:4-04 2

ОСНОВНЫХ ПАНЕЛЕЙ (БЕЗ ИНДЕКСА) ТОЛЬКО УСИЛЕНИЕМ ОТКРЫТЫХ ТОРЦОВ БЕТОННЫМИ ВКЛАДЫШАМИ.

2. РАСЧЕТНЫЕ НАГРІЗКИ НА ОПОРНЫЕ КОНЦЫ (ИСХОДЯ ИЗ ПРИЗМЕННОЙ ПРОЧНОСТИ БЕТОНА МАРКИ (200) ПРИНЯТЫ ПРИ ГЛІБИНЕ ОПИРАНИЯ (10 см – 45 КГ/см² 25 см – 30 кг/см² .

РАЗРУШАЮЩАЯ НАГРУЗКА ПРИНИМАЕТСЯ РАВНОЙ РАСЧЕТНОЙ, МНОЖЕННОЙ НА КОЗФФИЦИЕНТ ПО ГОСТУ 8829-66.

ЗМНОЖЕННОЙ НА КОЗФФИЦИЕНТ ПО ГОСТУ 8829-66. ЗБЕТОННЫЕ ВКЛАДЫШИ И ПАНЕЛИ ДОЛЖНЫ БЫТЬ ИЗГОТОВЛЕНЫ ИЗ БЕТОНА ОДИНАКОВОЙ МАРКИ.

4 ЗАДЕЛКА ВКЛАДЫШЕЙ В ТОРЦЫ ВЫПОЛНЯЕТСЯ НЕПОСРЕДСТВЕННО ПОСЛЕ ИЗВЛЕЧЕНИЯ ПУАНСОНОВ, ДО ПРОПАРИВАНИЯ ПЛАНЕЛЕЙ, ПРИ ЭТОМ, ДОЛЖНО БЫТЬ ОБЕСПЕЧЕНО ПЛОТНОЕ ПРИМЫКАНИЕ ВКЛАДЫШЕЙ.

5. ЎЛКРЫТЫЕ ТОРЦЫ ПАНЕЛЕЙ ВАВИВ ПРИ ФОРМООМ СВЫХДАНЫМ ОТВЕРСТИВМ МАЛГО ДИЛИТО АСПОДОТО В НА СТЕНЗ НЕСУЩУЮ БОЛОМИ ОНУШИЛЬНО ТОРТИНЕНТЕННЯ В НА СТЕНЗ НЕСУЩУЮ БОЛЬШУЮ НАГРУЗКУ

ДЕТАЛЬ ЗАДЕЛКИ ТОРЦОВ И ХАРАКТЕРИСТИКА ИЗДЕЛИИ СС РИЯ ЧАСТЬ 10 ЛИСТ

10.1 - 2

€ 0= 6200

Схема опирания и загружения (ирро×62 недаесадароп)

ПРИ ПРОВЕДЕНИИ ИСПЫТАНИЙ 25 RESTABORTS A OR O X CT B O BAT B C B **UMPHAEAXE** roer 8819-66

			ДО 07.11		2.070	1						
		Пр	0 B	E	PKA		ΠP	о с н р о	т и			
-	RUALLD	нэш <i>кч</i> ем	úи		ВЕЛИ	4 4 4 1	A PAS	н изуюнашен	APP	13KH	Kr/	M2
		, коэффицие		n	ПРИ К	110P	й из	-CHAU BHVAT	ПРИ	KOTOPO	KAJAT N	ETLS
				L	ЭГОНАН	31 8	ДНЫ	М И	ודאטת	OPHOE	испытан	NĚ
	(CM: 117.2)	.2 TABA.2 P	บยา		074610	M COE	CTB 3	А ВЫЧЕТОМ ГОБСТВ	C 740	TOM CO	BETB. BE	CA.
					BECA	NZĄEN	ия в	ека изделия	HBAEI	NUR (CM N3.2.2 PORT)		
606POBA	194310 M 2 Pasapogae 10	B NPOADAB APMATYPH HUE BETOHA OAHOBPEM BO NPOAD W APMATYP C=1.4	\ СЖ ЕННО льно	A -	≥4	140		≥843 <1140 , no≥969				
963 8	Т ЬЯСИЕ ВИ	AP1 PA P1 U	N H 3	Й	^	301		≥1004	<1	301,	H 0 ≥ 11()5
450		Пр	3 B	E P	K A	Ж		CT K O 2 T				
	CPOK	Контрольн	RA		1604PH	וטוא	BEAH	UNHA UZMEPE CM N 3 3				MM
P.M.A	HCHLITAHUS	HALLAZKW		l	POTHE	ر						1
186	N3AENNN	BHUETOM CO			DHTPDA			KOTOPOM N3	- 1		TOPDM	
<u>=</u>	NOCVE NX	BECA H3A1		H	16622K	И	P - 1	Я ЛРИЗНАЮ	1 - 5	ROTEE	NOBTOP	HOE
MKDE	XAXTES B KNH	Kr ∕m²	•		∦ K M M		СЯ	LOTHPIWN	Н	CUPIL	AHNE	
KANAUN	3	433			12.8			≤ 15.3		>15.3	, 110 ≤ 1	66
1.5.	7	427			12.6			< 15.1	_ _	>15.1	, HO ≤	16.4
ä	10	416			12.4			≤ 14.9		> 14.9	. HO ≤	16.1
1 A 1.	28	406			12.1	€ 14.5				>145, HO ≤ 15.7		
HHM NPOENTA FOR GOOD HINAAAHHKBBANDBEPNA	400	380			11.5		≤13.8 >13.8, H0 ≤1				49	
L'IN KH	ПР	D В Е Р К А	ши	РИ	ны	P A	CK	рытия		PEW		
KPMUNA	ON XOQO NUNBAEN TOPEN XN XAXTED 8		3	7	14	28	100	КОНТРОЛЬНАЯ РИНА РАСКРЫ ТРЕЩИН ССт	HH H	40 U AC BEYNA! BEYNA!	МАЛЬН ТИМОЕ ІЕНИЕ О ИНЫ О 4 5 ГОС	1 T.
A Intervented A	KOHTPOALH KA 3A BLI COECTBEHH N 3 A E N H H		433	427	416	406	380	0.5			+01	
		ОВЕДЕНИИ НЫ ОПРЕ			N H A N H A O II	8 F	IPOM TEPI	HNURKOI	0 P	ОКИ	8 C E	
j										- 11 A 01	DL 40 L	
[]	111PEA	BAPHMENHHA	HAR	9 HCB	I FAHH:	1AH EM	b, AF	MHPO MAPKA CI	EPH			ист
2	1969 BAHH	НЖЧ ЭТ О RA ылл			NAAPO NOE R			A - <u>IV</u>	86	PA 3	Aen /	17
긔	<u>'/'/</u>	д и м	11 61 6	# 1	V 21011	OI I A II			10.1		25	

11011-04

RNHAKTARE N RNHAGNING AMAIS

ПРИ ПРОВЕДЕНИИ ИСПЫТАНИИ СЛЕДУЕТ РУКОВОДСТВОВАТЬСЯ УКАЗАНИЯМИ ГОСТ 8829-66

717 71 710:10	minimum magne	toowi	7111 O Z A	ייסק טי	<u> </u>							
	U b	0 B	E p	K A) p	0 4 Н О	СТ	И			
RUALLDA	ЗРУШЕНИІ	J 14	B	ENHY	NHA	PASP	ҮШАЮЩЕ	M HAFF	УЗКИ	KL / WS		
1										H TPEBYETCA		
1 /	, коэффицие		51	H AHOTO	07 83	ІНЦ	ми	108	TOPHOE H	CHUTAHUE		
(2. TABA 2 1°C	,	В	Y4ETO Eda v	М СОБ 13ДЕЛ	CTB 34 11 9 BI	BURELOW (обств су. Акия изд	вио мотвь П Мо) рила,	SCTB BECA 322 FOCT)		
ТЕКУЧЕСТЬ ТЯНУГОЙ РАЗДРОБЛЕІ ТОИ ОБ НОТ ТЕКУЧЕСТ РАСТЯНУТО	D TPOAOABH APMATYPH HUE BETOHA OAHOBPEMI HO TPOAOA M APMATYP C=14	ОЙ Р СЖА БНО БНО Ы	AC- C N	≱1	357	77 ≥ 1060 <1357, Ho≥1154						
ДРУГИЕ ВИ	ДЫ РАЗРУ Ш С=16	ЕНИ	й	≥ 1	550		≥ 125	3 <	. 1550, H	0 ≥ 1318		
ПРОВЕРКА ЖЕСТКОСТИ												
СРОК КОНТРОЛЬНАЯ КОНТРОЛЬНЫЙ ВЕЛИЧИНА ИЗМЕРЕННОГО ПРОГИБА (СМ ЛЗЗ1 ГОСТ) ММ												
HCH HATIAHDA				0 ги 5	. 1				T	MM		
NAVATENX	BUHETOM CO						KOTOPO			TOPOM TPE.		
H3TOTOBAE-	ВЕСА ИЗДЕ	лии	НУГ	₽¥3 K ₹ K	и	¥ E V N	Я ЛРИЗН	A HOT -	EYETCA	NOBTOPHOE		
ния в сутка 🏌	Kr/m ²			M M T N		ся	LOTHPIW	И	испыт	AHNE		
3	618			15.8			≤ 17.4		>17.4	, HO ≤ 18.1		
7	605			15.5			≤ 17.0		>17,0	, HO ≤ 17.8		
14	592			15.3			≤ 16.8		>16.8	, HO ≤ 17.6		
28	574			14.8	8 ≤ 16.3 > 16.3 , H0 ≤					, HO ≤ 17.0		
100	537			14.0			≤ 15.4		>15.4	, HO ≤ 16.1		
Пр	OBEPKA	Ш	иРИ	н ы	p /	CK	РЫТИ		bent	ин		
CPOK NCI M3 DE A M M M X M3 I O T O B C Y T K A X	ПОСЛЕ Виналаг	3	7	14	28	100	КОНТРОА РИНА РА ТРЕЩИН ССТ	СКРЫТИ	TOYNOAK HOANTO	MAABHUE HMUE EHHE OT HBI CLT 4 3 FOCT)		
КОНТРОЛЬН КЛЗА ВЫ СОБСТВЕНН ИЗфЕЛИЯ		618	605	592	574	537	0'	2		01		
≯ При пе ВЕЛИЧИ	OBEAEHUN ABGRO 12HI	JN IRAB	N LITA HOTCS		B (IPD M	POTYX3	H bi E C	POKN	BCE		
MPEAL	ПРЕДВАРИМЕНТА В НАПРЯ ЖЕННАЯ ПАНЕТ, АРМИРОМАРКА СЕР ИЯ ЧАСТЬ 10 ЛИСТ											
BAHH	АЯ СТЕРЖНЯ	MM	43 C	NAAT	KAAC	A AS.	- <u>1</u>	11				
1969			RAA S				nces	- 10 8i	6 PA3A	18		
								110	11-04			

ПРИ ПРОВЕДЕНИИ ИСПЫТАНИЙ CAEAYET PYKOBOACTBORATECS

27

NM RNHAEANY TDCT 8829-66

Схема опирания и загружения (мӘЪ1×2.Ә жечтағ ададиолп) и инатылпон ичп

> Π P O B E P K A прочноети

Виды Разрушений и ВЕЛИЧИНА КОЭФФИЦИЕНТА С (CM. П2.3.2. ТАБЛ. 2. ГОСТ)

C = 1.4 ДРУГИЕ ВИДЫ РАЗРУШЕНИЙ

C = 1.6

Величина разрушающей нагрузки KI/M2 ПРИ КОТОРОЙ ИЗДЕЛИЯ ПРИ- ПРИ КОТОРОЙ ТРЕБУЕТСЯ ЗНАЮТСЯ ГОДНЫМИ ПОВТОРНОЕ ИСПЫТАНИЕ CYMETOM COECTB 3A BUMETOM COECTB C YMETOM COECTB. BECA

ТЕКУЧЕСТЬ ПРОДОЛЬНОЙ РАС-TAHYTOŬ APMATYPU 2 РАЗДРОБЛЕНИЕ БЕТОНА СЖАТОЙ ЗОНЫ ОДНОВРЕМЕННО С ТЕКУЧЕСТЬЮ ПРОДОЛЬНОЙ РАСТЯНУТОЙ ДРМАТУРЫ

ВЕСА ИЗДЕЛИЯ ВЕСА ИЗДЕЛИЯ ИЗДЕЛИЯ (СМ.ПЗ. 2.2. ГОСТ) **>** 1912 ≥ 1597 <1912, HO ≥ 1625 > 2186 ≥ 1871 <2186, HO ≥ 1858

N P D B E P K A жесткости

NCUPLEARING	HATPYSKA SA	прогив	ВЕЛИЧИНА ИЗМЕРЕНН СМ ПЗЗА	TOCT) MM
NZYEVNN	BECA N3AEANN	OT KOHTPOALHON HAPPY3KN 4K MM	ПРИ КОТОРОМ ИЗ- ДЕЛИЯ ПРИЗНАЮТ- СЯ ГОДНЫМИ	NPU KOTOPOM TPE- Syetch nobtophoe UCNЫTAHUE
3	1005	14.3	≤ 15.9	>159, HO < 164
7	985	141	€ 15.5	>15.5 , HO ≤ 16 2
14	960	13.7	≤ 15.0	>150,H0 ≤15.7
28	925	132	≤ 14.5	>145,H0 ≤151
100	865	123	≤ 13.5	>135,H0 ≤141

II POBEPKA WUPNHU PACKPLITUS TPEWNH

СРОК ИСПЫТАНИЯ ИЗДЕЛИЙ ПОСЛЕ ИХ ИЗГОТОВЛЕНИЯ В СУТКАХ*	3	7	14	18	100	КОНТРОЛЬНАЯ ШИ- РИНА РАСКРЫТИЯ ТРЕЩИН ССт ММ	
	1005	985	960	925	865	0.2	+0.1

№ ПРИ ПРОВЕДЕНИИ испытаний в промежуточные CPBKH BCE NHTEPROARGHN ВЕЛИЧИНЫ ОПРЕДЕЛЯЮТСЯ ПO

ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННАЯ ПАНЕЛЬ, АРМИРОМАРКА СЕРИЯ НА СТЬ 10 ЛИСТ ВАННАЯ СТЕРЖНЯМИ "3 СТАЛИ КЛАССА A-IV PAJAEA 19 иннатылы кад эмннад IN363-45 10.1-2

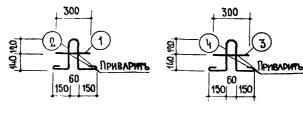
Γ				<u></u>	TT1110				Res	1 11 11 11	EAEHI	и и	CUPI	та ний	28
			4	€0 -6200		Ч					PXK				
L	\downarrow		CXEM	РИНДЧИПО	И 3/	AP PS	KEHU:	1	3K	ABAHH	NMR	roc	T 88	19-66	
			при исп	ИОЛП)ИНАТЫ											
				II P	O B		РКА ПРОЧНОСТИ								
卜			Виды Р	PA3PYWEHV	เน้ ห	- 1	ВЕЛИЧИНА ФАЗРЗШАЮЩЕЙ НАГРЭЗКИ КГ/М ПРИ КОТОРОЙ ИЗДЕЛИЯ ПРИ-ПРИ КОТОРОЙ ТРЕБЗЕТ								
1				А КОЭФФИЦИ		U	3HAHOT				и II ри-			NCUPIL	
			(CM. 114.5	3.2. TA6A.2 P	verj		C JUETO BECA 1	M CO	SCTB H9	BECA H	atoros mo	С У Ч Е МЗДЕМ	O MOT	06CT8 B	ECA (T30
BA :	3	100	2.PA3APD5A6 TOM 30H6 TEKNUFCT	B NPOADAB APMAT SPAI EHNE BETOHA BO OAHOBPE M IDO NPOADA C = 1 4	\	A-	> 1927 > 1629				<1927, H0 > 1638				
8 SOCPOR	KONAM	6. 506 P	A PUTHE BY	14P 6	EHNI	Й	> '	2202	2 ≥ 1904 < 2202, HO ≥ 18				872		
21/2	Pariet.	Sold	0	ПРО) B E	р	K A	ж	2	e T K	De	т и			
1/2	Z.	18	Q P O K	Контрольн			POAPI		BEANUHA NOMEPEHHOLO ULOLINEY (CW 1321 LOCT)					MM	
MENED MENED	HETONHMEN	POBEPHA	ИСПЫТАНИЯ И и а а д е и	A X & K Y TAH			N 7 D 9 Antroa	-	ПРИ					OTOPDA	
×		165	NOCAE NX	BECA HILL		HATPYSKH A			ДЕЛИЯ ПРИЗНАЮТ-						
=	=	MX 38	-3780 TO76N XAXTE 3 8 R NH	Kr/M2	.				C A	годн	M M Id	1	1CUPI	TAHHE	ł
RECE	HAMMES	A JOKENH BKAANHUKOBA	3	1032			14.7 <161				>161, HD ≤169				
149	3	173	7	1017			14.5			≤ 15.9			>15.9, HD < 16.1 >155, HD < 16		
N	190	2 3	14	998			14.1		< 15.5						
1 8 L	1	MTA MTA	28	954		-	13.6			\49)		>4	9, H0≪	15.6
E STORE	W.F.H	K. NPOENTA K. NPOENTA	100	892		•	12.4			<13 C	5		>13	£, H0 €	142
XX	150	TINA CERNIX INDENTA	Пр	0 B E P K A	ע ש	РИ	НЫ	P #	1 3	СРЫТ	ия	T	PEU	нин	
五世本	OENTHUN PAGE	AXXPHINA	1	POBAEHNA	3	7	14	28	100	PHHA	ольная Раскры ин Q т	AT NS	K ON 3	ИМАЛЬН СТИМОЕ ОНЕНИЕ ИНЫ 343ГО	
1		NAUJAR	KA 3 A BH	IOPO BECA	1032	1017	998	954	892		0.2		•	+01	
		<u>₹</u>	1 -	OBEAEHNN			АНИЙ				рчные	CP	DKN	BCE	
	F			HPI OULEY						ркар			1	20, 10	AUSS
	=	之	I IPE	оналотичаад Ная стерж	ITAH Wweh	JHCR 9 Lua	RAHHS	9 HATI	16, 1	A-IV	MAPKA	Ceph	_	еть10	ł i
L	르	=	1969 000				ONARO ON RA				NY63-12	86	P A 10	3 Д в Л]. 1-2_	20
												110:	11-0	ء س	8

				mann by K		 9⁄				ПРОВЕДЕ				29	
			lI	ℓ ₀ -	工	•	we 11 11 6	5		EQ TICA			29-66		
-	-	\vdash	TPH HER	РИНАЧИПО Л БИОЛП)ИИНАТЫ	M 2	LEAH 6	2×096	и) (м	3 6 1	SAINAMA			-,		
				q []	0 B	E P	KA	١	ηP	очно	сти				
┝	-	-	RUALIP	N H 3 W C 9 E A	йн					РУШАЮЩЕ Й				/ M2	
			ВЕЛИЧИН	коэффици	EHTĄ	e	IPN KI SHAHOT	OTOPO 1 RD	ОЙ ИЗ Одны	БДЕЛИЯ ПР ІМИ	N-IRPN NOBT	ПРИ КОТОРОЙ ТРЕБУЕТСЯ ПОНАГЫЛОН ЭОНЧОТВОП			
			(CM 123	2 TA612 L	OCT		СУЧЕТОМ СОБСТВ ВТООО МОТЭРСТ ВЕКА ИЗАВИЯ ВЕСА ИЗАВИ				CTB C YU	C YHETOM COECTE BECA			
-		!	4 T F K Y Y E P T	ь продольн	I NO		SEEA	MSAEN	NA R	ECN NOTEV	NA NAC	MA (CII	1113271	1001	
14.	§	98A	19 HYTON 2 PA3A POBAI 10 H 30 HŁ	APMATYPЫ HWE BETONA JOAHOBPEM SHO RPOADA ON APMATYP C=1.4	۸- ۱. و	≥1	941	≥1644			1941,	H0≥10	6 5 0		
B 505Ppr	MODH DRIEBE	8	ДРУГИЕ В	1ДЫ РАЗРУШ С=1.6	ЕНИ	Й	>1	2218	3 ≥1921 <2218, H0≥18				886		
3	Sports	H	a	ПРО	В	ΕP	K A	K	K E	e T K D	СТИ				
18	13	R	CPOK	KOHTPOALH			РОЛЬН	ן אוסו	BEAH	MEN AHNP	6PEHH 3.3.4 [ת סום לדים חי	POLNP	MM	
HHXENEP,	ALLE S	E	NCUPLIAUN N N N 3 V E N N N	HALLAZKA : BPIAELOW CO			N 7 O ' NO9TH		при				OT O POM		
	Ž.		NOCAENX N3COTOBAE:	ВЕСА ИЗДЕ			r Pysk			19 NPU3H					
EN SE KE	PE.		HIND B CYTKAX	KL/W ₅			∦K MM		СЯ ГОДНЫМИ			VGUPI.	TAHHE		
F KM 9	T I		3	1059	-		155		≤ 17.0			>17	0 , HO <	478	
Ī	3	13	7	1033			15 1 ———			< 166		>16	6,40 ≤	174	
1	8	HILD	14	1003			146			< 16 0			0 , H0 ≤		
25. 27.	K CH CP	EKTA	28	973			141			≤ 155			5,H0 ≤		
CTPYA	TX I	MAK 11PC	100	903			132			≤145		<u>> 14</u>	5,H0 ≤	152	
100 N	50 5	, ,	ПР	DBEPKA	ШИ	РИ	н ы	PA	e K	РЫТИЯ	T	PEL	јин		
AM ANTERIUM	DEKTHULKPAG	KPUNDA	CPOK NC N3A ENHŮ NX N3FOT B CYTKA	OBVEHNA	3	7	14	28	100	KOHT POAL PUHA PAC TPE WHH CLT		KUOV		E	
36		ANWAR	КОНТРОЛЫ КАЗА ВЫ СОБСТВЕНН ИЗДЕЛИЯ	OLO REGY	1059	1033	1003	973	903	02			+01		
		×	* nPN n	оведении			АНИЙ	В	R PO M	EXYTOUH	HE CI	POKH	BCE		
		5		HH ONPEA						101811111	-	<u>,,,,</u>	0 70	11100	
	\equiv	2	IBAHH	ВАРИТЕЛЬНО АЯ СПЕРЖН	HMR NMR	ሃታዩኒ 138	HAATI VIAATI	የ ለአ ነላበተነ	IB, AP CCA	A-1V I	1 00	_		t l	
	느	7	1969	ДАІ	іны	ΕĂΛ	ЯИС	ТЫТА	ний.	<u></u> UA63-	10 86	11	34e1 11-2	21	
											110	11-04	2	9	

6280-6E3 Y4ETA SAXBATOB (CM NO9CHUTEALHYO JANUCKY)

10.AIV 63

\$12 A [V


6280- BE3 YHETA BAXBATOR (CM NORCHUTEALHYHO BANNCKY)

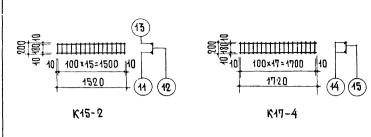
12 AIV 63

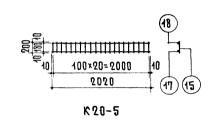
\$14AIV

6280- EE3 JHETA SAXBATOB (CM NOSCHUTEALHYO BANUCKY)

14 A 1 63

N 10-1

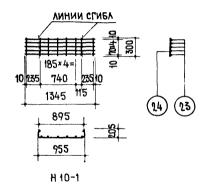

1969


 $\Pi 12 - 1$

СПЕЦИФИКАЦИЯ СТАЛИ НА ОДИН ЭЛЕМЕНТ							
МАРКИ	NOSNIT N. N.	1 00744	AANAA	KON	ОБЩЛЯ	8 E C	Κſ
			MM	መጥ	AVNUV	позиции	овщии
10 A [V 63	-	Ø10 ∧ [V̄	6280	_	6.28	3.87	3.87
12 A 🗓 63	1	Ø12 A [V	6280	_	6.28	5.58	5.58
14 / 🗓 63	-	Ø 14 A 🗓	6280	-	6.28	7.59	7.59
n 10−1	1	Ø 10 A I	300	1	0.30	0.19	0.78
	2	Ø 10A I	960	1	0.96	0.59	
П (2-1	3	Ø12AI	300	1	0.30	0.27	1.45
	4	Ø12AI	1000	1	1.00	0.88	

НАПРЯГАЕМЫЕ СТЕРЖНИ: 10 Л 1 63, 12 Л 1 63 СЕРИЯ 4 СТЬ 1 1 ЛИСТ ПЕТЛИ П 10-1 П 12-1 86 7 10.1-2 22

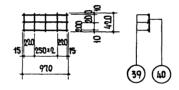
Спецификац	, И Я	СТАЛИ	HA O	ДИН	316	мент	
Марки	ии	CTANE			11 4 12/11 4	Bee	Kh
	HUSNE		ММ	ሠጥ	' M "	познции	ОБЩИИ
K 15- 2	11	Фъві	1520	1	1.52	0.08	
	12	Ø3BI	200	46	3.20	0.18	0.44
	13		1520	1	1.52	0.15	
K17-4	14	Ø4BI	1720	2	3.44	0.54	0.70
	15	Ø4BI	200	18	3.60	0.36	
K20-5	15	ф4в <u>і</u>	200	21	4.20	0.42	
	17	ø48I	2020	1	2.02	0.20	0.93
	18	Ø5BI	2020	1	2.02	0.31	
	M A P K H K15- 2 Κ17-4	М А Р К И позиц 41 К 15- 2 42 43 К 17- 4 44 15 К 20-5 47	M A P K H NN CTAΛЬ 11 Ø 58 I 42 Ø 38 I 43 Ø 48 I 44 Ø 48 I 45 Ø 48 I 46 K 20 - 5 17 Ø 48 I 17 Ø 48 I 17 Ø 48 I 17 Ø 48 I 18 Ø 48 I 19 Ø 48 I 10 Ø 48 I 11 Ø 48 I 12 Ø 48 I 13 Ø 48 I 14 Ø 48 I 15 Ø 48 I 17 Ø 48 I 18 Ø 48 I 19 Ø 48 I 10 Ø 48 I 11 Ø 48 I 12 Ø 48 I 13 Ø 48 I 14 Ø 48 I 15 Ø 48 I 17 Ø 48 I 18 Ø 48 I 19 Ø 48 I 10 Ø 48 I 11 Ø 48 I 12 Ø 48 I 13 Ø 48 I 14 Ø 48 I 15 Ø 48 I 16 Ø 48 I 17 Ø 48 I 18 Ø 48 I 19 Ø 48 I 19 Ø 48 I 10 Ø 48 I 10 Ø 48 I 11 Ø 48 I 12 Ø 48 I 13 Ø 48 I 14 Ø 48 I 15 Ø 48 I 15 Ø 48 I 16 Ø 48 I 17 Ø 48 I 18 Ø 48 I 18 Ø 48 I 19 Ø 48 I 19 Ø 48 I 10 Ø 48 I	M A P K H NN 103NIII C TAΛЬ 1520 K15-2 42 φ 3 BI 200 43 φ 4 BI 1520 K17-4 44 φ 4 BI 1720 45 φ 4 BI 200 45 φ 4 BI 200 45 φ 4 BI 200 47 φ 4 BI 200 48 φ 4 BI 200 49 φ 4 BI 200 40 φ 4 BI 2	M A P K H NN ПОЗИЦ C TAΛЬ Д ΛΝΗΑ ΜΜ ΚΟΛ ΜΜ 11 Φ 3 BI 4520 4 12 Φ 3 BI 200 46 13 Φ 4 BI 4520 4 14 Φ 4 BI 1720 2 15 Φ 4 BI 200 48 15 Φ 4 BI 200 24 17 Φ 4 BI 2020 4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	М А Р К И NN ПОЗИЦ. СТАЛЬ ДЛИНА КОЛ МИМ ШТ ЛИНА МИНА ЛИНА МИНА ЛИНА ЛИНА МИНА МИНА МИНА ЛИНА МИНА ЛИНА МИНА ЛИНА МИНА ЛИНА ЛИНА МИНА ЛИНА МИНА ЛИНА ЛИНА ЛИНА ЛИНА ЛИНА ЛИНА ЛИНА Л


1969

A. WHIN, SIPORKE

KAPKACH: K15-2; K17-4; K20-5

серия <u>часть 10</u> лист 86 РАЗДЕЛ 10.1-2 23

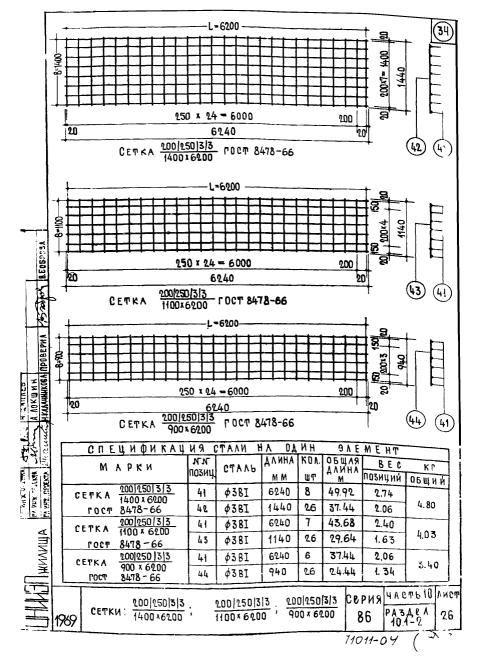


СПЕЦ И ФИКАЦИЯ СТАЛИ НА ОДИН ЗЛЕМЕНТ								
МАРКИ	NN		ДЛИНА	KOA.	ОБЩАЯ	BEC	Κľ	
MAPKN	LIOZNIT CIVYP	CIANO	MM	ሠጥ.	AANHA M	กозиции	общий	
H15-{	21	Ø 58I	1715	5	8.58	1.32		
กาอ-า	24	Ø48I	300	10	3.00	0.3	1.62	
H12-1	22	Ø58I	1530	5	7.65	1.18		
N12-1	24	Ø48I	300	9	2.70	0.27	1.45	
H 10 -1	23	φ5BT	1345	5	6.72	1.03	1.27	
1101	24	Ø4BI	300	8	2.40	0.24	1.21	

Корытообразные сетки: H15-1; H12-1; H10-1 86 РАЗАВА 24

C 15

C 12



C 10

СПЕЦИФИКА	, N 9	CTAAN		ИН		MEHT	
М АРКИ	ии	CTAAb	ДЛИНЛ	KOA	06 H A9	8 E C	Κľ
	позиц		им	ШT	A HM V	позиций	общии
C 15	37	Ø 4 BI	1470	3	4.44	0.44	0.13
	40	φ4 8 Ι	420	7	2.94	0.29	
C 12	38	Ø4BI	1170	3	3.51	0.35	0.60
	40	Ø4BI	420	6	2.52	0.25	
C 1 0	39	Ø48I	970	3	2.91	0.29	0.50
	40	φ48I	420	5	2.10	0.24	

CETKH : C15; C12; C 10

СЕРИЯ ЧАСТЬ10 ЛИСТ 86 РАЗДЕЛ 25

