Товары в корзине: 0 шт Оформить заказ
Стр. 1
 

36 страниц

Купить официальный бумажный документ с голограммой и синими печатями. подробнее

Цена на этот документ пока неизвестна. Нажмите кнопку "Купить" и сделайте заказ, и мы пришлем вам цену.

Официально распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО "ЦНТИ Нормоконтроль".

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

Способы доставки

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

В документе приведена комплексная методика изучения строения мерзлого грунта и условий его формирования при промерзании (на образцах в лабораторном эксперименте). Рассмотрены геофизические методы учета строения мерзлых грунтов при оценке их физических и физико-механических свойств. Дано обоснование использования этих методов. Приведены рекомендации по лабораторному определение акустических и электрических характеристик на образцах и методика оценки состава и строения мерзлых грунтов по измеренным характеристикам. Для инженерно-технических работников научно-исследовательских и изыскательских организаций.

  Скачать PDF

Документ составлен к главам СНиП II-9-78" Инженерные изыскания для строительства. Основные положения" и СНиП II-18-76 "Основания и фундаменты на вечномерзлых грунтах. Нормы проектирования" и "Руководству по определению физических и механических характеристик мерзлых грунтов"

Оглавление

1. Общие положения

2. Формирование строения мерзлого грунта

Основные понятия и определения

Физические условия формирования криогенного строения

3. Основные параметры, определяемые при лабораторных исследованиях

4. Методика экспериментального изучения формирования криогенного строения грунтов

Отбор и подготовка образцов

Основные требования к производству и технике экспериментального промораживания образцов грунта

Последовательность комплексного моделирования процесса льдообразования в промерзающем грунте

Изучение криогенного строения

5. Геофизические исследования

Общие положения

Подготовка образцов

Измерение акустических параметров мерзлых грунтов

Акустическое просвечивание

Акустическое профилирование

Измерение электрических параметров мерзлых грунтов

Изучение состава и криогенного строения мерзлого грунта с помощью геофизических методов

Показать даты введения Admin

Рекомендации

по лабораторному изучению строения мерзлых грунтов


Производственный

и научно-исследовательским институт по инженерным изысканиям в строительстве (ПНИИИС) Госстроя СССР

Рекомендации

по лабораторному изучению строения мерзлых грунтов

Москва Сгроннздат 1984

ностн их размеров, извилистости границ, коэффициентов изменения этих параметров по глубине.

3.4.    Криогенное строение характеризуется также дифференцированной оценкой льдистости, влажности и плотности. В эксперименте определяются или рассчитываются:

объемная льда сто сть за счет ледяных включений л^, %, или доли единицы;

влажность за счет ледяных включений tVg;

суммарная влажность УУе , равная )Ув ♦ й' ♦ JVH» где /V* - влажность за счет незамерзшей воды, определяется непосредственно, /Уц- влажность за счет льда-цемента, определяется по разности « IVe - Ж - fy(для образца, горизонта);

влажность минеральных прослоев    ,    кроме    того, определяется и

непосредственно во всех характерных по криогенному строению точках;

плотность определяется как для всего образца, так и для отдельных его горизонтов, минеральных агрегатов, прослоев.

Плотность при известной плотности минеральных частиц может быть рассчитана по влажности.

3.5.    Основным параметром является также температура образца в ходе его промерзания на различной глубине, точность изменения которой не должна быть грубее *0,1 °С.

3.6.    Деформация образца, внешняя {пучение) и внутренняя должны изменяться с точностью, сопоставимой с точностью измерения плотности, но не грубее 0,2 мм по глубине образца.

3.7.    Кроме основных параметров, измеряемых в ходе эксперимента, ряд свойств испытуемого грунта оценивается до эксперимента. Необходимы определения гранулометрического, микроагрегатного, химического и минералогического состава, анализ химического состава и минерализации норового раствора. Очевидна также необходимость определения исходной влажности, плотности грунта и плотности минеральных частиц.

3.8.    При изучении изменения механических свойств талого грунта после промерзания-протайвания проводится комплекс идентичных испытаний сжимаемости, прочности, сопротивления сдвигу, сцепления до промерзания и после протаивания.

3.9. - При изучении зависимости механических свойств от криогенного строения определяются параметры, указанные в п. 3.8, но для мерзлого грунта; при необходимости также определяются касательные силы пучения.

3.10.    При изучении зависимости тепло физических свойств от криогенного строения определяются теплоемкость, теплопроводность, рассчитывается температуропроводность грунта как мерзлого, так и талого (если это необходимо;.

3.11.    Среда изучаемых физических свойств важное место занимают геофизические параметры, определяемые путем геофизических измерений. Основные из них - электрические и акустические.

Измерение геофизических параметров может производиться до, после и в процессе промерзания грунтов. Если в первом и втором случае по геофизическим параметрам можно судить о составе и криогенном строении грунта, то в последнем геофизические измерения являются способом оценки перераспределения влаги в процессе кристаллизации и изменения структуры льда и криогенной текстуры.

3.12.    Кроме основных параметров, указанных в пп. 1.1- 1.6, может возникнуть необходимость измерения в ходе опыта и некоторых других, таких, например, как химический состав порового раствора засоленных грунтов.

10

4. МЕТОДИКА ЭКСПЕРИМЕНТАЛЬНОГО ИЗУЧЕНИЯ ФОРМИРОВАНИЯ КРИОГЕННОГО СТРОЕНИЯ ГРУНТОВ

4.1. Ввиду значительной сложности и трудоемкости экспериментального исследования криогенного строения промерзающих и мерзлых грунтов конкретная задача, поставленная перед исполнителем, должна бьпъ сформулирована четко и полно. Эксперименту должна предшествовать подготовительная работа, состоящая из следующих основных этапов:

определение задачи и объема предварительных полевых и лабораторных исследований для характеристики изучаемого грунтового массива в целом и представительности принятых методов отбора образцов, размещения выработок, глубин опробования;

составление технического задания на комплектование лаборатор ного оборудования, необходимого для экспериментальных исследи ваний.

Отбор и подготовка образцов

4.2.    В зависимости от поставленной задачи и особенностей исследуемых грунтов могут использоваться образцы как с нарушенной структурой, так и с ненарушенной (ГОСТ 12071-72).

4.3.    При изучении формирования криогенного строения в широком диапазоне влажности и температурного режима образцы с ненарушенной структурой, представляющие собой случайные точки грунтового массива, не всегда могут дать необходимый по объему экспериментальный материал. Доведение ненарушенного образца грунта до заданной влажности представляет собой сложную задачу, часто практически невыполнимую. Влажность талого, оттаявшего грунта на данный момент времени отражает его состояние в связи с рядом условий, не известных исследователю. При задании широкого диапазона влажности и плотности образцам грунта с нарушенным сложением и учете основных его свойств в естественном залегании (плотности, пористости) можно в значительной мере избежать трудностей работы с ненарушенными образцами.

4.4.    Подготовка и выбор образцов для эксперимента предусматривает решение следующих вопросов: определение размеров и формы испытуемого образца, способ приведения его в заданное состояние по плотности и влажности.

4.5.    Для однородных по составу и сложению грунтов при исследовании только влагопереноса и общего льдосодержания при незначительных по размерам ледяных включениях поперечное сечение испытуемого образца должно быть около 4-5 см, но длина должна быть не менее 20 см.

4.6.    Изучение криогенного строения при значительном избыточном льдовыделении и крупных размерах ледяных включений требует использования образцов таких размеров, чтобы они примерно в 2 раза превышали размеры элементов криогенной текстуры, предполагаемой по имеющимся для данного или подобных грунтов сведениям. В большинстве случаев, по имеющемуся опыту, размеры образца должны бьпъ от 7 до 10 см в поперечнике и не менее 20 см по высоте. При крупносетчатой криогенной текстуре размеры образца следует довести до 15-20 см в поперечнике и 30-40 см по высоте. Но значительное увеличение размеров образца вызывает существенные технические трудности в проведении массового эксперимента. Для оценки влияния размера образца на криогенное строение изготавливаются контейнеры различного размера или часть эксперимента переносится в натурные условия на опытные площадки и проводится сравнение результатов, полученных на небольших образцах и в натурных условиях.

11

4.7.    Влияние формы образца на криогенное строение менее существенно, чем размеров. Опыт показывает, что удобнее пользоваться разборными прямоугольными контейнерами с прозрачными стенками из органического стекла. Толщина стенок контейнера определяется напряжениями, возникающими при промерзании и опытными нагрузка ми на образец в ходе опыта, и не должна быть менее 1 см при поперечных размерах образца 7-10 см. Контейнеры должны иметь сменные стенки с отверстиями для удаления избытка влаги при предварительном компрессионном уплотнении, устройства для подачи воды при опытах в открытой системе.

4.8.    Достижение заданной влажности образца требует компрессионного уплотнения переувлажненной грунтовой массы под нагрузкой в течение более или менее длительного времени в зависимости от размеров образца и состава испытуемого грунта. К образцам размером 7-10 см в поперечнике и длиной 20 см и более нагрузка должна прилагаться на боковую грань и, может длиться от 1-2 суток до одной-двух недель при величине нагрузки 0,05-0,5 МПа (0,5-5 кгс/см*). Величина и время приложения нагрузки определяются опытным путем и сходя из заданных условий опыта.

4.9.    При выдерживании крупного образца под нагрузкой нс всегда удастся достичь однородной влажности и плотности во всем его объеме. Даже незначительные отклонения этих параметров в различных частях образца могут повлиять на моделируемое криогенное строение. Наблюдались криогенные текстуры, отражающие своим рисунком эпюры напряжений под плоским штампом, что было связано с неоднородностью образца, возникшей при компрессионном отжатии воды.

4.10.    Приготовление исходной грунтовой массы, ее загрузка в контейнер, уплотнение требуют постоянного контроля и фиксации отдельных операций. Грунтовая масса может приготовляться перемешиванием воздушно-сухого грунта с водой или ледяным порошком из воды или раствора, предназначенным для опыта. Влажность приготовленной массы определяется несколькими пробами с целью досгижения сс однородности. Влажность уплотненного образца (дублирующего основной) определяется во всех характерных точках, вблизи стенок, в средней части и по всей высоте. Особенно тщательно эта работа должна проводиться при изготовлении первой серии образцов из данного грунта. Число проб на влажность в этом случае должно быть нс менее 30-40 по всему объему образца при его размерах 7 ь 10x20 см.

4.11.    Даже незначительная степень неоднородности образца но влажности после уплотнения и все особенности приготовления грунта должны фиксироваться и учитываться при анализе результатов опыта.

Основные требования к производству и технике промораживания образцов грунта

4.12.    Экспериментальное промораживание образцов грунта в условиях лаборатории является моделированием этого процесса, идущего в естественных условиях. Конечно, полной аналогии как по условиям промерзания, так и из-за масштабного эффекта (см. пп. 4.5, 4.6) достичь нельзя. Вместе с тем общие закономерности льдообразования при задании в опытах широкого интервала плотности, влажности и температурного режима грунта могут быть получены.

4.13.    В зависимости от задачи исследования требуется задавать и поддерживать постоянный или переменный (например, по синусоидальному закону) режим промерзания с тем или иным градиентом. Поддержание длительное время но всей глубине образца температурного режима с очень малым градиентом - задача технически сложная. Проще добиться постепенного уменьшения градиента температуры во времени

12

и по глубине образца при незначительной по значению отрицательной температуре на поверхности грунта.

4.14.    Современная холодильная техника (в особенности автоматические холодильные камеры фирмы ГДР "ИЛКА”) позволяет поддерживать различные, в том числе переменные, режимы промораживания на достаточно стабильном уоовне с отклонениями от средней заданной температуры в пределах 0,2-0,5 °С. Контроль температуры на поверхности промерзающего образца может осуществляться с большей точностью, а с помощью теплоизоляции можно свести влияние колебаний режима рабочей камеры до минимума.

4.15.    При использовании для одностороннего промораживания образцов воздушного режима камеры (холодильного шкафа) возникает необходимость тщательной теплоизоляции всего образца за исключением его верхней поверхности. Значительно удобнее и целесообразней автономное промораживание с помощью любого стандартного хла-доагента, циркулирующего в системе термостат-промораживающий элемент. Охлаждение в термостате до нужной температуры самого хла-доагента производится с помощью обычно фреоновой установки на базе небольшого компрессора (мощность 0,5-1,0 кВт). Циркуляция хладоагента в промораживающем элементе осуществляется с помощью насоса на оазе электромотора. Промораживающий элемент может быть выполнен в виде плиты или диска с отверстиями для различных датчиков. В этом случае задание и контроль температурного режима промораживания существенно облегчаются, отпадает необходимость в теплоизоляции, если опыт проводится с автономной установкой в холодильной камере, где можно поддерживать температуру воздуха, близкую к 0 °С. В обычном помещении с комнатной температурой также можно проводить работу с автономной установкой, но для этого требуется теплоизоляция образца с боков и снизу. Одной пластиной теплосъсм-ника можно промораживать одновременно серию образцов.

4.16.    Пример опытной установки автономного промораживания показан на оис. I. Установка позволяет переходить от промерзания к протаивайию образца переключением охлаждения хладоагента, циркулирующего в пластине теплосъемника, на нагревание.

4.17.    Контроль температурного режима в ходе опыта осуществляется с помощью термопар, термометров сопротивлений, термисторов. По всем основным показателям термопары наиболее удобны для экспериментальной работы. С их помощью достигается достаточная точность измерения температуры: до 0,1-0,05 °С. Небольшие размеры головки термопары несущественно нарушают условия в точке измерения. Число температурных датчиков в образце диктуется требованиями опыта, но следует избегать слишком большого их числа и близкого расположения (ближе 2 см), что приводит к значительному нарушению сплошности образца, не увеличивает точности измерения температуры по глубине образца из-за случайных смещений датчиков в процессе их установки или при промерзании.

4.18.    Измерение температур термопарной установкой осуществляется любым гальванометром, потенциометром класса, соответствующего необходимой точности. Предпочтительнее автоматические самопишущие потенциометры с разверткой температурной шкалы на необходимый интервал. Для этой цели стандартный потенциометр, рассчитанный на другой интервал температур (ЭДС), подвергается соответствующей технически несложной модификации.

4.19.    При любой конкретной технике эксперимента необходимо

соблюдение следующих основных условий:    обеспечение    требуемого в

эксперименте температурного поля в образце промерзающего (протаивающего) грунта и контроль этого поля в течение всего опыта.

4.20.    Контроль влажности и ее изменений в ходе опыта осуществляется стандартным способом, обеспечивающим достаточную точность

13

Рис. 1. Схема установки для комплексного моделирования процессов промерзания и льдообразования 1 — холодильная камера; 2 — термометры автоматического регулирования; 3 — компрессор; 4 — термостат; 5 — мотор насоса; б — теплосъем-ник; 7 — контейнеры с образцами грунта; 8 — индуктивные датчики деформации; 9 — потенциометр-самописец для измерения деформации; 10 - термопары; 11 — потенциометры-самописцы для измерения температуры; 12 — бинокулярная лупа для наблюдения за криогенным строением

(ошибка не более 1-2%) в особенности при пользовании аналитическими весами. Частота отбора проб на влажность по глубине образца определяется задачей опыта, но должна быть достаточно дробной. Отбор проб в экспериментальном образце через 2-3 см не вызывает особых трудностей.

4.21.    Постоянный контроль за ходом изменения влажности в течение всего опыта возможен только с помощью дистанционных датчиков влажности. Существующие датчики не обладают достаточной точностью и имеют слишком большие размеры, что сильно искажает поле влажности в образце. Разработка дистанционных датчиков для эксперимента возможна. Она облегчается применимостью таких систем, которые требуют тарировки по данному грунту. Для полевых исследований подобные разработки нецелесообразны.

4.22.    Для режимного контроля влажности в промерзающем грунте устанавливается серия дублирующих образцов, которые последовательно извлекаются из установки, и на данный этап опыта определяется влажность грунта в мерзлой, талой и промерзающей зоне. Параллельно проводится определение льдистости.

4.23.    При промораживании образца с заданной плотностью и влажностью за счет льдовыделения и усадки происходят его деформации, внешние, выражающиеся в поднятии и опускании поверхности грунта, и внутренние. Для измерения деформаций могут применяться измеритель деформаций часового типа, индуктивные датчики деформации (разработанные в ПНИИИСе), внутренние марки с выведенными стержнями, тензодатчики, внутренние игольчатые марки.

4.24.    В зависимости от типа датчиков и поставленной задачи применяются различные методы измерения деформации: визуальные измерения через различные интервалы времени, автоматическая запись с помощью самопишущих потенциометров, последовательное фотографирование или цайтраферная киносъемка поверхности образца с выходом игольчатых датчиков.

4.25.    При эксперименте в открытой системе контроль за режимом осуществляется также путем фиксации объемов воды, поступающей в ходе промерзания в грунт извне. Эта задача не представляет значительных технических трудностей. При необходимости записи хода поступления объемов воды в промерзающий образец в подающей системе устанавливается уровнемер, положение которого фиксируется по электрическому (переменное сопротивление) или световому (фотоэлемент) сигналу.

Последовательность комплексного моделирования процесса льдообразования в промерзающем грунте

4.26.    При исследованиях закономерностей льдообразования в про мерзающих грунтах отдельные, чаще всего парные, связи между параметрами криогенного строения, влажности и льдистости выявляются при соблюдении равенства остальных условий. Для изучения льдооб раз о ван ия и формирования криогенного строения в конкретных мерз лотных и 1рунтовых условиях, для решения определенной инженерной задачи такой аналитический подход недостаточен. Можно использовать имеющиеся сведения о закономерностях льдовыдсления, которые кратко показаны в разд. 2, но таким путем не удастся решать задачи прогноза формирования криогенного строения при данном, а тем более при изменяющемся комплексе природных условий и условий, заданных проектом того или иного инженерного мероприятия. Установление закономерных связей криогенного строения с комплексным воздействием всех факторов, влияющих на льдовыдсление, можно осуществить при подходе к лабораторному эксперименту, как к моделированию. Эго моделирование должно быть комплексным в том смысле, что одновременно должны фиксироваться, измеряться и определяться все основные условия промерзания и льдовыдсления и все параметры криогенного строения.

4.27.    Моделирование должно иметь строгую последовательность и полноту охвата измерений всех параметров. Оно включает:

сбор сведений о геологических и мерзлотных условиях в районе изучаемого грунтового массива;

подготовку аналитических материалов о свойствах испытуемых грунтов;

отбор и подготовку образцов;

выбор метода и режима промораживания, в том числе определение необходимости эксперимента в закрытой и открытой системах;

задание вариантов исходной влажности, пористости, плотности, сложения испытуемого грунта;

проведение нужного числа циклов промораживания с контролем основных изучаемых параметров в ходе опыта с помощью соответствующей аппаратуры, желательно автоматической и самопишущей;

УДК 624.139:624.131.37

Рекомендовано к изданию решением научно-технического совета ПНИИИС.

Рекомендации по лабораторному изучению строения мерзлых грунтов/ПНИИИС Госстроя СССР. — М.: Стройиздат, 1984.-36 с.

Приведена комплексная методика изучения строения мерзлого грунта и условии его формирования при промерзании (на образцах в лабораторном эксперименте). Рассмотрены геофизические методы учета строения мерзлых грунтов при оценке их физических и физико-механических свойств. Дано обоснование использования этих методов. Приведены рекомендации по лабораторному определению акустических и электрических характеристик на образцах и методика оценки состава и строения мерзлых грунтов по измеренным характеристикам.

Для инженерно-технических работников научно-исследовательских и изыскательских организации.

Ил. 13.

Имструкт. -нормам И вы о. - 84

Рекомендации составлены Ю.Д. Зыковым, М.М. Корей-шей, O.IL Червинской, Н.Ю. Рождественским, А.Н. X«пенковым.

047(01) - 84

© Стройиздат, 1984

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Рекомендации составлены к главам СНиП 11-9-78    и СНиП П-18-76 и в дополнение к ’’Руководству по определению-физических, теплофизических и механических характеристик мерзлых грунтов” (М., Стройиздат, 1973).

1.2.    Рекомендации включают определения параметров криогенного строения грунтов, их криогенной текстуры и структуры льда в ходе экспериментального лабораторного моделирования процесса льдообразования при промерзании.

1.3.    Строение мерзлых грунтов определяет ряд их физических и механических свойств, а также анизотропию. Оценка и учет строения мерзлого грунта обязательны при полевых и лабораторных определениях физических, теплофизических и механических свойств грунтов. Необходимость лабораторного исследования формирования криогенного строения и связанных с ним свойств грунтов определяется следующими обстоятельствами:

1)    прогноз мерзлотных условий в ходе освоения территории требует знания характера и степени изменений свойств естественных и искусственных грунтов, связанных с изменением их строения при промерзании и протаивали и;

2)    как известно, генезис грунтов определяет их строение и свойства. Экспериментальное моделирование криогенного строения и сравнение полученных моделей с природными грунтами позволит ответить на ряд вопросов, возникающих при изучении как генезиса мерзлых грунтов, так и их свойств при различном криогенном строении;

3)    при изысканиях под крупные, долговременные сооружения комплекс выполняемых исследований включает специальные виды работ, выходящие за рамки стандартных изысканий. Программа работ в этом случае предусматривает механические испытания грунтов, определения теплофизических и некоторых физических свойств, например количества незамерзшей воды в широком диапазоне температур. Методика этих исследований разработана применительно к изотропным или квазиизотроп-ным по криогенному строению грунтам, «месте с тем известно, что грунты со значительным лъдовыделением отличаются анизотропией и неоднородностью физических и механических свойств. Объективная оценка свойств таких грунтов возможна только при изучении и учете криогенного строения.

1.4.    Изучение криогенного строения всегда проводится для определения конкретных свойств грунта, знание которых необходимо для решения конкретных задач проектирования. Само влияние криогенного строения на те или иные свойства грунтов существенно различно. Поэтому в рекомендациях не дается узкой и одиозна ной регламентации методики. Выбор применяемых методов должен соответствовать поставленной задаче.

1.5.    Геофизические методы могут применяться на всех этапах исследования строения мерзлых грунтов и связанных с ним свойств, начиная от лабораторных экспериментов и кончая изучением грунтов в массиве. С одной стороны, они позволяют получать данные о ряде важных физических свойств мерзлых грунтов, с другой, по измеренным значениям геофизических параметров и их анизотропии можно оценивать криогенное строение н некоторые физико-механические показатели.

1.6.    В рекомендациях при изучении формирования криогенного строения основное внимание уделено моделированию льдообразования и исследованию этого процесса. При изучении геофизических параметров объектом является результат законченного процесса. Вместе с тем

3

геофизические исследования могут проводиться во время формирования криогенного строения, однако они требуют разработки дополнительных методических приемов.

1.7.    Рекомендации рассчитаны на широкий круг специалистов, ведущих исследования состава, строения и свойств мерзлых грунтов.

1.8.    Все стандартные определения свойств мерзлых грунтов следует проводить по ГОСТ 24586-8К Основное пособие - '’Руководство по определению физических, теплофизических и механических характеристик мерзлых грунтов*’*.

2. ФОРМИРОВАНИЕ СТРОЕНИЯ МЕРЗЛОГО ГРУНТА

Основные понятия и определения

2.1.    Криогенное строение принято определять понятиями ’’криогенная текстура” и ’’структура”. Под структурой обычно понимается строение подземного льда, текстурообразующего и залежеобразующего (включения льда крупнее 0,3 м).

2.2.    Криогенная текстура - пространственное расположение составных частей грунта: льда и минеральных отдельностей, и степень заполнения ими пространства; она включает признаки сравнительно более крупного масштаба, чем структура, в частности такие, как слоистость, характер отдельности.

2.3.    Структура льда - это особенности строения, обусловленные размерами, ориентировкой и формой его кристаллов, относительным количеством и ориентировкой включений.

2.4.    Под криогенным строением грунта обычно понимают сумму всех его криотекстурных особенностей и структуры льда. Понятия „криогенная текстура” и ’’структура” отражают различные признаки единого криогенного строения. Разделение текстуры и структуры имеет методический характер и связано с оценкой признаков криогенного строения различного масштаба.

2.5.    Основные компоненты мерзлого грунта - лед, вода (жидкая, незамерзшая), твердые минеральные и органические частицы, агрегаты, растворенные в поровой влаге вещества, ионы обменного комплекса в контактной зоне (поверхность частиц - пленка незамерзшей воды), газовые включения, в том числе вода в виде пара.

2.6.    При экспериментальной оценке внешне выраженных характеристик текстуры и структуры грунта необходим учет различий состава его компонентов.

2.7.    Основным компонентом мерзлого грунта, определяющим резкое отличие всех его свойств от свойств талого грунта, является лед.

2.8.    При промерзании грунтов с участием различных механизмов движения влаги происходит кристаллизация воды и образование разных типов льда. Формирование всех видов льда в промерзающем грунте определяется понятием льдообразование.

Общепринятые приемы описания криогенной текстуры и кристаллооптические метопы исследования структуры льда изложены в следующих работах : Шумский П.А. Основы структурного ледоведения. — М., Иэд-во АН СССР, 1955; Савельев Б.А. Физика, химия и строение природных льдов и мерзлых пород. — М., Иэд-во МГУ, 1971; Рекомендации по методике изучения подземных льдов и криогенного строения многолетнемерзлых грунтов/ПНИИИС Госстроя СССР. — М., 1969.

4

2.9.    При фиксировании 1рунтовой влаги на месте, между частицами грунта, без существенного ее перемещения и поступления в промерзающий горизонт извне, формируется лед-цемент, при этом не исключается некоторое перемещение самих частиц.

2.10.    При формировании отдельных ледяных включений (шлиров) за счет соответствующего перемещения воды следует говорить о льдо-выделении.

2.11.    Если общая масса льда в данном горизонте промерзающего грунта со шли ров ой криогенной текстурой больше, чем масса воды, содержащейся в нем до промерзания, а увеличение объема при промерзании превышает более чем 10%, следует говорить об избыточном льдо-выделении.

2.12.    При таком же увеличении весовой и объемной льдистости, но при отсутствии признаков льдовыделения следует говорить об избыточном льдонакоплении.

2.13.    При формировании льда-цемента образуется массивная криогенная текстура. Строение льда-цемента и его взаимосвязи с минеральными и органическими частицами могут быть различными, поэтому выделяются контактный, пленочный и поровой лед-цемент. Если минеральные, органические частицы или агрегаты со всех сторон окружены льдом, следует говорить о базальной криогенной текстуре. Базальная криотекстура часто бывает связана с избыточным льдонако плени ем. Эту текстуру следует отличать от массивной по главе СНнП 11-9-78, физико-механические свойства грунта в этом случае резко изменяются.

Физические условия формирования криогенного строения

2.14.    При промерзании грунтов протекают различные физико-химические и механические процессы одновременно ► или. в разной последовательности, но всегда взаимосвязанно. В результате промерзания формируется криогенное строение, связанное с очень большим числом факторов.

2.15.    Эти факторы условно можно разделить на две группы: основные особенности талого грунта до промерзания и условия промерзания. Следует иметь в виду, что любые заданные условия промерзания трансформируются кристаллизующейся водой и воздействуют на талый грунт с самого начала этого процесса и непосредственно, и ©посредственно (через лед). Перечисленные ниже основные факторы льдообразования в промерзающем грунте выделены с той или иной степенью условности, поскольку все они взаимосвязаны:

размер частиц, агрегатов грунта, соотношение различных фракций; минералогический и химический состав всех компонентов грунта; начальная влажность, категории влаги, их соотношение, степень и сила связи воды частицами скелета;

пористость, капиллярность, водопроницаемость грунта, связанные с составом и структурой талого грунта, микроструктурой глинистых минералов;

сложение грунта к началу льдообразования, неоднородность, перерывы сплошности, плоскости более слабого сцепления;

степень уплотнения грунта до промерзания (бытовое давление, искусственное уплотнение) и в ходе промерзания;

сжимаемость, сопротивление сдвигу (раздвиганию) в разных направлениях, сцепление;

величина усадки, склонность к набуханию, потенциальные возможности грунта к растрескиванию за счет усадки, температурного (объемного и линейного) сокращения;

тепловой режим промерзания: градиенты температуры и их изменения в талой, мерзлой, промерзающей зоне;

5

повторное промерзание и оттаивание, колебательные перемещения фронта, зоны кристаллизации;

направление и форма изотермических поверхностей: миграция влаги, ее направление и скорость в связи с градиентами температуры и влажности, как общими в горизонте грунта, так и частными (минеральный агрегат — растущий кристалл льда), капиллярная миграция, заполнение трещин;

поступление свободной воды в зону льдообразования под напором; миграции пара по микро по рам и трещинам; количество и распределение включений газа.

2.16.    Большое число факторов, влияющих на льдообразование, не исключает практической возможности выявления основных из них для данного опыта, ограниченного поставленной задачей.

2.17.    Для решения различных инженерных задач чаще всего требуется получить значение избыточного льдовыделения при промерзании, определяющее как пучение, так и усадку и уплотнение грунта. Известные в настоящее время граничные условия льдовыделения по отдельным факторам, полученные экспериментально, могут использоваться для самого общего предварительного прогноза изменения свойств грунта при промерзании исходя из знания его состава и свойств и заданных условий промерзания. Однако такой прогноз требует осторожности. Для любого конкретного грунта всегда можно найти такое реальное сочетание его состава и свойств и условий промерзания, при котором льдо-выдслсние будет идти и вне границ, установленных по отдельным факторам.

2.18.    Наиболее изученными факторами льдовыделения являются степень дисперсности и влажность грузов. В конечном счете они определяют льдовыделенис, поскольку влияние всех остальных факторов в основном проявляется через дисперсность и влажность грунта.

Большим числом экспериментов установлено, что нижний предел размера минеральных частиц рыхлого дисперсного грунта, допускающий льдовыделенис, равен 0,05 мм, при самых благоприятных условиях - 0,1 мм. Верхний предел трудно определим, в особенности если учитывать все механизмы льдовыделения. В общем случае степень льдовыделения в глинах обычно меньше, чем в пылеватых грунтах (в интервале влажности, соответствующем пределам пластичности). Существенный верхний предел льдовыделения составляют частицы размером 0,002 мм. Присутствие в грунте заметного количества частиц размером 0,002-0,01 мм при прочих разных условиях способствует существенному льдовыделению. При значительном содержании в породе глинистой и коллоидной фракций (<.0,002 мм) на льдовыдсление сильно воздействует степень агрегированности этих частиц в данных физикохимических условиях.

Таким образом, наилучшие условия для избыточного льдовыделения создаются в грунтах с наибольшим содержанием пылеватых частиц и агрегатов того же размера - пылеватых мелких песках, пылеватых супесях и суглинках.

2.19.    Торф и оторфованные грунты существенно отличаются по условиям и характеру льдовыделения от минеральных грунтов. Льдовы-деленис в торфе часто оказывается относительно малым, но общая весовая льдистость может быть значительной. Оторфованность минерального грунта всегда способствует повышенному льдовыделению на контактах органических и минеральных агрегатов.

2.20.    Степень дисперсности грунта сама по себе не в полной мере определяет льдовыделение при промерзании. Существенно также конкретное соотношение различных фракций. Например, при сочетании в грунте фракций типа оптимальной смеси условия льдовыделения менее благоприятны, чем в грунтах, аналогичных по содержанию пылеватых фракций.

2.21.    Процессы льдовыделения и избыточного льдонакоплення существенным образом зависят от влагосодержания грунта, возможности подтока влаги извне за счет миграции, капиллярного поднятия, фильтрации. На льдовыделение оказывают влияние особенности распределения влаги в талом грунте, обусловленные его сложением и составом, взаимодействием воды с частицами минерального скелета.

2.22.    Пределом влажности дисперсного грунта, выше которого возможно льдовыделение, считается максимальная молекулярная влаго-емкость или нижний предел пластичности (раскатывания). Полевые и экспериментальные исследования подтверждают практическую возможность пользования этими пределами для общей оценки потенциального льдовыделения, но указанные пределы влажности, определяемые опытным путем для данного грунта, отражают некоторый суммарный эффект, связанный со свойствами данного грунта, особенностями взаимодействия его частиц с водой, и не отражают энергетического состояния самой воды и, тем более, соотношения различных категорий связанной воды. При равенстве этих пределов у различных грунтов не следует ожидать сходного по характеру и объему льдовыделения в них даже при одинаковых условиях промерзания.

2.23.    Наибольшее избыточное льдовыделение характерно для грунтов, промерзающих в открытой системе, т.е. при возможности пополнения влаги, идущей на льдообразование, извне (в природных условиях -из водоносного горизонта).

2.24.    Минералогический состав грунтов существенно влияет на льдовыделение при равной степени дисперсности в основном только через тонкие фракции: пылеватую и в особенности глинистую. Наибольшая величина льдовыделения свойственна каолиниту, меньшая — гидрослюдам, иллиту и монтмориллониту. Различия льдовыделения в грунтах с указанным составом глинистых минералов могут быть большими или меньшими в зависимости от скорости промерзания. В общем случае имеют значение размеры и форма частиц глинистого минерала, характер и интенсивность связывания ими вдали, способность к коагуляции или диспергации.

2.25.    Известно влияние на льдовыделение в глинистых грунтах состава обменных катионов: многовалентные (Fe***, Са4+ и др.) увеличивают избыточное льдовыделение, одновалентные (Na* , К ♦ ) — уменьшают, кроме водородного иона, приближающегося по своему действию к многовалентным катионам. В общем катионы, увеличивающие степень агрегированности грунтов, улучшают условия льдовыделения.

2.26.    Для значительно засоленных грунтов характерно понижение температуры замерзания, уменьшение адсорбционных сил поверхности минеральных частиц. В зависимости от соотношения и количества диссоциированных в растворе ионов при промерзании создаются многокомпонентные физико-химические системы со значительной и сложной пространственной дифференциацией льда, рассола, минеральных частиц, выделившихся кристаллов солей. Анизотропия промерзающих засоленных грунтов связана не только с распределением в них льда, но и с процессами глубокого метаморфизма порового раствора.

2.27.    Потенциальная возможность льдовыделения при промерзании определяется степенью уплотнения, сцементиро ванн остью грунта, литификацией его в талом состоянии. Один из основных факторов, влияющих на льдовыделение - плотность упаковки частиц, зависящая от давления, которое испытал или испытывает грунт.

2.28.    Большое значение имеет степень первичной неоднородности сложения грунта. Неоднородность сложения увеличивает льдовыделение или, по крайней мере, предопределяет распределение ледяных включений, которые концентрируются по контактам разнородных по составу и плотности горизонтов, по макропорам, первичным трещинам и т.п.

7

Влияние первичного сложения проявляется не всегда. Отмечаются случаи полного несовпадения пространственного положения элементов криогенной текстуры и элементов первичного сложения, например слоистости за счет различий в составе грунта.

2.29.    Имеющиеся сведения о влиянии уплотняющих нагрузок на льдовыделение довольно разноречивы, так как получены в результате несопоставимых по условиям опытов. В обшем известно, что чем меньше степень дисперсности грунта, тем меньшее давление требуется для прекращения лъдовыделення. Для ряда грунтов от супесей до глин эти нагрузки изменяются от 0,05-0,1 МПа (0,5-1 кгс/см2) до 0,8-1,6 МПа (8-16 кгс/см2). Интенсивность воздействия уплотнения будет заметно отличаться в зависимости от характера и времени приложения нагрузки, соотношения его с темпом промерзания Следует также учитывать различный ход релаксации напряжений в грунтах различного состава и строения. При воздействии на промерзающий грунт всесторонней даже очень значительной нагрузки в закрытой системе, без возможности отжатия воды, льдовыделение все-таки может происходить за счет внутреннего перераспределения воды и минеральных частиц. При анализе совместного воздействия на льдовыделение в промерзающем грунте температуры, давления и влажности следует учитывать существенный гистерезис и неполную обратимость последнего параметра. Это обстоятельство определяется тем, что деформация сжатия водонасыщенного грунта зависит от скорости выдавливания воды из его пор, т.е. обусловлена водопроницаемостью грунта. Деформация может отставать от процесса удаления воды и продолжаться много дольше за счет объемного сжатия самого скелета грунта.

2.30.    При прочих равных условиях считается, что чем медленнее промерзание, тем лучше условия лъдовыделення. Практически скорости промерзания грунта, наблюдающиеся в природе, составляют доли 1 мм/ч, в экспериментальной работе - от 0,5-1 мм/ч до 5, редко до 10 мм/ч. Все эти скорости находятся внутри еще более широкого интервала скоростей, не препятствующих льдовыделению. Большое значение, очевидно, имеет общая динамика скорости промерзания, его ход во времени. Оптимальная для лъдовыделення скорость промерзания (отвода тепла, что точнее) зависит от комплекса свойств данного грунта.

Реальный ход промерзания с льдовыделением как в естественных условиях, так и в эксперименте характеризуется большей или меньшей степенью неоднородности. При переменном во времени ходе промерзания льдовыделение может то увеличиваться до каких-то оптимальных значений как при увеличении скорости промерзания, так и при уменьшении, то уменьшаться. В глинистых грунтах льдовыделение всегда захватывает зону той или иной мощности. Большое значение имеют не только градиенты температуры и влажности в зоне лъдовыделення, но и непосредственно между ледяными включениями, с одной стороны, и минеральными агрегатами, отдельностями, еще не сцементированными льдом, с другой.

2.31.    В процессе льдообразования происходит как общее увеличение объема промерзающего грунта, так и уплотнение его минерального скелета, т.е. уменьшение его первоначального объема. Различия значений одновременно идущих деформаций пучения и усадки в зоне мерзлый - промерзающий - талый грунт приводят к механической дифференциации грунта, его расслоению, трещинообразованию. Практически все эти процессы воздействуют на формирующееся криогенное строение как непосредственно, подготавливая полости, трещины, заполняющиеся льдом, создавая ослабленные зоны, куда вода мигрирует или внедряется под местным давлением, так и косвенно, через изменение самих условий миграции и взаимосвязи влаги с минеральными частицами.

2.32.    Формирующиеся ледяные включения, отдельные кристаллы льда сами тоже создают полости, поднимая перекрывающий грунт, внед-

8

ряясъ в еще преимущественно талый горизонт зоны промерзания. Ра> двигая грунт, ледяные включения отжимают из него воду, также идущую на льдообразование и льдовыделенне. Создающаяся физико-механическая неоднородность грунта в зоне промерзания не однозначно воздействует на льдовыделение. При малой влажности промерзающего грунта формирование открытых трещин может и препятствовать перемещению воды снизу и, соответственно, ослаблять льдовыделение.

2.33.    Криогенная текстура в значительной мере определяется ориентировкой возникающих в грунте кристаллов льда. Ориентирующее влияние растущих кристаллов льда уменьшается с уменьшением влажности грунта, больший вес приобретают теплофизические условия.

2.34.    При медленной вынужденной кристаллизации в водонасыщенном грунте может возникнуть пойкнлитовая структура, для которой характерно включение минеральных и органических частиц скелета в крупные кристаллы льда-цемента. Эта структура типична для мерзлого торфа.

2.35.    Характер и интенсивность воздействия растущих кристаллов льда на подстилающий еще талый грунт различны в зависимости от влажности и скорости промерзания. Сами условия среды льдовыделения изменяются под активным воздействием растущих кристаллов льда.

2.36.    Несмотря на изменяющиеся в ходе промерзания условия взаимодействия грунтовой среды и растущих кристаллов льда основные закономерности реального роста последних всегда остаются одними и теми же.

2.37.    Таким образом, в зависимости от влажности, состава грунта, его первичного (до промерзания) строения и хода промерзания криогенное строение определяется качественно и количественно различным соотношением свободного роста кристаллов, определяемого положением и ориентировкой зародышей и вынужденного роста, определяемого плотностью, неоднородностью строения грунта, его структурой в данном горизонте на момент кристаллизации. Криогенное строение, сформировавшееся преимущественно при свободном росте кристаллов или при вынужденном росте, отличается соотношениями и связями кристаллов льда с частицами грунта даже при внешнем сходстве рисунка криогенной текстуры. Очевидно, будут различными также и физикомеханические свойства грунта и их анизотропия.

3. ОСНОВНЫЕ ПАРАМЕТРЫ, ОПРЕДЕЛЯЕМЫЕ ПРИ ЛАБОРАТОРНЫХ ИССЛЕДОВАНИЯХ

3.1.    Криогенное строение: морфЬлогия ледяных включений, структура минеральных отдельностей, структура грунтового льда и характер соотношения и связи между ними - определяются методически раздельно в ходе описания и измерения параметров криогенной текстуры и структуры.

3.2.    Криогенная текстура характеризуется следующими основными параметрами: размером ледяных включений; их формой; ориентировкой (в образце).

Кроме того, ряд параметров рассчитывается после измерения трех основных. Вычисляются коэффициенты изменения линейных размеров и объема ледяных включений относительно глубины, расстояния от поверхности образца или любой другой характерной плоскости. Таким же образом рассчитывается коэффициент изменения углов наклона (элементов залегания) ледяных включений по глубине.

3.3.    Структура льда характеризуется: размерами, формой, ориентировкой кристаллов льда, распределением в нем включений минеральных органических частиц и газа.

Эти основные параметры структуры служат материалом для вычисления различных коэффициентов: удлинения кристаллов, неоднород-

9