Министерство угольной промышленности СССР Планово-экономическое управление Всесоюзный научно-исследовательский институт управления угольной промышленности ВНИИУуголь

МЕТОДИКА

расчета параметров эффективности функционирования АСУ угольными предприятиями

часть 1

Министерство угольной проминленности СССР

Всесовзный научно-исследовательский институт управления угольной промышленности ВНИИУ уголь

Руководяние методические материали по созданию АСУ

METOIINKA

расчета параметров эффективности функционирования АСУ угольными предприятиями

Часть І

Mocksa - 1973

В "Методике" рассматриваются вопросы оценки эффективности функционирования АСУ угольными предприятиями с произвольной структурой и различными законами распределения показателей надежности входящих в них элементов.

"Методика" предназначена для использования Информационно-вычислительными центрами угольных комбинатов, научно-исследовательскими и проектно-конструкторскими организациями при расчете параметров эффективности функционирования и выборе наиболее целесообразной АСУ и входящих в нее элементов, оценке и выборе вариантов совершенствования АСУ, а также решении целого ряда вопросов, связанных с их разработкой и техническим обслуживанием.

В соответствии с разработанной методикой расчет параметров эффективности функционирования АСУ угольными предприятиями должен выполняться на ЭЕМ "Минск-22" и "Минск-32".

"Методика" разработана к.т.н.А.М.Гординим.

COLEPKAHUE

	cTp.
Введение	5
§ I. Математическая постановка задачи	7
§ 2. Описание исходных данных	17
§ 3. Описание каталога и перфорация исходных данных	24
§ 4. Порядок работы с программой на ЭНМ "Минск-22".	33
§ 5. Порядок работи с программой на ЭНМ "Минск-32".	39
§ 6. Форма представления результатов модели- рования на ЭНМ	43
§ 7. Оценка и анализ параметров эффективности	
функционирования АСУ	44
Литература	71
Приложение І.	
Программа расчета параметров эффектил ности функционирования АСУ угольными	
предприятиями	73

в в е д е н и е

При решении вопросов, связанных с разработной и эксплуатацией АСУ угольными предприятиями и объединениями, возникает необходимость в оценке параметров эффективности их функционирования.

Сложность определения параметров эффективности функционирования АСУ угольными предприятиями и объединениями обусловливается теми обстоятельствами, что они характеризуются территориальной разбросанностью, нерархической структурой, большим количеством входящих в них элементов и произвольными законами распределения показателей их надежности, а также зависимостью параметров эффективности функционирования не только от значений
собственных параметров, но и от эффективности функционирования
остальных элементов, входящих в систему.

Имеющиеся в настоящее время методы не позволяют решать в полной мере вопросы, связанные с оценкой эффективности функционирования АСУ угольными предприятиями и объединениями.

В результате проведенных исследований разработан метод [3], позволяющий производить расчет параметров эффективности функционирования АСУ угольными предприятиями с применением ЭЕМ Минск-22 и Минск-32.

В настоящей "Методике" рассматриваются вопросы оценки эффективности функционирования АСУ угольными предприятиями

§ I. <u>Математическая постановка задачи</u>

Рассматривается система управления с произвольной структурой, в которую входит по элементов. Один из возможных вариантов структуры системы изображен на рис. I.

Управляющему элементу системы (элементу нулевой ступени иерархии) непосредственно подчинено некоторое число элементов, называемых элементами первой ступени иерархии. Элементы системы, непосредственно подчиненные элементам первой ступени, называются элементами второй ступени и вообще элемент, непосредственно подчиненный некоторому элементу К-й ступени, называется элементом (К+I)-й ступени.

Элементн системы являются ненадежными устройствами. В любой момент времени каждый из них может находиться в исправном или неисправном состоянии. Каждый исправный элемент может, в свор очередь, быть включенным (рабочее состояние) или выключенным (состояние вынужденного простоя). Отказать (перейти из исправного состояния в неисправное) может только включенный элемент.

Все элементы системы предполагаются перенумерованными от I до n . Функционирование системы подчиняется следующим правилам:

- а) если все элементы системы исправны, то все они включены:
- б) элемент выключен тогда и только тогда, когда выключен или неисправен непосредственно управляющий им элемент. либо выключены или неисправны все непосредственно подчиненные ему элементы;

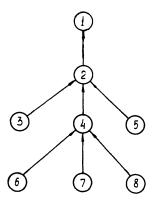


Рис. 1. Структура автоматизированной системы управления

в) $\mathcal{T}_{H,i}$ — наработка на отказ и $\mathcal{T}_{\Phi,i}$ — время восстановления i — го элемента системы (i = I,2,..., n) являтится случайными величинами с заданными законами распределения \mathcal{T}_{i} (t) и G_{i} (t) .

Основными показателями эффективности функционирования рассматриваемой системы являются следующие: распределение длятельности непрерывной расоты, длительности вынужденного простоя и длительности пресывания в исправном состоянии каждого
влемента системы, математическое ожидание числа отказов и
числа вынужденных остановок в единицу времени, нероятности
пресывания каждого элемента системы в расочем состоянии, в неисправном состоянии и в состоянии вынужденного простоя. Задача
состоит в определении оценок названных и ряда других показателей, характеризующих эффективность функционирования системы.

Поставленная задача решается методом статистических испитаний, состоящем в моделировании на достаточно большом интервале времени реализации случайного процесса функционирования изучаемой системы и определении оценок искомых вероятностных характеристик этого процесса как средних значений по данным этой реализации.

Случайний процесс функционирования системы характеризуется последовательностью \mathcal{L}_1 , \mathcal{L}_2 , ..., \mathcal{L}_{κ} , ... моментов времени, в которые в системе возникают возмущения. Под возмущением понимается отказ или восстановление какогонибудь элемента системы, который назовем источником возмущения. Каждое возмущение в соответствии с правилами функционирования системы вызывает изменение состояния (выключение в сдучае отказа источника и включение — в сдучае его восстановления) части элементов из числа предпествующих источнику либо следущих ав ним по нерерхической лестнице, характеризующей структуру системы. В перерыве между двумя соседними возмущениями состояния всех элементов системы остаются неизменными.

Рассмотрим подробнее, как изменяется в момент возмущения состояние элемента системы в зависимости от его положения относительно источника и характера возмущения. Для этого введем некоторые вспомогательные понятия.

Если имеется последовательность элементов, в которой каждый предыдущий непосредственно подчинен последующему, то первый элемент этой цепочки называется подчиненным последнему, а последний —управляющим по отношению к первому.

Назовем два элемента, из которых один подчинен другому (не обязательно непосредственно), связанными, если исправны все элементы, расположенные между ними на иерархической лестнице. Элемент, не имеющий подчиненных, назовем оконечным элементом системы.

Будем говорить, что элемент имеет связь с вершиной мерархической лестинцы, если он связан с управляющим элементом системы, причем последний также исправен, и что элемент имеет связь с основанием лестинцы, если он связан хотя бы с одним исправным оконечным элементом системы. Всякий элемент, находящийся в рабочем состоянии, имеет связь как с вершиной, так и с основанием. Отметим, что в момент возмущения может измениться состояние лишь такого элемента системы, который связан с источником в смысле данного только что определения.

- I. OTKAR.
- I) Источник переходит в неисправное состояние.
- 2) Включение элементы, подчинение источнику, теряют связь с вершиной и поэтому выключаются. Состояние выключенных и неисправных элементов не изменяется.
- 3) Из элементов, управляющих по отношению к источнику, выключаются те, для которых всякая связь с основанием осуществиямась через источник. Остальные остатотся включенными.
 - П. Восстановление. Источник связан с вершиной.
 - I) Источник переходит в рабочее состояние.
- 2) Подчиненные источнику исправные элементы, имеющие связь с источником и с основанием мерархической лестницы; переходят в рабочее состояние. Состояние остальных элементов не изменяет ся.
- 3) Управляющие по отношению к источнику выключенные эле менты переходят в рабочее состояние. Состояние остальных элементов не меняется.
 - Ш. Восстановление. Источник не имеет связи с вершиной.
 - І) Источник переходит в состояние вынужденного простоя.
 - 2) Остальные элементы системы не меняют своих состояний.

Такем образом, зная источник возмущения, происшеднего в момент t_{κ} , и, характер этого возмущения, можно определить состояние всех элементов системы на отрезке (t_{κ} , $t_{\kappa r}$).

Для каждого элемента системы в момент его восстановления в соответствии с законом распределения $\mathcal{F}_i(t)$ (i – номер элемента) определяется время жизни $\mathcal{F}_{n,i}$, которое расходуется при работе этого элемента и остается неизменным в течение периода вынужденного простоя. Для отказавшего элемента согласно закону распределения $G_i(t)$ определяется время восстановления и в связи с этим момент перехода в исправное состояние.

Для того, чтобы найти момент $t_{\kappa r}$ очередного возмущения, необходимо выбрать из числа включенных в момент $t_{\kappa r}$ O элементов тот, который облядает наименьшим "остаточным временем жизни", а из числа неисправных — тот, для которого минимально расстояние от t_{κ} до момента окончания восстановления. В зависимости от того, какая из этих двух величин меньше, определяется момент возникновения, источник и характер очередного возмущения.

Алгоритм, моделирующий процесс функционирования рассматриваемой системы, сводится к рекуррентному определению моментов t_{κ} и состояний элементов системы на каждом из отрезков (t_{κ} , $t_{\kappa + \ell}$) в соответствии с вышеизложенным. Укрупненная блок-схема алгоритма представлена на рис.2.

Рассмотрим работу отдельных операторов алгоритма.

Оператор I задает начальные состояния всех элементов системы (в момент включения системы все элементы исправны) и формирует или них значение наработки на отказ.

Оператор 2. Засняка I в счетчик числа возмущений.

Оператор 3. Определение момента ℓ_{κ} , источника и характера (восстановление или отказ) очередного возмущения.

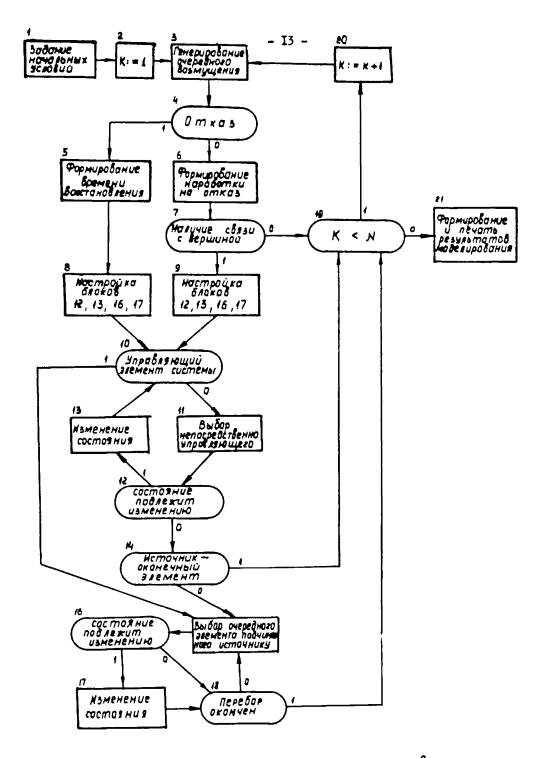


Рис. 2. Блок - схема алгоритма расчета параметров эффективности функционирования АСУ.

Оператор 4. Проверка - является им возмущение отказом. В случае отказа - уход по стремке I.

В случае отказа источника происходит формирование значения времени его восстановления в соответствии с законом распределения G_{i} (\dot{z}) (\dot{z} - номер источника).

В случае восстановления источника происходит формирование значения времени его наработки до следующего отказа в соответствии с законом распределения \mathcal{F}_{i} (t).

Оператор 7. Проверка — имеет им отказавший источник связь с вершиной. В случае отсутствия связи — уход по стредке О (случай Ш)

Операторы 8 и 9. Формирование содержания блоков I2, I3, I6, I7 в зависимости от характера возмущения (см. описание этих блоков).

Операторы IO-I3 реализуют распространение возмущения на элементы, управляющие по отношению к источнику.

Операторы I4-I8 реализуют распространение возмущения на элементы, подчиненные источнику.

Оператор IO проверяет, является им очередной рассматриваемый элемент из числа управляющих по отношению к источнику управляющим элементом системы. Выполнение условия означает, что перебор элементов этого вида закончен, и управление передается оператору IS.

Оператор II осуществияет переход от рассматриваемого элемента к непосредственно им управияющему.

Оператор I2 проверяет, подлежит им изменению состояние рассматриваемого энемента из числа управияющих по отношению и источнику. Условие, провернемое этим оператором, зависит от характера возмущения и формируется одним из операторов 8 или 9. В случае отказа оператор проверяет, сохранилась ли у рассматриваемого влемента связь с оонованием (случай ПЗ), а в случае восстановления — является ли он выключенным.

Оператор I3 изменяет состояние рассматриваемого элемента. В случае восстановления оператор переводит элемент в рабочее состояние, а в случае отказа — выключает его.

Оператор I4 проверяет, является ик источник возмущения конечным ажементом системы.

Оператор I5. Выбор очередного элемента из числа подчиненных источнику. Перебор всех элементов этого вида осуществляется с использованием лексикографического метода обхода $\lceil 2-\rceil$.

Оператор 16. Оператор, зависящий от характера возмущения. В случае восстановления проверяет выполнение условия, состоящето в том, что рассматриваемый элемент исправен, связан с источником и с основанием иерархической дестивцы. В случае отказа проверяет, находится ли рассматриваемый элемент в рабочем состояния.

Оператор 17. - выключение рассматриваемого элемента в случае отказа источника и включение - в случае восстановления.

Оператор 18 выясняет, все ли подчиненные источнику элементы были уже рассмотрены.

Оператор I9. Проверка на конец реализации (\mathcal{N} - число возмущений, задающих длину реализации).

Оператор 20. - увеличение на единицу содержимого счетчика чиска возмущений.

Оптратор 2I — формирование и выдача результатов моделирования, карактеризующих эффективность функционирования автоматизированиой системы управления.

Разработанная на основе рассмотренного алгоритма программа позволяет с применением ЭВМ "Минск-22" и "Минск-32" определять основные параметры, характеризующие эффективность функционирования автоматизированных систем управления угольными предприятиями.

§ 2. <u>Описание исхолных данных</u>

Ввод исходной информации в программе осуществляется при помощи СП-ЗІ ЕСП АКИ-400. Операторы ввода имеют вид:

End upo 3I (TEXT, B4/I,I/, S6, S4,=

TEXT, B3/I,I/, S6, S4,=

INT,U,SI,SI,=

INT,N,SI,SI)X

End upo 3I (TEXT, B2/3, I/, \$2, \$3, = INT, \$TR/I, I/, \$4, \$5) %

ENO IDO 3I (INT, ZI, SI, SI, = INT, NI, SI, SI, = INT, NO, SI, SI)X

Вся информация вводится с перфоленти тремя зонами ввода. Каждая зона содержит информацию, описанную одним оператором ввода. Перфорация исходных данных осуществляется в коде M-2 в соответствии с правилами оформления данных для ввода при помощи СП-ЗГ.

Первая зона ввода содержит:

текстовый массив В4 (8 2.4) - в 24-х позициях строки записывается наименование комбината, затем перфорируются символи " // % ":

текстовый массив ВЗ (8 2.4) — в 24-х позициях строки записывается наименование предприятия; затем перфорируются символы " // Х ";

целое число U - номер АСУ, значение перфорируется без знака, затем перфорируется симводы " . / X ":

целое число N — количество элементов в системе ($N \le 30$), значение перфорируется с символеми " . / X " :

Вторая зона содержит;

текстовый массив В2 (186 62.3), состоящий из 62 строк по 3 машинных слова в каждом; в массиве, начиная со второй строки, описываются N наименований влементов системы; каждое наименование имеет не более 18-ти символов и перфорируется с символами " // "; первая строка массива программию заполняется текстом "В целом по системе", использующемся при печати выходной таблицы, вторая строка заполняется пробелами; вслед за последнии наименованием массива В2 перфорируется символ " % ";

массив STR (60 30.2) целочисленной информации, карактеризующей структуру системы. Массив состоит из N строк и двух столоцов.

Пусть (Ω_{ii} , Ω_{i2}) — i—я строка массива STR; при этом Ω_{ii} — номер i—го элемента в системе, Ω_{i2} — номер непосредственно следующего за ним элемента в направлении движения потока продукции, информации и т.д.(в зависимости от типа системы). Элементи системы могут нумероваться любыми целыми положительными двухзначными числами в произвольном порядке. При этом порядку перечисления номеров алементов системы в первом столбце массива STR соответствует порядок перечисления наименований этих элементов в массиве В2. Перфорация каждой строки следующая:

 $\alpha_{i_1}, \alpha_{i_2}$. / ; за последним символом " / " перфорируются символи " \S — — — " .

Последняя зона исходных данных характеризует режим работы программы: ZI — чиоло, принимающее одно из трех значений: 1,2,3; при ZI=I происходит предварительная реализация процесса и выдаются гистограммы некоторых выходных величин; при ZI=2 гистограммы не выдаются, но предварительная реализация проняводится; при ZI=3 происходит реализация процесса заданной длины без предварительной реализации и без гистограммы;

NI - длина ооновной реализации

NO - длина предварительной реализации.

Значения перфорируются по правилу:

Затем перформруются 5 пробелов.

Перфорация каждой зони начинается и заканчивается символами "латинь" - граница ввода.

Рассмотрим пример подготовки исходных данных.

Для АСУ, изображенных на рис. I (исходиме даниме приведены в табл. 5, вариант I и II) и на рис. 3 (исходиме данные приведены в табл. 8, вариант I) оформление исходимх данимх приведено соответственно в табл. I и Is.

Таблица І

I вармант

```
граница
      // %
      I./ 🛚
      8./8 -----
                             Граница
граница/
I-I//
      2-1//
      3-I//
      4-I//
      5-I//
      6-I//
      7-I//
      8-I// X
      I.0./
      2.1./
      3.2./
      4.2./
      5.2./
      6.4./
      7.4./
      8.4./ X ---- / rpannia
граница / 2./ % 5000./% 200./% .... /граница
```

Продолжение таблицы I

Вармант П

```
граница
      1/8
      //8
       2./8
       8./Х _____ /граница
граница/
      I-II//
       2-11//
       3-11//
       4-11//
       5-11//
       6-II//
       7-11//
       8-II//X
       I.0./
       2.1./
       3.2./
       4.2./
       5.2./
       6.4./
       7.4./
       7.4./X — — Дераница /граница
граница / 2./Х 5000./Х 200./Х ____ /граница
```

Таблица Іа

```
граница/
       //X
//X
3./X
                                       граница
       25./8
граница /
       I//
       2//
       3//
       4//
       5//
        6//
       7//
       8//
       9//
       10//
       II//
       12//
       I3//
       14//
       I5//
       I6//
       17//
       18//
       19//
       20//
       21//
       22//
       23//
       24//
       25// ₹
       I.0./
       2.1./
       3.2./
       4.3./
       5.6./
```

Продолжение таблици Іа

```
6.7./
      7.8./
      8.9./
      9.4./
      IO.II./
      11.12./
      12.13./
      I3.I4./
      I4.3./
      I5.16./
      I6.I7./
      17.18./
      18.19./
      19.20./
      20.4./
      21.4./
      22.21./
      23.22./
      24.23./
                              Граница
      25.24./3 _____
граница / 2./X 5000./X 200./X ____ /граница
```

§ 3. Описание каталога и перборания исходных панных

Для расчета параметров эффективности функционирования АСУ используется постоянная информация, хранимая на магнитной ленте (МЛ-ОЗ). Ввод исходной информации осуществляется при помощи СП-ЗІ ВСП АКИ-400. Оператор ввода имеет вид:

EMO mpo 3I (TEXT, KAT/I,I/, S4, S400,=

INT, Z/I/, S1, S200,=

INT, DFI/I,I/, S4, S200,=

REAL, PARA/I,I/,S12,S200,=

INT, T/I/, S1, S1, N

Вся информация вводится с перфоленты одной зоной ввода, начинающейся и заканчивающейся символами "латинь" — граница ввода. Перфорация исходных данных каталога осуществляется в коде М-2 в соответствии с правилами оформления данных для ввода при помощи СП-ЗІ. Оператор ввода описывает следующую постоянную информацию:

КАТ (720 240.3) — массив наименований элементов системы. На каждое наименование отводится 2 строки по 18 символов. Каждая строка наименования заканчивается символом "/". Если наименование содержит менее 18 символов, то оба символа"/" перфорируются подряд: "//". Максимальное число наименований равно 120. В конце наименований перфорируется символ " % ".

Z(120) — одномерный массив целых чисел, равных I или 2 в зависимости от того, в каком виде представлено среднее время восстановления данного элемента. Если \mathcal{C}_{g} для элемента с номером і задано одним числом, то $Z_{i}=I$; если же \mathcal{C}_{g} задано в виде трех величин \mathcal{C}_{0p2} , \mathcal{C}_{n} , \mathcal{C}_{p} , то $Z_{i}=2$. Числа перфорируются без знаков, в конце массива перфорируются символы "/ X". Перфора—

ция символа "." (точка) в конце каждого числа обязательна.

DFI(480 I20.4) — массив целых чисел, элементи которого характеризурт законы распределения наработки на отказ и времени восстановления элементов системы.

Пусть (P_{KI} , P_{K2} , P_{K3} , P_{K4}) — K-я строка массива DFI, при этом P_{KI} характеризует закон распределения \mathcal{C}_{N} К-го элемента системы, а P_{Ki} (i=2,3,4) — соответственно законы распределения времени \mathcal{C}_{opr} , \mathcal{C}_{n} , \mathcal{C}_{p} этого же алемента при 22=2; если же \mathcal{E} 2=I, то P_{K2} характеризует закон распределения \mathcal{C}_{s} , а P_{K3} и P_{K4} удобно положить равными нулю. При этом всегда P_{Ki} =I соответствует распределению Вейбулла с функцией распределения

 $F(x) = I - e^{-cx^{\alpha}};$

 $P_{R\downarrow}$ =2 соответствует нормальному распределению с плотностью распределения $\oint (x) = \frac{1}{\sqrt{2\pi} G} e^{-\frac{(x-\alpha)^2}{2G^2}};$;

 $P_{K \, \hat{i}} = 3$ соответствует логариймически-нормальному распределению с илотностью распределения $(t_0 \, x - a_i)^2$

 $\frac{1}{1}(x) = \frac{1}{12\pi 6 x} e^{-\frac{(4x-a)^2}{26^2}};$

 P_{Ki} =4 соответствует распределению гамма с плотностью распределения $\oint (x) = \frac{\beta^{d}}{\Gamma(d)} x^{d-1} e^{-\beta^{x}}$

Числа перфорируется без знака с символом ".", каждая строка массива заканчивается символом "/", последним перфорируется символом " χ ".

PARA (1440_120.12) - массив действительных чисел, являющихся параметрами законов распределения. Пусть ($\mathfrak{q}_{ij},\mathfrak{q}_{iz},\ldots,\mathfrak{q}_{iuz}$)i-я строка массива PARA. Тогда q_{ii}, q_{i2}, q_{i3} — параметры закона распределения наработки на отказ q_{ii} і-го алемента; ления $\mathcal{C}_{\text{орг}}$, \mathcal{C}_{is} , \mathcal{C}_{is} — параметры закона распределения \mathcal{C}_{n} , \mathcal{C}_{in} , \mathcal{C}_{in} , \mathcal{C}_{in} — параметры закона распределения \mathcal{C}_{p} , если \mathcal{F}_{opr} — \mathcal{F}_{opr} Q_{i4} , Q_{i5} , Q_{i6} — пареметры закова распредежения \mathcal{A}_{opr} ,

ecame Z,=I, To

 q_{i4}, q_{i5}, q_{i6} — параметры закона распределения q_{i7} ,..., q_{i12} удобно положить равными нулю.

Пусть $q_{i,3K-2}$, $q_{i,3K-1}$, $q_{i,3K}$ — три последовательных алемента i —ой строия (i =I,..., N) массива РАК A. Тогда для к=1.2.3.4

даниям соответствующих законов распределения.

Числа перфорируются без знаков с точкой, в конце каждой строки перфорируется символ "/", нулевые алементы строки можно не перфорировать, в конце массива перфорируется симвод " 🔏 ".

T(I20) - массив, состоящий из одного целого числя, ранного количеству элементов в каталоге. Формально для удобства записи описан как одномерный массив. Число перфорируется без знака с точ-

Рассмотрим пример подготовки данных каталога. Для АСУ, изображенных на рис. I (данные приведены в табл. 5, вариант I и II) и на рис. 3 (данные приведены в табл. 8, вариант I) оформление данных каталога приведено соответственно в табл. 2 и 2а.

граница Таблица 2 I-I // I-II // 2-I // 2-11 // 3-I // 3-11 // 4-I // 4-11 // 5-I // 5-11 // 6-I // 6-11 // 7-I // 7-11 // 8-I // 8-11 // 12 2./ 2./ 2./ 2./ 2./ 2./ 2./ 2./ 2./ 2./ 2./ 2./ 2./ 2./ 2./ 2./ 🛚 4.4.3.4./ 4.4.3.4./ 4.4.3.4./ 3.3.I.I./

3.3.1.1./

Прополжение таблицы 2

```
4.I.4.I./
4.I.4.I./
3.3.I.I./
I.I.I.3./
I.I.I.3./
I.I.I.3./
I.I.I.3./
I.I.I.3./
```

2.0.004. 500. I.5. 0.15. IO. 0.712. 0.5. IO.2.5.0.125.20. / 2.0,04. 50. I,5. 0,075. 20. I,I9. 0,5. 30. 2,5. 0,025. IOO./ 2. 0,004. 500. I.5. 0,15. IO. 0,712. 0,5. IO. 2,5.0,125. 20./ 2. 0.04. 50. I.5. 0.075. 20. I.19. 0.5. 30. 2.5. 0.025. IOO./ 2,II. 0,5. 250. 0,8I6. 0,4. IO. 0,067. I. I5. 0,00064. 2.35./ I.II. 0,5. 25. I.2I. 0,4. 25. 0,029. I. 35. 0,000055. 2.I20./ I,5. 0,0037. 400. 0,0035. 2. I5. 2. 0,2. I0. 0,4. I. 25./ I,5. 0,037. 40. 0.002. 2. 20. 2. 0,067. 30. 0,009. I. IIO./ 2,II. 0,5. 250. 0,8I6. 0,4. IO, 0,067. I. I5. 0,00064. 2.35./ I,II. 0,5. 25. I,2I. 0,4. 25. 0,029. I. 35. 0,000055. 2.I20./ 0,000035. 2. I50, 0,I. I. I0. 0,002, 2. 20. I,42. 0,4. 40./ 0,0035. 2,15. 0,05. I.20. 0,00049. 2. 40. 2,07. 0,4. I80./ 0,000035. 2.150. 0,I. I. 10. 0,002. 2. 20. I,42. 0,4. 40./ 0,0035. 2. I5. 0,05. I. 20. 0,00049. 2. 40, 2,07. 0,4. I80./ 0,000035. 2. I50. 0.I. I. I0. 0,002. 2. 20. I.42. 0.4. 40./ 0,0035. 2. I5. 0,05. I. 20. 0,00049. 2.40. 2,07. 0,4. I80./\(\sigma\) I6./X инин / граница

Таблица 2а

граница / 2// 3// 4// 5// 6// 7// 8// 9// 10// [[// **I2//** [3// **I4// I5// I6//** 17// 1/81 **I**9// 20// 21// 22// 23// 24// 25// 🛚 2./ 2./ 2./ 2./ 2./ 2./ 2./ 2./ 2./

Продолжение таблицы 2а

- 2./
- 2./
- 2./
- 2./
- 2./
- 2./
- 2./
- 2./
- 2./
- 2./
- 2./
- 2./
- 2./
- 2./
- 2./
- 2./ 🛭
- I.I.I./
- I.I.I.I./
- I.I.I./
- I.I.I./
- I.I.I./
- 1.1.1./
- I.I.I./
- I.I.I./
- I.I.I./ I.I.I./
- I.I.I./I
- I.I.I./
- 1.1.1./
- I.I.I./
- I.I.I./
- I.I.1.7./
- I.I.I./
- I.I.I./
- I.I.I./
- I.I.I./

```
[.[.].]
 I.I.I.t./
 I.I.I./
 [.I.I./
 X \.1.1.1.
0,0149.1.67.0,0625.1.16.0,0667.1.15.0,00917.1.109./
0.0149.1.67.0.0625.1.16.0.0667.1.15.0.00917.1.109./
0,0149.1.67.0,0625.1.16.0,0667.1.15.0,00917.1.109./
0,0149.1.67.0,0625.1.16.0,0667.1.15.0,00917.1.109./
0,0137.1.73.0.0323.1.31.0.0263.1.38.0.00719.1.139./
0,0233.I.43.0,05.I.20.0,0909.I.II.0,00568.I.I76./
0,025.I.40.0,0556.I.I8.0,0556.I.I8.0,00807.I.I24/
0.0192.1.52.0,0833.1.12.0,0625.1.16.0,0087.1.115./
0,0172.1.58.0,0625.1.16.0,0714.1.14.0,00699.1.143./
0,0137.1.73.0.0323.1.31.0.0263.1.38.0.00719.1.139./
0,0233.I.43.0,05.I.20.0.0909.I.II.0.00568.I.I76./
0,025.I.40.0,0556.I.18.0,0556.I.18.0,00807.I.124./
0.0172.1.58.0.0625.1.16.0.0714.1.14.0.00699.1.143./
0,0II9.I.84.0,0588.I.I7.0,0526.I.I.I9.0,00909.I.II0./
0,0137.1.73.0,0323.1.31.0,0263.1.38.0,00719.1.139./
0,0233.I.43.0,05.I.20.0,0909,I.II.0,00568.I.176./
0,025.I.40.0,0556.I.18.0,0556.I.18.0.0,00807.I.124./
0,0172.1.58.0,0625.1.16.0,0714.1.14.0,00699.1.143./
0,0119.1.84.0,0588.1.17.0,0526.1.19.0,00909.1.110./
0,0119.1.84.0,0588.1.17.0,0526.1.19.0,00909.1.110./
0,0256.I.39.0,I.I.10.0,0909.I.11.0,0118.I.85./
0.0256.I.39.0.I.I.10.0.0909.I.II.0.0II8.I.85./
0,0192.1.52.0,0833.1.12.0,0625.1.16.0,0087.1.115./
0.0192.1.52.0.0833.1.12.0.0625.1.16.0.0087.1.115./
0,0192.I.52.0,0833.I.12.0,0625.I.16.0,0087.I.115./ X
 25./ 🎖 ..... /граница
```

§ 4. Порядок работи с программой на ЭНМ "Минск-22"

I. Каждый из 4-х блоков программы оформлен как самостоятельная программа и набит на отдельной перфоленте. Блокам присвоены порядковые номера от I до 4. Каждый из блоков программы транслируется и записывается на МЛ-ОІ при помощи 0П-200.

Вызов OII-200:

набрать на пульте код +0000 0000 0200. Пуск при $C \lor AK = 17404$. Останов при $C \lor AK = 17420$ с индикацией на сумматоре -777777777777.

После трансляции^{х)} каждый из 4-х блоков программы записать на MI-OI:

набрать код +0000 0I00 000 m , где m – номер блока программы (m =I,2,3,4). Пуск при СчАК= I7000. Останов при СчАК= I702I с индикацией на сумматоре -777777777777.

Транслировать программу записи каталога, поставить перфоленту с исходными данными каталога и произвести запись каталога на МД-03, нажав кнопку "пуск" при СчАК = 00037. Каталог записывается на МД-03 и распечатывается на АЦПУ в виде таблицы (см. табл. 3,4). Конец работы программы записи каталога имеет останов при СчАК = 6172 с индикацией на сумматоре -777777777777.

П. Работа программы начинается с вызова I-го блока программы с МЛ, производимого при помощи ОП-202.

Визов 0П-202:

Набрать на пульте код +0000 0000 0202.

Пуск при СчАК= 17404.

Останов при СчАК = 17420 с индикацией на сумматоре -77777777777. Далее необходимо выполнить следующие действия:

х) По окончании трансляции 2-го блока перед записью на МЛ-ОТ исправить содержимое ячейки 10047 : (10047):= -3000 0017 0000

Таблипа 3

! alak	Наименование элемента		Параметры надежности Наработ- Среднее время			
!		RA HA OTKAS, YAC.	организаци ремонта,	и! поиска неисправ- !ности, мин.	! ремонта , мин.	
I	I - I*	500	IO	10	20	
2	I – II	50	20	30	100	
3	2 - I	500	10	10	20	
4	2 - II	50	20	30	100	
5.	3 - I	250	10	15	35	
6	3 - II	25	25	35	120	
7	4 - I	400	15	10	25	
8	4 - II	40	20	30	IIO	
9	5 - I	250	IO	15	35	
IO	5 - II	25	25	35	120	
II	6 - I	150	IO	20	40	
12	6 – II	15	20	4 0	180	
13	7 - I	150	10	20	40	
14	7 - II	15	20	40	180	
15	8 - I	150	IO	20	40	
16	8 - II	15	20	40	180	

Примечание: I - каталог соответствует данным, приведенным в табл. 5, причем:

 $[{]f x}$ - элементам с цифрой I соответствуют данные, приведенные в табл. 5, вариант I

же - элементам с пифрой II соответствуют данные, приведенные в табл. 5, вариант II.

Таблица 4

именование п/п экомента		Параметры надежности			
	Нара- ботка	Среднее время			
	Эхомонта	H8 OTKA8, VAC.	oprahm- sauem pemoh- ta, meh.	noncka Henc- Upab- Hocth Muh.	pemon- ra, mun.
I	2	3	4	5	6
I	I	67	16	15	109
2	2	67	16	I 5	109
3	3	67	16	15	109
4	4	67	16	15	109
5	5	73	31	38	139
6	6	43	20	II	176
7	7	40	18	18	124
8	8	52	12	16	IIS
9	9	58	16	14	143
10	IO	73	31	38	139
II	II	43	20	II	176
12	12	40	18	18	I24
13	13	58	16	14	I43
14	14	84	17	19	IIO
15	15	73	31	38	139
16	16	43	20	II	176

- 36 -

Продолжение таблицы 4

I	2	3	4	5	6
17	17	40	1 8	18	124
18	18	58	16	14	143
19	19	84	17	19	IIO
20	20	84	17	19	110
21	21	39	10	II	85
22	22	39	10] II	85
23	23	52	12	16	115
24	24	52	12	I 6	115
25	25	52	12	16	115
	<u> </u>	<u></u>	<u> </u>		·

Примечание: каталог соответствует данным, приведенным в таби. 8, вариант I.

- Поставить МЛ-ОІ, на которой записаны блоки программи; поставить МЛ-ОЗ, на которой записан каталог; поставить рабочую МЛ-ОО.
- Поставить на ФСУперфоленту с исходинии данными, включить ФСУ.
- 3. Набрать на пульте код +0000 0100 0001. Пуск пры СчАК = 17000.

При этом происходит вызов в MOЗУ с MI I-го одока программы и ввод первой группы исходных данных, после чего останов З7II. Этот останов предусмотрен для того, чтобы ввести вторую группу исходных данных, определяющих режим работы программы. Эта информация может сыть набита на отдельной перфоленте и использоваться при расчетах параметров функционирования различных систем.

Ввод этой перфоленти осуществляется нажатием кнопки "пуск".

4. Сразу после ввода происходит обращение к МЛ - 03 для считивания из каталога необходимой информации. Если система включает элементи, информация по которым не внесена в каталог, на АЩУ видаются наименования отсутствующих элементов, и вычисления в этом случае не производятся. Происходит останов при СчАК = 4403. Запись наименований элементов системи при перфорации должна соответствовать таблице 3 или 4. После извлечения из каталога необходимой информации на ТБМ распечативаются исходиме данные и некоторые сформированные в начале работы программы рабочие массивы.

Затем происходит предварительная реализация (при 2 I=I или 2), после чего печатаются на ТЕМ некоторые промежуточные результати, и основная реализация, которая заканчивается печатью таблицы на АЩУ с дублированием результатов на ТЕМ. Таблица состоит из двух частей: таблицы "Параметры эффективности функционирования

автоматизированной системы управлении махты..... комбината....." и "Таблицы (продолжение)".

5. По окончания печата табляцы происходят останов при СчАК = 6437 - конец работы программы. Индикация на сумматоре -77777777777.

Для вычисления параметров эффективности функционирования АСУ. с новыми исходиными данными необходимо повторить п.п.2-5 § 4.

Время, затрачиваемое на вычисление на ЭНМ Минси-22 параметров эффективности функционирования АСУ, состоящей из 10 алементов при N = 5000 составляет около 50 мин.

§ 5. Порядок работы с программой на ЭНМ "Минск-32"

- Полготовка магнитной денти к счету.
- I. Установить

МЛ-02 с транслятором АКИ-400 (ВБ).

MJE-00 padowyn (PA).

МЛ, предназначенную для объединения МЛ-СІ, на которую записивается программа, и МЛ-СЗ, на которую записивается ката-лог (РВ).

2. Набрать директиву

BH-EMOKN; IM \Diamond + EMOKN + M22 \sqcup \sqcup 000000 (0A_{TO}0000PAPBBEPB \Diamond

Магнитные денты устанавливаются в следующем порядке: ВБ.РА.РВ.

*I.YCT.MJ-O2 _ HMJ-XXX

*I 0

* I. 7CT.MJ ... HMJ- 999

*I O

*I.YCT.MJ . HMJ-ZZZ

*I 0

3. После распечатки ВНУ Минск-22"и получения сообщения диспетчера *ТДУ поставить в ФСУ перфоленту с программой вызова в МОЗУ основного блока транслятора АКИ-400 и набрать директиву ВЛП ◊

Произойдет печать КС и РІ.

IIY-I◊

- Для вызова ОП-200, при помощи которой рабочая программа
 (РП) записывается на МЛ после трансляции, на пульте инженера наб-

рать код +0000 0000 0200.

▼ I-3 ◊ IV-17404 ◊

*I.OCT.IP:17420,+0,-777777777777,+000000000200

- 5. Включить ключи, необходимые при трансляции: 4-для ввода перфоленты с текстом программы; 2,3,6-для распечатки программы и табляны меток на АШПУ.
- Поставить в ФСУ перфоленту с очередним блоком программы для трансляции.

★ I-3 ♦ IIV-17400 ♦

*I.BI-043,00275:PEBEPC

*IQ

*I.OCT.IIP:00035, P2, +0, +0

*I 0

*I.OCT.IP:00037, P2, +0, +0

Блоки транслируются и записываются на МЛ в порядке их нумерапри: 1,2,3,4. После трансляции блока 2 перед записыю его на МЛ набрать директиву

*I-3 ◊3 ½ -I0047; -300000I70000 ◊

7. Для записи РП на МЛ набрать на пульте инженера код +0000 ОТОО ОООК, где К-номер транслируемого блока (K=I,2,3,4). *I-3 ◊ ПУ-17000 ◊

*I.OCT.IP:17021.+0,-777777777777, +0

8. После транслящим и записи на МЛ всех четырех олоков программой поставить в ФСУ перфоленту с программой записи каталога.

Транслировать программу, как сказано в п.6. Затем поставить в ФСУ перфоленту с исходными данными каталога и набрать директиву

*І ◊

Произойдет ввод перфоленты печать на АШПУ каталога наименований и

параметров надежности элементов системы и запись каталога на Мл.

*I.OCT.NP:06172, P2, -77777777777, PI

9. Записать РП на МЛ, выполнив п.7 при К=5.

10. Набрать имрективу

* I-3 0Φ0- ZZZ ◊

*KATATOT HMI-ZZZ

Объединенная магнитная лента с записан: Я программой и каталогом готова к дальнейшему использованию.

П. Счет по программе.

I. Установить

МЛ, объединяющую МЛ-ОІ с программой (ОВ) и МЛ-ОЗ с каталогом (В).

МЛ-02 с транслятором АЮ-400 (ВБ),

МЛ-00 для работи программи (РА),

МЛ рабочую, используемую как ЛО, если результати, выводимые на НІМ в процессе счета, используются в дальнейшем.

2. Набрать директиву, если результати вывода на HIM запоминаются на IIO.

HH-EMOKN; TM O + EMOKN + M22 ... OCCOOT OACCOOOP AOBBE .. BO MAN AMPERTURY, SCAN BURGA HS EMM CACKEDYSTCS.

HH-ENOKY; TM O + ENOKY + M22 -- OOOOOT OATOOOOPAOBBE -- B O

Магнитные ленты устанавливаются в следующем порядке: 0B, EБ, PA.

*I.YCT.MJ-OI HMJI-XXX

*IQ

*I.YCT.MJ-O2 HMJ - YYY

*I O

*I.YUT.MJ HMJ-222

*I O.

Произойдет распечатка ННУ Минск-22"и сообщение диспетчера жицу.

 Поставить в ФСУ перфоленту с программой вызова в МОЗУ основного блока транслятора АКИ-400.

BIIII O

Печать КС и РІ.

IIV-I 🗘

- 4. Вызвать 0П-202, при помощи которой РП считываются с МЛ, набрав на пульте инженера код +0000 0000 0202 и директиву * I-3 \$ ПУ-17404 \$
 - *1.0CT.IP:17420,+0,-77777777777,+000000000202
- 5. Запретить при необходимости вывод на БІМ директивой БІ- ,, \Diamond
- 6. Поставить в ФСУ перфоленту с исходными данными задачи. Набрать на пульте инженера код +00000I 00000I.

* I-3 ◊ HY-I7000 ◊

Проис_одит вызов в MOЗУ с MЛ-ОД первого блока программы и ввод первой группы исходных данных.

*I.OCT.IP:037II, +0, -77777777777, +0

* T O

Вводится вторая группа исходных данных, определяющая режим работы программы. Происходит обращение к МЛ-ОЗ для считывания из каталога необходимой информации.

Если рассматриваемая система содержит элементы, информация о надежности которых не внесена в каталог, то на АЩШ выдаются наименования отсутствующих элементов, и вычисления в этом случае не произволятся

*I.OCT.IIP: 04403, PI, -777777777777, P2

Запись наименований элементов системы при перфорации должна соответствовать их записи в каталоге. Если предусмотрено запоминание на ЛО результатов, выводемых на НІМ, то поступает сообщение

*I.YCT.JO., HMJ-KKK

* I &

Процесс моделирования заканчивается печатью на АЩІУ таблици "Параметры эффективности функционирования АСУ" и "Таблицы (продолжение)"

- * I.OCT. IIP: 06437, P2, -777777777777, PI.
- Для распечатки на АЩПУ результатов, накопленных на ДО, набрать директиву *БПМ-В◊.

Время, затрачиваемое на вычисление на ЭЕМ Минск-32" параметров эффективности функционирования АСУ, состоящей из 10 элементов, при N = 5000 составляет около 10 мин.

\$ 6. <u>Форма представления результатов моделирования</u> на ЭНМ

Рассчитанные на ЭНМ параметры эффективности функционирования АСУ выдаются на АЦЦУ в виде табл.6.

§ 7. <u>Оценка и анализ параметров эфективности</u> "Ункционирования АСУ

Рассмотрим примеры практического использования разработанного метода.

Пример I. Имертся две автоматизированные системы управления с одинаковой структурой (скема приведена на рис. I), но различными значениями параметров безотказности и ремонтопригодности (значения приведены в табл. 5).

Необходимо определить основные параметры, характеризуюшие эрфективность функционирования данных систем.

Результати расчетов, проведенных на ЭЕМ по разработанному методу, приведены в табл.6 и 7.

Как видно из табл.5, элементы I-й системы (значения параметров которых входят в I-й вариант) могут быть отнесены к числу относительно надежных (для них наработка на отказ $\mathcal{T}_{H} > 150$ час). Элементы II-ой системы (значения параметров которых входят во II-ой вариант) могут быть отнесены к числу ненадежных (для них наработка на отказ $\mathcal{T}_{H} < 50$ час).

Одним из основных результирующих параметров, характеризуищих эффективность функционирования автоматизированных систем управления угольных предприятий, ягиляется полное время работы входящих в нее элементов (необходимое, в частности, для расчета основных надежностных характеристик элементов системы).

В свою очередь величина полного времени работы элементов системы в основном зависит от времени простоев, вызванных их собственными отказами (характеризующих их безотиззность и ремонтопригодность) и времени простоев из-за отказов других элементов, входящих в систему (характеризующих помимо их безотказности и ремонтопригодности еще и саму структуру системы и местонахождение рассматриваемого элемента на том или ином уровне мерархии системы).

на основе проведенного исследования (базирующегося на результатах табл.6) можно сделать вывод, что для относительно надежных элементов системы влияние иерархической зависимости сказывается весьма слабо (удельный вес простоев, вызванных отказами других элементов системы не превышает 1% от времени эксплуатации).

Отсида можно сделать вывод, что для надежных элементов автоматизированных систем полное время работы практически равно календарному времени. В связи с этим для надежных
элементов систем параметры эффективности их функционирования
в отдельных случаях могут рассчитываться без учета влияния
иерархической зависимости.

В то же время для ненадежных элементов системы влияние мерархической зависимости становится весьма значительным и существенно влияет на значение параметров, характеризущих эффективность функционирования. Так, например, для элементов 6, 7 и 8 рассматриваемой системы (показатели которой представлены вариантом П) удельный вес простоев, вызванных отказами других элементов, составляет около 13%, а из-за собственных отказов — 18% от времени эксплуатации (см.табл.7), т.е. для ненадежных элементов время работы существенно меньше календарного времени.

В связи с этим функция восстановления элементов таких систем должна рассчитываться только на основе полного времени работы (но не по календарному времени, как это можно делать в ряде случаев для надежных элементов).

- 47 -

Исходиме дажиме для расчета параметров эффективности функционирования АСУ

Номера	! Варжант			DE CHOTOMA		i -			Iloras	 ател	и ремонто	ле итоондогично	emert	В СИС	TOMH			
TOB GUTEMU	для расчета парамет-	l Ha	PROOTER	MA OTRAS		! Cpe	едие вре ре	мя организац монта		! Cp	еднее вре	емя поиска неис	прав-	! Cr	едее врем	я ремонта	ī	Сред-
	non	За- кон рас- пре- де- ле- ния	_1	Параметры закона распределения	TEME TH- THC- KOR	За- кон рас- пре- де- ния	ј расп	Параметры закона ределения	KOE	рас ере де- ле- ния	-1 E -	Іараметры закона заспределения	Tema ! TH- 400- 800	! Зе.— кон ! рес- пре- деле -! ния	.i paci	раметры кона релеления	Ma- Tema TH-	Время Восста- Новле- Ния •
I,2	I	Гамма	∝=2	β=0,004	500	89	d =1,5	β =0,1 5	10	iprodu.	α=0,712	e 6 =0, 5	10	as	~ ⊲ = 2,5	ր=0,125	20	40
-,-	п	E.	d =2	β = 0,04	50	ĕ	d=I,5	p=0,075	20	HOP	α=1,19	લ ₌0,5	30	Page	⊲≈2,5	β ≈0,02 5	100	150
3,5	1		a =2,II	દ હ =0, 5	250	Party.	Œ =0,81 6	ಠ≖0,4	IO	HOH!	λ=6,7.Ι	10 ⁻² -	15	ETT	^C ≈6,4.10	-4 a=2	35	60
	п	HOPEO	α= I ,II	c 6=0,5	25	oron gon	a=1,21	ಠ=0,4	25	Экспонен-	λ≖2,9.I	TO-5 -	3 5	Вейбулл	C =5,5.10	-5 d=2	120	180
4	I	85	d =I,5	β=3,7.I0 ⁻³		5ya-	C=3,5.1		15	덮	⊲=2	ß=0,2	10	Экспонен- пральный	λ≃0,4	-	2 5	50
_	П	Fame	o =I,5	₽=3.7.10 ⁻²	40	Belloy	(=2.10	3 d=2	20	I'a	d=2	β=6,7.10 ⁻²	30	Эксп	y=0,009	-	IIO	160
6,7,8	I	Вейбул- ла	C =3,5.1	10 ⁻⁵ d=2	150	Hon-	λ=0,1	-	10	BII.	c =2.10	-3 d=2	20	a de la composition della comp	Q= I,4 2	6=0,4	40	7 0
	П	E E	C =3,5.	.10 ⁻³ d=2	15	Экспонен- предъний	λ = 0,05	-	20	Befor	C =4,9.I	0 ⁻⁴ d=2	40	Логарифи вормальяни	a=2,07	ර =0,4	180	240

Таблица 6 Параметри эдфективности функционирования автоматизированной системы управления

T and	Наименование	- ₁	<i>-</i>				Параме	гры над	ежности						
1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	элементов системы	i aa i 100 i aacob i akcii- i yyata- i yyata- i '	! 3-х ! смен- ный ! режим	Б ГОД ! 4—х ! смен— ный ! режим ! работы	Тановон других за 100 часов эксп- дуата-	3 из—за элемен темы за за за за за за за за за за	нных ос- отказов тов сис- 1 год 1 4-х 1 сменный режим 1 работы	Нара- ботка на отказ, час.	Козф- фици- ент техни- ческо- го ис-	нее время пребы- вания	нее время непре- рывной работы,	Сред- нее время вос- ста- новле- ния, мин	орга— орга— ции	HU ME CPORTE CONTROL OF CONTROL O	ремонта, мин,
Ιİ		3	1 4	1_5_	1 6	7	8	9	!_ 10	II II	12	13	14	1 15	I6
	В целом по системо	0,39	SI	29	-	-	-	257	1,00	~	_	4 I	-	-	-
I.	I-I	0,20	II	15	0,19	IO	14	502	1,00	501	257	42	10	10	21
2.	2-I	0,19	IO	14	0,20	II	15	525	1,00	526	257	39	IO	IO	20
3.	3-I	0,40	.22	3 0	0,39	21	29	247	0,99	247	126	59	10	I 5	34
4.	4-I	0,24	13	18	0,39	21	29	411	1,00	413	158	26	8	5	13
5.	5–1	0,34	I 9	25	0,39	21	29	29 0	0,99	290	136	6 I	10	I 5	36
6.	6 –I	0,68	37	50	0,63	35	46	145	0,99	I4 6	76	68	IO	20	39
7.	7 - I	0,67	3 7	49	0,63	35	4 6	148	0,99	149	76	7 0	10	2 0	40
8.	8 -I	0,68	37	50	0,63	3 5	46	14 5	0,99	146	76	72	10	2 0	41

Продолжение таблици 6

						·· • · • •	роизводо	ств енн о	ro npoc				T		их элемен	
	!			твенных	отказо	ов, час ————							/			
иж п/п	1 100		LOH _				<u>числе</u> ј						! sa - 100	38		!Средняя длитель-
	! часов эксп-		, cmeh-			емонта				T	AOHTA			3-х смен-	!4-х сменный	НОСТЬ ВЫ— НУЖДЕННО—
	! луата-	DEWNIN	, dewnw	! за 100		год ! 4-х	! за 100	! <u>за</u> :3-х	<u>год</u> !4-х	_'3a 100	1 3a ro	<u>п</u> !4-ж	!луата-! ции.	ный режим	режим работы,	го про-
	i min	работн	работы	Часов Эксп-	!3-х ! смен.	· CMOH .	1 TACOB	смен.	: cmeH.	°ЧАСОВ 1ЭКСП⊶	cmen.	CMCH.	lyac.	работы	, dac.	loron, want.
	1	1	!	луата- ции	pe xum !pacoru	режим пра боты	луата-	режим работы	режим работы	луата- !шии	работы	режим работы	!	ABC.	!	1
	1	ļ _ <u>_</u> _	! <u>_</u>	<u>.</u> – – -	.!		<u> </u>	•	!	-,	! 	!	↓		1	4
	1 - 17	! I8 	1 I9	1 _20 _	² I	1 22	1_ 23	24	25	! 26	1 27	!_ 28	1 29 _ 1	30 _	'3I _	1 _ 32
							*									
0	0,38	21	28	_	_	_	_	-	-	-		_		-	-	_
Ū	-,															
I	0,14	8	10	0,03	2	3	0,03	2	3	0,07	4	5	0,12	7	9	39
2	0,12	7	9	0,03	2	2	0,03	2	2	0,06	3	5	0,14	8	10	42
3	0,39	22	29	0,07	4	5	0,10	5	7	0,23	13	17	0,26	14	19	4I
4	0,11	6	8	0,03	2	2	0,02	I	2	0,05	3	4	0,26	14	19	4I
5	0,35	19	26	0,06	3	4	0,09	5	6	0,20	11	15	0,26	I4	19	40
6	0,77	43	57	0,11	6	8	0,22	12	16	0,44	24	33	0,36	20	27	3 5
7			5 7	-	6	8	0,22	12	16	0,44	24	33	0,37	20	27	35
•	0,77	43	-	0,11	6	9	0,23	13	17	0,44	25	34	0,37	20	27	3 5
8	0,81	4 5	60	0,12	O	3	0,20	10		0,70	20	0.4	0,01	~~	~.	

- 5I -- Табинца 7
Параметры эффективности функционирования автоматизированной системы управления

Ш	Наименование элементов	! число	OTKASOB		ЧИСЛО ВЫЕ НОВОК ИЗ-	ужденных за отказо	оста- ! в дру-	Hapa-	Коэф-	Г Среднее	Сред-	Сред-	! в том	числе сре время	днее
	CHCTOMH I I	I SA IOO I VACOB SKCILTY- I ATALIER	! _38_ rog 3-x ! omen- ный ! режим работы !	! 4-x ! omen-!	за 100 часов эксплу- ! атации	за го 3-х	РЕМЫ ! ОД ! 4-х ! СМЕН-! НЫЙ РЕЖИМ	OTKA: HA OTKA:, 1	-MIMO -MIXST -ORDSP -OR OT -OKON -AKON RMH	пребы- вания в исп- равном состоя-1	нее время непре-	время вос-	oprahm- !saumm ! pemoh- ! ^{Ta} , ! MHH.	nomcka Hemch ! Dabhoc- TH, MHH.	ремон Та, мин
Ī	.!2	1 3	1 - 4	1_5_1	6	7	81	_					II4i	15 1	I [6]
	B LIE HOM TIO CUCTEME	3,83	211	283	<u>.</u>	_	+	24	0,90	<u>-</u>	<u>.</u>	150	_	_	-
I	I-II	I,59	87	117	2,24	123	166	57	0,90	61	24	140	19	28	93
2.	2-П	2,13	117	158	1,70	93	126	42	0,90	44	24	164	22	33	109
3.	3–П	3,94	217	292	3,39	187	25 I	20	0,79	20	II	183	25	36	122
4.	4- П	2,02	III	150	3,83	211	283	42	0,85	46	I 5	I53	19	29	105
5.	5 – II	3,39	187	25 I	3,61	199	267	24	18,0	26	12	177	2 5	34	118
6.	6-П	4,71	259	34 8	4,87	268	360	15	0,70	17	8	224	19	3 7	168
7.	7-II	4,82	265	35 6	5,14	283	381	I 5	0,71	17	8	196	16	33	147
8.	8-П	4,76	262	352	5,03	277	3 73	15	0,70	17	8	228	19	3 8	171

Таблица 7 (продолжение)

	1				емя	произ				про	стоя 	из -	. 3 & 				
使 [] [] []	!			00011			K & 3 O F	·					!			элементо:	
•	1 3a	1	3-x	1 4-x	организ	том ващим ремон	числе пта	. .	немсправн	OCTH	 1	ремонта		100		ДI 1 4-х 1	длитель ность
	овь Оле Вуд !	α		сменный работы	3a 1	3a ro	Д !	38 100	38.	год	! 3a !	заго	рд	часов эксп- дуата-		смен-	вынуж- денного простоя
	1 1		paoura		часов Эксп- 1 луата- ции	З-х смен- ный	4-x cmen-!		3-х смен- ный режим работы	! 4-х смен- ный	часов ! экоп- ! луата- ции	3-х смен- ный режим работы	4-х смен- ный режим работы	ции,	! yao.	режим работы, гас.!	MKH.
	! I7	- <u>!</u>	_ 18	19 19	20 1	21 [23	7 24	25	ī 26 ī	27	28	29	ī 30 -	ī 3ī [!	- 32
	9,57		5 2 7	708	_	_	_	-		-	_	_	-	_	_	-	_
I	3,71		204	274	0,49	27	37	0,74	41	55	2,47	136	183	5,87	323	434	157
2	5,82		320	43I	0,78	43	57	1,16	64	86	3,88	213	287	3,76	207	278	133
3	12,0	5	663	892	I,67	92	124	2,34	129	173	8,03	442	594	8,61	473	637	152
4	5,17		284	382	0,65	36	4 8	0,97	53	72	3,55	195	263	9,58	5 2 7	709	150
5	10,0	I	5 5 I	74I	I,39	77	103	1,95	107	144	6,68	367	494	9,21	506	681	153
6	17,5	4	965	1298	1,46	8 0	108	2,92	I6I	216	13,15	723	973	12,85	707	95 I	158
7	I5 , 7	6	867	II66	1,31	72	97	2,63	144	194	11,82	650	875	13,51	743	999	158
8	18,1	I	996	1340	I,5I	83	112	3,02	166	223	13.58	747	1005	12,09	665	895	144

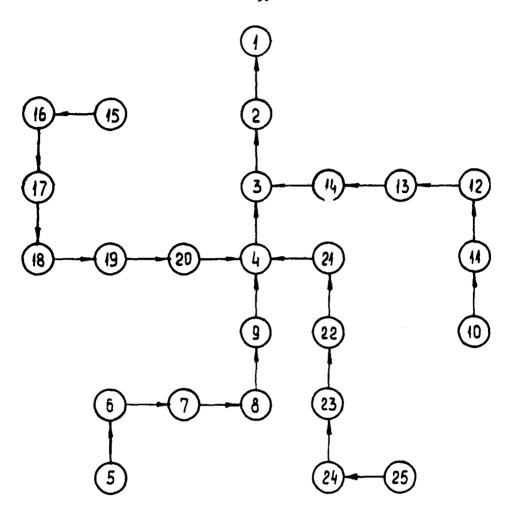


Рис. З., Структура автоматизированной системы управления

Для ненадежных элементов степень влияния мерархической зависимости системы увеличивается при переходе от элементов более низкой ступени к элементам более высокой. Так, например, исходя из результатов, представленных в табл. 7, для элементов I и 2 удельный вес простоев, гызванных отказами других элементов системы, составляет менее 6%, а у элементов 6,7 и 8 значение этой величины составляет около 13% от времени эксплуатации.

Пример 2.

Имеются две АСУ, структура которых приведена на рис.3. Параметры безотказности и ремонтопригодности І-го и П-го вариантов элементов системы представлены в табл.8.

Таблица 8

Наименование элементов системы	Наработка На отказ, час,	Среднее !время ор- ганизации !ремонта,	Среднее время по- иска неис- правности,	Среднее время Гремонта,
I	! 2	1 3	4	! ⁵
	Bar	риант І		
I, 2, 3, 4	67	I 6	15	109
5, IO, I 5	73	31	38	139
6, II, IĢ	43	20	II	176
7, I2, I7	40	18	18	124
8, 23, 24, 25	52	12	16	II5
9, 18, 18	58	16	14	143
I4, I9, 20	84	17	19	IIO
21, 22	39	10	II	85

I	2	3	4	5	-
	Bapi	иант П			
1,2,3,4,8,9	2360	6I	3 5	16	
5,6,7, 10-25	3330	42	4 5	30	
					_

Анализ данных, приведенных в табл. 9 и 10, показывает влияние показателей безотказности и ремонтопригодности элементов АСУ на параметры эффективности их функционирования.

Так, например, наработка на отказ I-го варианта системы составляет 19 час, в то время как у II-го — она равна 822 час.

Величина собственных отказов I-го варианта системы составляет около II%, а II-го - лишь 0,2% от времени эксплуатации.

В таблицах II и I2 представлены результаты расчета параметров аффективности функцион: прования АСУ, структура которых приведена на рис. 4.

Структуры приведенных на рис.4 АСУ являются частным случаем структуры АСУ, приведенной на рис.3.

Показатели безотказности и ремонтопригодности элементов АСУ, приведенных на рис.4, соответствуют показателям аналогичных элементов табл.8.

Результати, представленные в табл. II и I2, позволяют провести анализ влияния структуры АСУ на параметры эффективности сункционирования.

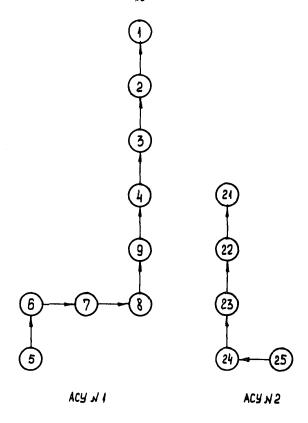


Рис. 4. Структура автоматизированных систем управления

Параметры вффективности функционирования автоматизированной системы управления

		·										,			
¥. I	Наименовение элементов	Число о	тказов ! за :		BOK M3-	инужденни за отказо ов сис тем	в других	l dotka	фици-	преби-	нее время	'Среднее Время Восста-		время	
1	CHCTCMH	IOO GOOR	13-x	!————	. 88	ja ro	л — — — —	TAC.	TexHW-	вания В ис-	непре-	!новле	зации органи-	- поиска неис-	Гремон- та.
1		BKCI-	сменный	сменний	1 100			1	TO NO-	прав-	работн		ремон-	прав-	I MKH.
1		луата- !ции	lpe zum padoth l	begoin beanw	часов 1 _{экси-} луата-	13-х сменный режим работы	! 4-х сменный !режим работы	!	HOJI	ном состо- янии, час	! час. ·	I 1	Ta, MMH.	MMH.	1
+		· -¦¸	<u> </u>	- -	·1	·[·	1		+	`	1		, , – – – -		- [']
1_	2	- ' ³	1 4 _	<u> 5</u> -	.i <u>6</u> _		18	.'9_	<u>1</u> _ <u>10</u> _	_I I -	_ <u>I</u> 2_	1 _ <u>1</u> 3_ 1	<u>I4</u> _	.! <u>1</u> 5	_!_ <u>_16</u> _
	В целом по системе	4,79	263	354	-	-	-	19	0,89	-	-	137	-	-	
	I-I	1,32	72	98	3,47	191	257	68	0,89	73	19	148	17	16	114
	2-I	1,24	68	92	3,54	195	262	72	0,89	78	19	156	18	17	121
	3-I	I,44	79	I0 6	3,35	184	248	62	0,89	67	19	148	17	16	115
	4-I	I,34	74	9 9	4,80	264	355	64	0,86	72	14	145	17	16	112
	5-I	0,93	5 I	6 9	10,14	558	750	73	0,68	99	6	197	29	36	132
	6-I	I,67	92	123	9,50	522	703	4 I	0,68	56	6	210	20	11	178
	7-I	1,48	82	IIO	9 , 6I	528	711	4 6	0,68	64	6	171	19	19	133
	8-I	I,46	80	108	9,64	530	713	4 6	0,68	65	6	143	12	16	II6
)	9 - I	I,24	68	92	9,83	5 4I	728	55	0,68	78	6	182	17	15	151
0	IO-I	0,95	52	70	9,21	507	682	74	0,71	102	7	205	31	37	137
I	II-I	1,71	94	126	8,52	468	63 0	4 I	0,71	55	7	213	21	II	181
2	12-1	I,92	106	142	8,26	454	611	37	0,71	49	7	161	18	18	125
3	I3-I	I,45	80	107	8,69	478	643	49	0,71	64	7	173	16	14	143
4	I4-I	0,91	50	67	9,25	509	685	78	0,71	I08	7	132	15	17	99
5	I5-I	0,92	5 I	68	9,85	542	729	7 5	0,69	I 05	6	204	30	37	136
6	16-1	I,45	80	107	9,37	515	693	47	0,69	65	6	217	21	12	185
7	17-I	1,60	88	118	9,18	505	679	43	0,69	60	6	160	18	18	124
8	18-1	1,15	63	85	9,56	526	707	60	0,69	83	6	175	16	14	I4 5
9	I9-I	0,82	4 5	6I	9,85	542	729	84	0,69	119	6	156	18	20	117
0	20-I	0,62	34	4 6	10,07	554	74 5	112	0,69	I59	6	144	17	19	108
I	2I-I	1,53	84	113	10,52	57 8	778	47	0,72	64	6	106	10	II	85
2	22-I	1,81	100	134	10,21	562	756	40	0,72	53	6	104	10	11	84
3	23-I	1,39	7 6	103	10,67	587	789	52	0,72	69	6	147	12	16	119
4	24-I	I,34	74	99	10,65	586	788	54	0,72	72	6	162	13	18	131
:5	25 - I	I,4I	78	I04	I0,64	585	787	5 I	0,72	68	6	138	II	15	II2

Helee L/II	i	3a I	од	I <u>c</u> o	<u>отвенни</u>	X <u> </u>	том_числе -	 _вре м я					sa IOO	за г зов пруг	от пх_эчейе!	!Средняя
•	атации атации	1 3-х сменный режим	4—х сменный режим	o <u>p</u> r	I	р емонта од		неиспра За г		эа 100	е <u>монта</u> за		Pacob arciviy- arailee,	сменний	! 4-х сменный режим	длитель: !ность винуж-
	1	работн	padoth I	часов эксплу⊷ атации		1 4-х ісменный режим Іработн	часов эксплу- атации	PEARM	4-х Ісменный режим Іработы	Часов эксплу атации 	сменяни	4-х сменный режим работы	! час., ! ! !	работы, час.		денного простоя, мин.
	17	<u>.</u>	19	20	<u> </u>	+ 1 ²² _	23 1	24	1_25_	1 26	27	1 28	29	301	3I	32
	10,90	600	807	-	-	-	-		-	-	-	-	~	-	-	-
	3,24	178	240	0,38	21	28	0,35	19	2 6	2,51	138	186	7,66	42I	567	132
	3,24	178	240	0 ,3 8	21	28	0,35	19	26	2,51	138	186	7,66	422	567	130
	3,55	195	263	0,42	23	3I	0,39	21	29	2,75	I5I	204	7,35	404	544	132
	3,25	179	2 4I	0,38	21	28	0.35	19	2 6	2,52	I38	186	10,69	588	791	134
	3,07	169	227	0,46	2 5	34	0,56	3I	4 I	2,05	IIS	I52	29,13	1602	2156	172
	5,83	32I	43I	0,56	3 I	42	0,31	17	23	4,96	273	367	26,37	I450	1951	167
	4,23	233	313	0,48	26	35	0,48	2 6	35	3,28	180	243	27,96	1538	2069	175
	3,49	192	258	0,29	16	21	0,38	21	28	2,82	I55	209	28,71	1579	2124	179
	3,76	207	278	0,35	19	26	0,30	17	23	3,11	171	236	28,44	1564	2104	174
)	3,23	178	239	0,48	27	3 6	0,59	32	44	2,16	119	160	26,23	I443	1941	171
:	6,07	334	449	0,59	32	43	0,32	18	24	5,16	284	382	23,39	1887	1731	165
?	5,14	283	38I	0,58	32	43	0,58	32	43	3,99	219	295	24,32	I338	1800	177
3	4,19	230	310	0,39	21	29	0,34	19	25	3,46	190	256	25,28	1390	1871	174
l .	1,99	110	147	0,23	13	17	0,26	14	19	1,50	82	III	27,47	I5II	2033	178
5	3,13	172	232	0,47	26	35	0,57	3 I	42	2,09	115	155	28,13	1547	2081	171
5	5,25	289	388	0,51	28	38	0,28	15	21	4,46	24 5	330	26,0I	1431	1926	166
,	4,26	234	315	0,48	26	35	0,48	2 6	35	3,30	181	244	27,00	1485	1998	177
;	3,36	185	249	0,31	17	23	0,27	15	20	2,78	I53	2 06	27,89	I534	2064	175
	2,14	117	I58	0,25	14	19	0,28	15	21	1,61	88	119	29,12	1602	2155	177
	1,48	81	109	0,17	10	13	0,19	II	14	I,II	6 I	82	29,78	I638	22 04	177
	2,70	148	199	0,25	14	19	0,28	15	2I	2,16	119	160	25,58	I407	I89 3	I4 6
	3,16	174	234	0,30	16	22	0,33	18	24	2,53	139	187	25,12	1382	1859	148
	3,42	188	253	0,28	16	21	0,38	21	28	2,76	I52	204	24,86	I367	1840	I4 0
<u>.</u>	3,61	199	267	0,30	16	22	0,40	22	29	2,92	160	216	24,67	I357	I82 5	189
5	3,25	179	2 4 I	0,27	I5	20	0,36	20	26	2,63	I45	I94	25,02	1376	1852	I4 I

Параметры вффективности функционирования автоматизированной системы управления

		- <u>-</u>													
! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	Наименование эле- ментов системы	i sa	TO OTKAŻO	 В год	HOBOK N	инужденны 3—36 отка	зов дру~ г		1000	Среднее время	Mee	ІСред- нее	B TOM	время числе с	реднее
! ! !		IOO 1 TACOB SECI- 1 AYATA- 1 UMB	13-х сменный	Т _{4-х} сменный режим Гработы	I SA I 100 TACOB I SKCU- AYATA- JULK	1-3-x	ГОД : 14-х сменний режим работи	HA ! OTRAS, TAC !	eht Texhu-	PORTE	время рывной работы час,	Время ВОО- СТВ- НОВЛЕ- НИЯ,		поиска неис- прав- ности, мин,	PEMORTA, TA, MEH.
ĪĪ	2	1 3	1 4	1 5	1	7	1 8 1	9 -1	10	I	Ī2	13	14	1 15	1 16
	В целом по системе	0,12	7	9	-	-	-	822	I,00			III	-	-	-
I	III	0.04	2	3	0.08	4	6	2365	1.00	2358	822	112	6I	35	16
2	2-II	0,04	2	3	0.08	4	6	2450	I,00	2454	822	IIO	60	34	16
3	3-1	0.04	2	3	0,08	5	6	2618	1.00	26II	822	111	60	35	16
4	41	0.04	2	3	0,12	7	9	2372	1.00	2371	612	121	66	38	17
5	5II	0,03	2	2	0.31	17	23	3227	0.99	3214	296	127	45	49	32
6	6–∏	0,03	2	2	0,31	17	23	3370	0.99	3387	296	119	43	46	30
7	7–II	0.03	2	2	0,31	17	23	3280	0.99	3273	296	112	40	43	29
8	8 – II	0.04	2	3	0,29	16	22	2311	0,99	2318	296	113	62	3 5	16
9	9-11	0.04	2	3	0,30	16	22	2440	0.99	2449	29 6	121	66	38	17
10	10-п	0.03	2	2	0,24	13	18	3215	0.99	3195	367	129	46	50	33
II	II-II	0,03	2	2	0,24	13	18	3636	0.99	3625	367	112	40	43	29
12	12-П	0,03	2	2	0,24	13	18	3266	0.99	3251	367	II4	4I	44	29
13	I3-II	0,03	2	2	0,24	13	18	3 320	0.99	3303	367	II6	42	45	30
14	I4-II	0.03	2	2	0,24	13	18	3181	0.99	3184	367	116	42	45	30
15	I5 - II	0,03	2	2	0,31	17	23	3177	0,99	3169	292	119	43	46	31
16	I6II	0.03	2	2	0,31	17	23	3333	0,99	335I	292	116	42	45	30
17	17-11	0,03	2	2	0,31	17	23	335I	0,99	3357	292	122	44	47	31
18	I8II	0,03	2	2	0,31	17	23	3408	0,99	34I 3	292	II8	42	45	30
19	19 - Ⅱ	0,03	2	2	0,31	17	23	3193	0,99	3202	292	II7	42	45	30
20	20 ⊸ II	0,03	2	2	0,31	17	23	3631	0,99	3614	292	II4	4 I	44	29
2 I	2 I -II	0,03	I	2	0,28	16	21	3767	0,99	3784	320	123	44	47	32
22	22-II	0,03	2	2	0,28	16	21	3410	0,99	34II	320	108	3 9	42	28
23	23 - II	0,03	2	2	0,28	15	21	3146	0,99	3136	320	116	42	45	30
24	2 4 -II	0,03	2	2	0,28	15	21	3317	0,99	3334	320	115	41	44	30
25	25 - II	0.03	2	2	0,28	I 5	21	3146	0.99	3146	320	117	42	45	30

						Время п	— — — — — — — — — — — — — — — — — — —	твенного	IPOCTOR I	13- 38	. .					
			0	ооствении	x otkaso						. 		OTK880	B IDYTEX	эдемент	2B
	за 100	<u>3</u> 8_		!			числе ві	Demg					- sa I00	1 3a	roπ	1 С редняя
lete:	часов	3-x	4-x	организ	aime Dew			немсправ	OCTH 1	<u>p</u> e	MOHTS _	4	часов	1	ı -	длитель-
п/п	! эксплу⊸ атации	режим сменини	режим Сменний	эа 100		TOT	за 100	1	год	за I 00		일	ЭКСПЛУ- - АТАПИИ	3-х Ісменний	· 4-х • сменний	'ность Вынуж⊶
;	! !	1 pacoth	работы	! часов экси- ! луата-	1 3-x	! 4-х сменный! режим	часов эксплу- атации	1 3-х 1 сменный режим	! 4-х 1 сменный режим	PRODE PRODES STRUME	1 3-x	4-х сменный режим	TAC,	pexim	PEXEM [PACOTH,	денного простоя,
	ı	I	1	i man	работы	PROOTH I		PacoTH	PACOTH	1	PROOTH		· !	1	!	_
Ţ	17	18	1 19	20	21	1 22	23	1 24	7 25	26	27	28 1	29	30	31	32
O	0,22	12	17	-	-	-	-	-	-	-	-	-	-	••		-
1	0,08	4	6	0.04	2	3	0,02	I	2	0,01	I	I	0,15	8	II	IIO
2	0,07	4	6	0,04	2	3	0,02	I	2	0,01	I	I	0,15	8	Ш	III
3	0,07	4	5	0,04	2	3	0,02	I	2	10,0	I	I	0,15	8	II	III
4	0,09	5	6	0,05	3	3	0,03	I	2	10,0	I	I	0,22	12	17	III
5	0,07	4	5	0,02	I	2	0,03	I	2	0,02	I	I	0,59	32	43	II5
6	0,06	3	4	0,02	I	2	0,02	I	2	10,0	I	I	0,59	3 3	44	II6
7	0,06	3	4	0,02	I	I	0,02	I	2	0,01	I	I	0,59	33	44	II6
8	0,08	4	6	0,04	2	3	0,03	I	2	10,0	I	I	0,57	3I	42	II6
9	0,08	5	6	0,04	2	3	0,03	I	2	10,0	I	I	0,57	31	42	II5
IO	0,07	4	5	0,02	I	2	0,03	I	2	0,02	I	I	0,45	25	3 9	113
II	0,05	ડ	4	0,02	I	I	0,02	I	I	10,0	I	I	0,47	2 6	35	115
12	0,06	3	4	0,02	I	2	0,02	I	2	0,01	I	I	0,46	25	34	I 15
13	0,06	3	4	0,02	I	2	0,02	I	2	0,01	1	I	0,46	2 5	34	II4
14	0,06	3	4	0,02	I	2	0,02	I	2	0,02	I	I	0,46	2 5	34	II4
15	0,06	3	5	0,02	I	2	0,02	I	2	0,02	I	I	0,59	33	44	II 5
I6	0,06	3	4	0,02	I	2	0,02	I	2	0,01	I	I	0,60	38	44	116
17	0,06	3	4	0,02	I	2	0,02	I	2	0,02	I	I	0,66	33	44	115
18	0,06	3	4	0,02	I	2	0,02	I	2	0,01	I	I	0,60	33	44	115
19	0,06	3	4	0,02	I	2	0,02	I.	2	0,02	I	I	0,60	33	44	II6
20	0,05	3	4	0,02	I	I	0,02	I	I	0,01	I	I	0,61	33	45	IIE
21	0,05	3	4	0,02	I	I	0,02	I	2	0,01	T	T	0.54	30	40	II4
22	0,05	3	4	0,02	Ī	Î	0,02	Ī	Ĭ	ŏ,oī	Ī	ī	0,54	30	4 0	II6
23	0,06	3	5	0,02	I	2	0,02	I	2	0,02	I	Ĩ	0,53	29	40	II5
24	0,06	3	4	0,02	I	2	0,02	I	2	0,01	I	I	0,54	30	40	115
25	0,06	3	5	0,02	I	2	0,02	I	2	0,02	I	I	0,53	29	39	115

- 6I -

Параметры эффективности функционирования автоматизированной системы управления

	Τ.	ī	-i				Пара	метри на	 Де жно сті							
	## 11.11		!	ло отказов		,	ынужденны з-за отка	X OCTA-	Hapa-	:Козфи-	1 D D O MAI	Среднее время	Сред-	В том	числе ср время	еднее
Howep ACV		CECTOMN I I	Jacob	за т з-х сменный режим работы	4-х сменный режим работы	3a IOO TACOB 3KCH- JYATA-	за го за го за го сменний режим графоти		HA OTKAS, TAC.	TO HO- HOJE- 30BA- HMR	пребы- вания в ис- правном состоя- нии, час.	непре- рывной работы,	время вос- ста- новле- ния, мин.	органи- зации ремон- та, мин	поиска неис- прав- ности, мин.	Ремон- ! та, мин. !
	I	2	1 3	4	5	j 6	! 7	8	1 9	TO T	i II	12	1 13	14	Î5	16
		В целом по скотеме	10,91	600	807	,	-	_	6	0,68		-	176	I9	 I8	' I39
	I	I-I	0,85	47	63	10,06	553	744	80	0,68	III	6	I52	18	16	118
	2	2 - I	0,89	49	66	10,01	55I	74I	76	0,68	108	6	135	16	I 5	I04
H	3	3 - I	0,96	53	71	9,95	547	736	71	0,68	95	6	176	21	19	I36
典	4	4I	0,87	48	65	10,04	552	743	78	0,68	III	6	171	20	19	132
\$	5	5 -I	1,07	59	79	9,84	541	728	64	0,68	90	6	230	34	42	I54
4	6	6 - I	I,48	82	IIO	9,43	518	697	4 6	0,68	62	6	257	25	14	218
	7	7 - I	1,90	I04	140	9,01	496	667	36	0,68	49	6	I5I	17	17	117
	8	8 - I	I,59	88	118	9,32	512	689	43	0,68	6I	6	137	II	15	III
	9	9 - I	1,29	71	95	9,62	529	712	53	0,68	72	6	174	16	14	144
		В целом по системе	8,84	486	654	-	-	~	9	0,80	-	~	136	13	15	109
	I	2 I- I	I,84	101	I36	7,00	385	518	44	0,80	52	9	105	10	II	84
8	2	22-I	2,16	119	160	6 ,8 8	367	494	37	0,80	44	9	109	IO	II	88
**	3	23 - I	I,82	100	I35	7,02	386	519	44	0,80	53	9	142	12	16	II5
2	4	24-I	I,66	9 I	123	7,18	39 5	531	48	0,80	57	9	161	13	18	130
PS	5	25-I	I,36	7 5	IOI	7,48	411	553	59	0,80	66	9	179	15	20	I45

Таблица II (продолжение)

		-1						Время п	рожаволо	гвенного	простоя в	3 <u>-</u> 3 <u>8</u>	. .				
ACY	Neiki:	sa IOO	!3 <u>a</u>		ODEAH			TOM_UK	с <u>че</u> врем	ALL		 	: <u> </u>	DOTRAS BA IOO HACOB	SA PO	<u> </u>	! Средняя - длитель-
Номер Н	n/u	эксілу— ! атации !	сменный режим Гработн !	CMEHHHM DEXEM PACOTH	за 100 часов эксплу- атапии	3a_	TOT! 4-x !cmeh.! pexum ! pacoth!	за 100 часов эксплу- атации	I 3 <u>a</u>	год	- за 100 часов эксплу-	!s <u>e</u>	Той Т 4-х ! смен. режим I работы	эксплу-! атацик, час,		! 4-х ! сменний режим ! работы, час, !	!ность вынужден- !ного простоя, !мин.
	Ī	17	! I8 -	<u>1 19</u>	20	21	1 22 1	23	T 24	T	1 26	27	28	29	30	3 I	1 32
		32,06	1763	2373	3,52	I93	260	3,35	184	248	25,19	1386	1864	_		-	-
	I	2,15	118	159	0,25	I 4	19	0,23	13	17	I,67	92	123	29,91	I6 4 5	22 I3	178
	2	2,01	III	149	0,24	13	17	0,22	12	16	I,56	86	115	30,05	I653	2224	180
	3	2,81	I 55	208	0,33	18	24	0,31	17	23	2,18	120	I6I	29,25	1609	2164	176
IZ.	4	2,48	136	I84	0,29	16	21	0,27	15	20	1,92	106	142	29,58	1627	2189	177
	5	4,IO	226	304	0 ,6 I	34	45	0,75	4I	5 5	2,74	I5I	203	27,96	1538	2069	170
ACV	6	6,34	349	469	0,61	34	45	0,34	19	25	5,39	297	399	25,72	1414	1903	I64
	7	4,78	263	354	0,54	30	40	0,54	30	40	3,71	204	274	27,28	1500	2018	182
	8	3,64	200	269	0,30	17	22	0,40	22	30	2,94	162	217	28,42	1563	2103	183
	9	3,73	205	276	0,35	19	26	0,30	17	22	3,09	170	228	28,33	I558	2096	177
		19,96	1098	1477	1,73	95	128	2,15	118	159	16,08	884	1190	-	-	-	-
	I	3,21	176	237	0,30	17	22	0,33	18	25	2,57	I4I	190	16,76	922	1240	I44
≅	2	3,93	216	291	0,37	20	27	0,41	22	30	3,15	173	233	36, 03	882	1186	144
ACV .	3	4,3I	237	319	0,36	20	2 6	0,47	26	35	3,48	192	258	15,65	86I	II58	134
¥	4	4,45	245	329	0,37	20	27	0,49	27	36	3,59	197	266	15,52	853	II48	130
	5	4,06	224	301	0,34	18	2 5	0,45	25	33	3,28	181	243	15,90	874	1177	128

-- 63 -- Параметры эффиктивности функционирования автоматизированной системы управления

	146		- ₁				<u>-</u> II	 араметры	надежн	octh						
		Наименование элементов	l Isa	UMCAO OTKE	год	1 BOK M9-8	нужденных а отказов этов сист	MOALAX	COTRA	циент	вр емя	Среднее время непре-	Сред- нее время	'	числе ср время	
Howep ACV		Chctema	100 Vacob Skcii- Ayata-	1 3-х сменний режим работы	1 4-х сменный режим работы	T SA I 100 YACOB	1 3аг 13-х сменный	од 14-х сменный	OTKAB.	TO NO-	вания В ис- правном состо- яния,		[BOO-	Saure	Inoucka Henc- Inpab- Hoctu, Muh.	PEMOHTA,
	!		_l	! 	! :!	луата- ! ции	работы	pacothi pacothi	1	1	lyac.	!	1 .	! 	4	1
	I	$\frac{1}{2}$	1 3	1	5	1 6	1	1 8	1 9	10	i II	12	13	14	, 15	1 16
		В целом по системе	0,34	19	25			-	293	0,99	-	-	114	56	38	20
	I	I-II	0,04	2	3	0,30	16	22	2327	0,99	2340	293	107	58	33	15
н	2	2⊸∏	0,04	2	3	0,29	16	22	2228	0,99	2237	293	113	62	35	16
- 1	3	3-11	0,04	2	3	0,30	16	22	2361	0,99	2364	293	II8	64	37	17
3	4	4–II	0,04	2	3	0,30	16	22	2545	0,99	2557	293	113	62	35	16
¥	5	5-∏	0,03	2	2	0,31	17	23	3324	0,99	3 34 3	293	119	43	46	30
	6	6 II	0,03	2	2	0,31	17	23	3258	0,99	3275	29 3	120	43	46	31
	7	7 - II	0,03	2	2	0,31	17	23	3576	0,99	3593	29 3	120	43	4 6	31
	8	8-II	0,04	2	3	0,30	16	22	2435	0,99	2444	29 3	III	60	35	16
	9	9- II	0,04	2	3	0,30	16	22	2395	0,99	2403	29 3	108	59	34	15
		В целом по системе	0,15	8	11			_	668	1,00	_	-	119	43	46	30
	I	2I - II	0,03	2	2	0,12	7	9	3336	1,00	3 34 3	6 6 8	II6	42	45	30
~	2	22 - II	0,03	2	2	0,12	7	9	3270	1,00	3276	668	119	43	4 6	30
*	3	23 - II	0,03	2	2	0,12	7	9	3 456	1,00	3245	668	119	43	4 6	3I
3	4	2 4- II	0,03	2	2	0,12	7	9	3239	1,00	3465	668	119	43	4 6	3 I
4	5	25 - II	0,03	2	2	0,12	7	9	3 42 I	1,00	3 428	668	120	43	46	31

Таблица 12 (продолжение)

.		T _{3a} IOO		¥~	, ,			B_TOM_TE	Me BDeMa					o <u>rka</u> soi sa IOO gacob	в других 1 за год	элементо <u>г</u>	Средняя
•	n/n	HACOB SECLIAY- LATALINE !	З-х сменный режим работн	4-х сменный режим работы		DEXIM	од 4-х смен. режим работы	130 100 13003 1300111y- 2731111	DOKEM		BA IOO PACOB SECULY- PATRIKE	3-х смен. режим	год 4-х смен. режим работы	SKCLEY- ATALLER, VAC.	CMEH. DEMONI DEM	4-x cmen. pexam pacotu, vac,	ДЛИТЕЛЬ НОСТЬ ВИНУЖ- І ДЕННО- ГО ПРО- І СТОЯ, МИН.
	Ī	Ī 17	18	1 19	20	21	22)	7 23 -	24	1 25	<u> </u>	27	28	29	30 1	31	32 -
		0,64	35	48	0,32	17	23	0,21	12	16	0,11	6	8				
	7	0,08	4	6	0.04	2	3	0,02	I	2	10,0	T	T	0,57	31	42	116
	2	0,08	5	6	0,04	ã	3	0,02	I	2	0,01	Ť	Ť	0,56	31	42 4I	II4
	3	0,08	5	6	0,05	2	3	0,03	ī	2	10,0	Ī	Ī	0,56	3I	41	II3
4	4	0,07	4	5	0,04	2	3	0,02	Ī	2	0,01	ī	ī	0,57	31	42	II4
Ę	5	0,06	3	4	0,02	Ĩ	2	0,02	Ī	2	0.02	Ī	Ī	0,58	32	43	113
Ž	6	0,06	3	5	0.02	I	2	0,02	I	2	0,02	I	I	0.58	32	43	113
•	7	0,06	3	4	0,02	I	1	0,02	1	2	0,01	I	I	0,59	32	43	II3
	8	0,08	4	6	0,04	2	3	0,02	I	2	0,01	I	I	0,57	3 I	42	II4
	9	0,07	4	6	0,04	2	3	0,02	I	2	0,01	I	I	0,57	31	42	115
		0,29	16	22	0,11	6	8	0,11	6	8	0,08	4	6				
	т	0,06	3	4	•	I	2	0,02	I	2	-	Ŧ	т	0.24	13	70	770
	I 2	0,06	3	4.	0,02	Í	2	0,02	Ī	2	0,0 1 0,0 2	Ť	Ť	0,24 0,23	13 13	I8 I7	119
	3	0,06	3	5	0,02	ī	2	0,02	I	2	0,02	Ť	Ť	0,23	13 13	17	119 118
	4	0,06	3	4	0,02	î	2	0,02	Ī	2	0,01	ī	Ī	0,24	13	18	118
	5	0,06	3	4	0,02	ī	2	0,02	ī	2	0,01	Ī	Ī	0,24	13	18	118

Пример 3.

На основе данных, приведенных в табл.13 проведен расчет параметров эффективности функционирования АСУ, изображенной на рис.5. Результати расчетов представлени в табл.14.

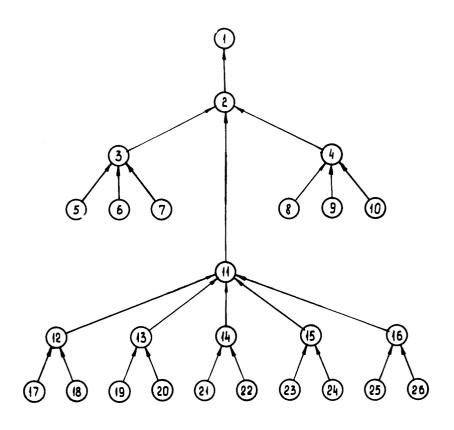


Рис.5. Структура автоматизированной системы управления

- 67 - Исходиме даниме для расчета параметров эффективности функционирования АСУ

	! Параметры	безотказности	1	!		Параме	три ремонтоп	ригодности				
Наименование элементов	Наработк	а на отказ	_, !	Среднее вр	емя организации емонта	1		емя поиска нег ности	исправ-	Среднее вре	мя ремонта	
CECTEMN	Закон ! распреде- ! ления	Параметрн	! TH, !	Зекон	Параметры !	ODI,	Закон распреде-! ления	Параметры !	д _{п,} мин.	Закон ! распреде-! ления	Параметры	! ^С р, мин.
I	экспонен- пиональный	λ=0,00I	1000	пионачення Экспонен-	λ=0, I 25	8	экспонен- циональный	A =0,I67	6	имональний экспонен		15
2	ramma.		500	Panoia.	α=1,5 β=0,15	IO	жо Бисирний женески кола Биф—	a =0,712 ⊗=0,5	IO	rama	α =2, 5 β=0,125	20
3,4,12 + 16	нормальный мически- логарий-	a =2,II 6=0,5	250	жогариф— мически— нормальний	(1 ≠0,816 © ≠0,4	10	экспонен- ционель- ный	λ =6,7.I0 ⁻²	I 5	Вейбуния	C =6,4.10 ⁻⁴ ⋈ =2	35
II	rama	4=1,5 β=3,7.10 ⁻³	400	Вейбунпа	C =3,5.10 ⁻³	15	ramma	d =2 p=0,2	10	ний Пионель- Экспонен-	λ =0, 4	25
5 + IO	rame.	×=1,5 β=3,7.10 ⁻²	40	Войбунка	C =2.10 ⁻³	20	гамма	χ =2 β=6,7.10 ⁻²	30	экспонен- ный ный	λ = 0,009	IIO
17 ÷ 26	Pa n ia	ઝ =2 β=0,04	50			20	логариф- мически нормальный	a =1,19	3 0	гамма		100

Параметры эффективности функционирования автоматизированной системы управления

		-,				– – – Na	раметры н	адежнос	TN						
55	элемента.	1	Число отк		BOK MB-	ва отказо	х остано- в других	COTRA	циент	время	время	время	I B TOM	исле сре время	еднее
	· chctemm !	100 100 lyacob	3-x	1 4-x	38	за Ситов Си	год Год	lha Otkas, Igac.		Вания	інепре- рывной іработы,	ВОССТА- НОВЛЕ- НИЯ.	Sentan	-!поиска немс-	Ta,
	!	эксп- !луата-	DEXIM	сменный режим работы	HACOB	3-х сменный	! 4-х сменный		вования	правном Состо	час,	MWH.	ремон- та,	npab- Hoctu, Muh.	Muh.
	<u>.</u>	ii) Ii)	1	1	луата- шии		режим работы	1	1	ASC.	1	1	1	1	! !
Ī	2	3		1 5	1_6_	7	1 8	1 9	10	i II	I 12	<u> 13</u>	14	! I5	16
	В целом по системе	0,31	17	23	-	-	_	321	1,00	_	-	33	-		_
I	I	0,09	5	7	0,22	12	16	I060	1,00	1014	32 I	30	8	6	I 5
2	2	0,22	12	16	0,09	5	7	459	1,00	460	32I	35	9	9	17
3	3	0,41	23	30	0,33	18	24	24I	0,99	24I	135	56	9	14	33
4	4	0,35	19	26	0,32	17	24	281	0 ,9 9	282	I48	56	9	14	33
5	5	2,17	120	161	0,69	38	SI	43	0,93	43	33	159	20	30	109
6	6	2,15	118	159	0,66	37	49	43	0,93	44	33	174	22	33	120
7	7	2,30	126	170	0,69	38	5 I	4 I	0,93	41	31	I64	20	31	II2
8	8	2,28	125	168	0,62	34	46	4 I	0,93	41	32	159	20	30	109
9	9	2,25	124	166	0,63	35	47	42	0,93	42	33	162	20	30	III
10	10	2,44	134	181	0,65	36	48	38	0,93	39	30	155	19	29	107
II	II	0,22	12	16	0,31	17	23	459	0,99	45I	189	26	8	5	13
12	12	0,22	12	17	0,69	38	5I	442	0,99	442	109	62	10	15	36
13	13	0,43	24	32	0,71	39	52 57	228	0,99	225	87	60	10	15	35
I4	I4	0,45	25	33	0,69	38	5I	221	0,99	219	87	57	9	I4	33
15 16	I5 I6	0,44	24	33	0,69	38	5 I 53	224 190	0,99	214	87	60	10	15	35
10 17	16 17	0,52	29 103	38	0,72	39 39	53 53	190 5 I	0,99	189	80	60	10	I5	35
18	17 18	1,87	105	I38	0,72	35 4I	55	31 49	0,95 0,95	5I 49	37	I53	20	3 I	102
19	19	I,92 I,9I	105	I42 I42	0,74	52	69	49	0,95	50	36 33	I44	19 20	29	96
20	20	1,82	100	142 135	0,94 0,93	5 Z	69	52	0,94	50 52	33 34	I49 I53	20 20	30 31	99
21	20 2I	1,91	105	133 142	0,91	50	67	49	0,94	50	34 34	150	20	31	102 100
22	22	I,96	108		•	5 0	68	48							
		-		145	0,92				0,94	48	33	153	20	3 I	102
23	23	I,90	104	I4I	0,94	52 50	69 7 0	50	0,94	50 50	34	151	20	30	101
24	24	I,93	106	143	0,97	53 55	72	49	0,95	50	33	139	18	28	92
25	2 5	1,94	107	144	1,00	55 55	74	48	0,94	49	32	152	20	30	IOI
26	26	2,02	III	I49	1,00	55	74	47	0,94	47	31	I50	20	3 0	100

Табинца I4 (продолжение)

							news moo	Wabolictre	еняюто про						. -	
1616 U/U	i								m							
щи	13a I00			- <u> </u>	COOCING	и К ей отк ез	TOM THE	e press					i sa IOO	ов др <u>уга</u> 1 <u>за</u> 1		Средняя
	часов	e	т <u>год</u> 4-х	Opras	Wasiiww ne		·	к <u>а нем</u> спр	ABHCCTM	1	ремонта		часов	3-x	.∨ <u>a</u> !4x	длитель-
	раксплу- атации	сменный	сменный	3a IOO	38	rod	за I00	!		3a I00	7 -	год	DAYA-	Ісмен.	CMCH.	НОСТЬ ВЫНУЖ—
	!	pacoth pacoth	padoth padoth	часов эксплу- атации	13-4	14-х сменный грежим	часов рксплу- атации	13	T	часов эксплу- атация		4-х режим	Tailes,	permm pacoth qac,	pacotu, vac.	1 TOURDO
		1	•	•	работы	работы	1	работы	PadoTH	1	работы	padotu	l 	<u>.</u> 1		·
Ī	17	18	19		21	7 22 -	: - z̄s -	24	25	1 26	27	28	29	30	31	32
0	0,43	23	32	-,							-,		_	-	_	
I	0,05	3	3	0,01	I	I	0,01	ī	I	0,02	I	2	0,13	7	9	35
2	0.13	7	9	0,03	2	2	0,03	2	2	0,06	3	5	0.05	3	3	30
3	0,39	21	29	0,06	4	5	0,10	5	7	0,23	12	17	0,20	II	15	37
4	0,33	18	25	0,06	3	4	0,08	5	6	0,19	II	14	0,18	IO	13	34
5	5,76	317	426	0.72	40	53	1,08	59	80	3,96	218	293	0,54	30	40	47
6	6,22	342	460	0,78	43	58	1,17	64	86	4,28	235	316	0,50	28	37	4 5
7	6,26	344	463	0,78	43	58	1,17	65	87	4,30	237	318	0,53	29	39	46
8	6,02	331	446	0,75	41	56	I,I3	62	84	4,14	228	306	0,48	27	36	47
9	6,06	333	449	0,76	42	56	1,14	63	84	4,17	229	308	0,48	26	35	46
IO	6,3I	347	467	0,79	43	58	1,18	65	88	4,34	238	321	0,49	27	36	46
11	0,09	5	7	0,03	2	2	0,02	I	I	0,05	3	4	0,17	IO	13	33
12	0,23	13	17	0,04	2	3	0,06	3	4	0,13	7	10	0,47	26	35	41
13	0,43	24	32	0,07	4	5	0,11	6	8	0,25	14	19	0,53	29	40	45
14	0,42	23	3 I	0,07	4	5	0,11	6	8	0,25	14	18	0,47	26	35	40
15	0,44	24	32	0,07	4	5	0,11	6	8	0,26	14	19	0,46	25	34	40
16	0,52	29	39	0,09	5	6	0,13	7	10	0,30	17	23	0,56	31	4I	47
17	4,78	263	353	0,64	35	47	0,96	53	71	3,18	175	236	0,46	25	34	39
18	4,63	254	342	0,62	34	46	0,93	5 I	68	3,08	170	228	0,49	27	36 50	40
19	4,74	26I	351	0,63	35	47	0,95	52	70	3,16	174	234	0,68	37	50 50	43
20	4,63	2 55	343	0,62	34	4 6	0,93	5I	69	3,09	170	228	0,68	37	50	44
2I	4,79	263	35 <u>4</u>	0,64	35	47	0,96	53	71	3,19	175	236	0,64	35 36	47	42
22	4,98	274	369	0,66	37	49	1,00	5 5	74	3,32	183	24 6	0,65	36 37	48 50	42
23	4,78	263	354	0,64	35	47	0,96	53	7 1	3,19	175	236	0,67	37	50	43
24	4,46	245	330	0,59	33	44	0,89	49	66	2,97	163	220	0,69	38	5 I	43
25 26	4,9I	27o 276	364	0,66	36	48	0,98	5 4	73	3,28	180	242	0,76	42	56 55	4 6
20	5,02	276	372	0,67	37	50	1,00	55	74	3,35	184	248	0,75	41	DD	4 5

Литоратура

- I. Бусменко Н.П. Моделирование сложных систем. М., "Наука", 1968.
- 2. Голенко Д.И. Моделирование и статистический анализ псевдослучайных чисел на ЭВМ. М., "Наука", 1965.
- 3. Горин А.М. Определение параметров эффективности функционырования автоматизированных систем управления. "Приборы и системы управления", 1972 Р 2
- 4. Горини А.М., Гимельшейн Л.Я., Каракине Л.М. Определение параметров надежности адпаратуры горной автоматики с применением ЭБМ. "Известия вузов. Горими журнал", 1972. 2.

Приложение І

Программа расчета параметров эффективности функционирования АСУ угодьянии предприятиями

```
JUCT 02
0 1
        BROK 1 .
0 2
        MAC G(120 4.30) DF(128 30.4) , STH1 (60 2.30) ,
03
        STR2(90 3,30),8(30),STR(60 30,2),PAR(360 4,N2),
0 4
        84(8 2.4),
05
        81(720 240.3),82(186 62.3),83(8 2.4).
06
      1.884 : INT=0 REAL#1 TEXT=2 51=1 52=3 53=62
0 7
        $6#4 $4#2 $5#30 $7#1+
08
        КОД
09
        -1000 7003 RR1.
10
        -1000 7004 RR2.
11
        -3077 0002 0000.
12
        +5271 0170 2600.
13
        *6234 6345 5200*
14
        545 PRO 314
15
        TEXT . 84/1 , 1/, 56 . 54 .
16
        TEXT, 83/1, 1/, 56:54:
   MICT 03
01
        INT, U, S1, 51,
02
        INT , N , S1 , S1 ) +
03
        BM4 :N2=3 N S8=202 S=(2,N+2),3 S9=8
510=5+1 S11=S10+8*
0 4
0.5
    34.884 :82/1,3/=0+
0 6
        NOB 34 Jaj (1) 3+
NOB 34 tel (1) 42+
0 7
08
        BMB PRO 31(
0 9
        TEXT, 82/3, 1/, 52, 53,
10
        THT:STR/1,1/,54:551*
11
        KOA
12
        -1000 7004 0001.
13
        -1001 700A B2/1,1/.
14
        -2001 7001 7005.
15
        -3077 0010 0000.
16
        0005 nore ence.
```

```
- 74 -
   JUCT 04
       0000 .0001 0001.
n1
       7104 5660 5143.
0.2
0.3
       4704 5543 0464.
0.4
       5464 4160 4760.
0.5
       0404 0404 0404.
06
       0404 0404 0404.
0.7
       0404 0404 0404*
08
       BUB PPO 33(51,58,
09
       $1,82/1,1/,$1,$1,$1,$,
       51,83/1,1/,51,51,510,59,
10
11
       51,84/1,1/,51,51,511,59).
       BH4 : S=0 11=0+
12
       контроль .
13
       BUB PRO 31(INT, Z1, S7, S7, INT, N1, S7, S7, INT, N0, S7, S7) *
1 4
15
       BHT 99*
16
       THET 05
01
     2.884 :STR2/1:1/=0 STR2/2:1/=0 STR2/3:1/=0 S=5+1
0.2
        STR1/1, T/mS R/I/=STR/T,1/.1000+STR/I,2/+
03
       ПОВ 2 I=1 (1) N+
0.4
       HAT NA BPM : Z1;: Z2;: Nn;: N1;: N;: B(N)*
     3.884 :R/1/=0*
0.5
.06
     4.8H4 G/J:1/=0.
0.7
       BH4 : A/I/=8/I/,10+DF/I,J/+
0.8
       ECAH : DF/1,3/ (4 TO 7.
09
       BH4 S=PAR/J+K/-1 S2=S S3=1*
10
     5.ECNH 52 (1 TO 6*
       BH4 $3=$3,$2 $2=$2-1+
11
12
       TEP 5.
13
     6.5HB PRO 126(52,54)*
14
       BN4 54=54,53 55=-LN(m-3.54) G/J:1/=$5+5.LN($5)+
15
     7.008 4 J=1 (1) N3+
16
       ΠΟΒ 3 K=1 (3),I=1 (1) N+
   SPCT DA
        HA3 PAR1(360 120.3)=PAR+
0 1
        HAT NA BPM : B(N), PAP1(S1.3), G(N3.N)*
0.2
0.3
      9.884 SESTR/1,2/*
        ЕСЛИ :STP/J:1/ =S TO 10 INA 11+
0.4
     10.8H4 5=STR1/1,J/ STR1/2,1/=5*
0.5
        DEP 12*
06
0.7
     11.006 9 J±1 (1) N+
        BH4 :STR1/2,1/=0 J1=STR1/1,1/+
08
09
     12.008 9 I=1 (1) No
10
     13.ECAH :STR1/1,1/ =STR1/2,J/ TO 14 INA 16*
11
     14.8H4 :[1:11+1+
     15.884 :STR2/1:1/#STR2/1:1/+1 STR2/3;K/#STR1/1:J/+
12
        not 15 K= (1).1+
13
     16.00P 13 J=1 (1) N+
14
15
        ΠΟΡ 13 I±1 (1) N●
16
        884 : S=N-1+
```

NUCT 07

```
17.8H4 :STR2/2.1+1/=STR2/2.1/+STR2/1.1/+
01
       Π08 17 !=1 (1) S●
02
       B H 4 5 = 0 *
03
     8,8N4 S=S+PAR/J:K/*
0.4
       ПОВ 8 J=2 (1) N3•
05
    18.884 PAR/J,K/=PAR/J,K/:S+
06
       NOB 1A J=2 (1) N3+
07
       BH4 : R/1/=STR1/1,1/.1nonono+STR1/2,1/.100000+
8.0
       STR2/1,1/,100+STR2/3,1/+
09
10
       8H4 S=0#
11
       nob & K=3 (3), I=1 (1) N+
12
       HAT NA BPM :R(N),:J1+
       BM4 :51=1 52=2 B4=840+
13
       BH4 B/1/mN B/2/mU B/3/mN2 B/4/mZ1 B/5/mN1
14
       B/6/=NO B/7/#J1 B/8/=Z2 B/9/#N3 B/10/#RR1
15
16
       B/11/=RR2+
   JUCT DE
01
        BUD PRO 166(51,51,52,51,G/1,1/,B4)+
    99. NOARP FORMIROWANIES
02
        BH4 :53=3 S5=120 S4#4
03
        $6=240 $7=12 NM3=19
0.4
        NM4=20 S2=30 NM5=6 MOZU=0 NML=1+
05
        BH6 PRO 34(53,55,51,
06
        NML, MOZU, 8/6/, NM4, $1, $1)+
0 7
0.8
        BH4 : NK = B / 6 / +
09
        BN4 : 22=2 P=3 M1=1 J1=2.N+1*
10
        BUB PRO 34(53,56,53,
        NML, MnZU, #1/1,1/, 53, 51, 56) *
11
12
    35.8MN 34*
       ECRM :M =n To 37*
13
14
        BUB PRO 34(53,55,51,
15
        NML, MÓZU, B/5/, NM3, P1, S1) .
        ECRM :8/5/ =2 TO 57+
16
    THET D9
     BW4 122=1.
37.8W4 1P=P+2+
0 1
02
03
        ECNH ;P (2J1 TO 350
        ECNN :M1 =0 TO 38.
0 4
        BH4 :N3=2.Z2 P=3 P2=1 11=1*
05
     40.8MT 36.
0.6
        BHB PRO 34(53,55,54,
0.7
0.5
        NML, MOZU, #/1/, NM5, P1, 51) +
    41.884 ! DF/1,K/=B/J/+
09
        008 41 Fm1 (1),Jm1 (1),N3*
10
        NOB 41 1=P2 (1).1.
11
        BHT 42*
12
13
        BH4 :P=P+2 P2=P2+1 11=11+3+
14
        ECAN :P (=J1 TO 40 INA 33+
15
     TB.KOHEU .
16
     33.BHX .
```

J CT 10

```
36. HOR POISK ..
01
       BH4 'J2=1 M=0 P1=1+
02
03
    44.884 SE81/K.J/ SAEE2/1.J/+
04
       KOA
       +0000 S SA.
05
06
0.7
       -3077 0000 0000-
08
   45,008 44 Ja1 (1) 30
09
       Ποθ 44 K±J2 (1).1±P (1).2+
       884 :M=1.
10
11
   46.8H4 :J2=J2+2 P1=P1+1+
12
13
    47.684 :81/K,J/=82/1,J/+
14
       008 47 Je1 (1) 3+
008 47 JeP (1),Ke1 (1),1+
15
16
```

NHCT 11

```
HAR TEK OTSUTSTWUET INFORMACIQ PO ""
01
       MAR TABL 21 81(1.3)*
02
03
       BM4 :M1=0+
04
    76.8WXOA .
    42. HOARP MAJ.
05
       BHB PRO 34($3,35,57,
0 6
87
       NML, MOZU, 8/1/, 51, P1, 51) *
.
       BH4 :13=4.
0 9
    78.884 PAR/1,L/=8/K/-
       NOB 78 L=[1 (1).K=1 (1).3*
18
    TT.BHA PARIS, L/=B/K/+
11
      NOB 77 Luii (1).Kuis (1).50
12
13
       BH4 : 13=13+3+
       #88 77 1±2 (1) N3+
14
15
       BHK .
16
       HAA 1.
```

PARO	SUF RSEAKU	0066 - 012	•
	-		"
	UBOCTHE UE	PFMEHMWF	
	N2	012	1
	INT	012	,
	. ,,,,,,	• • • • • • • •	
		• • • • • • • •	
	TEXT	012	4
	51	012	9
	• • •	012	4
		*****	-
		012	
	56	013	N
	\$4	013	t ·
		013	-
		• • • • • • • • • • • • • • • • • • • •	
	• • •	013	
	RP1	013	4
	RP2	013	٩

	U		
	N	013	7
	58	014	Γ .
	\$		
	, . , . ,	• • • • • • • •	•
	59	014	•
	\$10	014	9
	511	014	k
+			~
	11	014	•
			•
	21,,	014	6
	N1	014	7
		015	A
		• • • • • • • • • • • • • • • • • • • •	
	• -	015	
	22	015	2
	J1	015	₹
		• • • • • • • • • • • • • • • • • • • •	•
	, , , ,		
	NM3	015	5
	NM4	015	A
		015	 7
	_	• • • • • • • • •	•
		016	
	NML	016	1
	NK	016	2
	P		 1
		016	
	м	016	
			5
		• • • • • • • • • • • • • • • • • • • •	_
	P1	016	6
	P1	016	- 6 7
	P1	016	- 6 7
	P1 P2 J2	016 016	6 7 n
	P1 P2 J2	016 016 017	6 7 n 1
	P1 P2 J2	016 016	6 7 n 1
	P1 P2 J2 SA	016 016 017	6 7 n 1
	P1 P2 J2	016 016 017	6 7 n 1
	P1	016 016 047 017	6 7 n 1 2
	P1	016 016 047 017	6 7 n 1 2
	P1 P2 J2 SA I3 MACCUBN G	016 016 047 017 017	6 7 n 1 2 2
	P1	016 016 047 017	6 7 n 1 2 2
	P1 P2 J2 SA I3 MACCUBM G DF STR1	016 016 047 017 017	6 7 n 1 2 2 2 2
	P1	016 016 047 017 017 017 017 017	6 7 n 1 2 2 2 6 n
	P1 P2 J2 SA I3 MACCHBW G DF STR1 STR2 B	016 016 047 017 017 017 017 017	6 7 n 1 2 2 2 6 n
	P1 P2 J2 SA I3 MACCMBЫ G DF STR1 STR2 B STR	016 016 017 017 017 017 017	6 7 n 1 2 2 2 6 6 0
	P1 P2 J2 SA I3 MACCHBW G DF STR1 STR2 B	016 016 047 017 017 017 017 017	6 7 n 1 2 2 2 6 6 0
	P1 P2 J2 SA I3 MACCHBЫ G DF STR1 STR2 B STR	016 016 0173 - 036 0363 - 059 0353 - 064 0647 - 100 1001 - 103 1037 - 113 1133 - 170	6 7 n 1 2 2 2 6 6 6 7 6
	P1	016 016 0173 - 036 0363 - 059 0553 - 064 0647 - 100 1001 - 103 1037 - 113 1133 - 170 1703 - 171	6 7 n 1 2 2 2 6 6 6 6 7
	P1 P2 J2 SA I3 MACCHBЫ G DF STR1 STR2 B STR	016 016 0173 - 036 0363 - 059 0353 - 064 0647 - 100 1001 - 103 1037 - 113 1133 - 170	6 7 n 1 2 2 2 6 6 6 6 7
	P1 P2 J2 SA I3 MACCUBM G OF STR1 STR2 B STR B4 B1	016 016 017 017 017 017 017 017 017 017	6 7 1 1 2 2 2 6 6 7 6 6 2 2
*****	P1 P2 J2 SA I3 MACCHBW G DF STR1 STR2 B STR PAR B4 B1	016 016 017 017 017 017 017 017 017 017	6 7 7 1 1 2 2 2 6 6 7 6 6 2 2 2
*****	P1 P2 J2 SA I3 MACCMBЫ G DF STR1 STR2 B STR PAR B4 B1 B2 B3	016 016 0173 - 036 0363 - 059 0363 - 059 0553 - 064 0647 - 100 1001 - 103 1037 - 113 1133 - 170 1703 - 171 1713 - 323 3233 - 352 3525 - 353	6 7 n 1 2 2 2 6 6 6 6 7 6 2 2 2 7
****	P1 P2 J2 SA I3 MACCHBM G DF STR1 STR2 B STR PAR B4 B1	016 016 017 017 017 017 017 017 017 017	6 7 n 1 2 2 2 6 6 n 6 2 2 2 ?

СТАНДАРТНЫЕ ПРОГРАММЫ - 79 -0055) 00 31 0000 4575 0056) 00 33 8000 5143 0057) 00 23 0000 5231 0060) 00 15 0000 5250 0061) 01 26 0000 5354 0062) 90 05 0000 5414 0063) 91 66 0000 5451 0064) 00 24 0000 5641 0065) 90 34 0000 5726 0066) 00 14 0000 6022 0067) 00 17 0090 6145 0070) 00 30 0000 6320 0071) 00 21 0000 6871 0072) 00 22 0000 6440 0073) 00 27 0000 6471 0074) 00 16 0000 6555

ТАВЛИЧА МЕТОК

:	METKA	ADPEC META	11 :	METRA	ADPEC METKU :	METKA	ADPEC METKH	: METKA
:	1	3979	:	10	4073 :	33	4403	: 44
:	2	3731	:	11	4076	34	3641	: 45
:	3	3761	:	12	4102	35	4317	: 46
:	4	3771	:	13	4105	36	4406	: 47
:	5	4014	:	14	4122	37	4333	: 76
<u>;</u>	6	4021	:	15	4123	38	4402	77
:	7	4034	:	16	4136	40	4345	: 78
;	8	4156	:	17	4144	41	4354	: 99
:	9	4054	:	18	4202	42	4512	:

NYCKOBOR ARPEC 0037

HAMRTE CBOSORHA C ARPECA 7015_

```
- 8T -
   NUCT 01
21
        610K 2+
        MAC G(120 4.30).0f(120 30.4).STR1(60 2.30).
12
        STR2(90 3,30),B(30),STR(60 30,2),PAR(360 4,N2),
13
24
        X(30),4(60 2.30),T1(90 3.30),T2(150 5.30),
        H(1440 30.48), H1(16), Y(30), T(30), C(50 2.30)+
15
96
     1.884 :S1=1 S=8 84=840*
        BNB PRO 166($1,5,61,51,G/1,1/,B4)+
9.7
        884 N#8/1/ U#8/2/ N2#8/3/ Z1#8/4/ N1#8/5/
28
        N3=8/6/ J1=8/7/ 22=5/8/ N3=8/9/ RR1=8/10/
29
10
       RR2=5/11/+
       BU4 T3=0 H1=0=
11
       BH4 : 11=0+
12
    19.884 : [1=[1+1 X/]/=1 V/]/=STR2/1: [/+
13
14
       Bun 115+
       844 T/1/=s+
15
       BU4 H/1, I/=0 H/2, I/=0 T1/1, I/=0 T1/2, I/=0 T1/3, I/=0
16
   лист в2
31
        T2/1:1/=0 T2/2:1/=0 T2/3:1/=0 T2/4:1/=0 T2/5:1/=0+
    23,844 H/1,J/=0*
2
       NOB 23 J#1 (1) 48+
113
14
       008 19 1=1 (1) N+
    24.544 H1/[/=0+
15
       ∏08 24 1#1 (1) 16€
16
0.7
       ECAN : 21 =3 TO 31+
98
       BH4 : 21=21.4*
29
    25.8MR 111+
10
       MOB 25 40+
11
       BH4 : 3=4+
12
       BUS PRO 40(21,5,21).
       BUS PRO 26(M1.5)+
13
    26.884 :5/1/=STR1/1.1/.1000+X/1/.100+Y/1/.
14
. 5
       ПОВ 26 I=1 (1) N●
       HAR NA BPH TO,:5,:B(N)*
16
   JUCT 03
01
       ECAN : Z1 =2 TO 29+
2 0
       BW4 S=H1/15/:H1/14/:4+
0.3
       5WT 116*
9 4
       844 H1/1/=5+
       HAR NA BPM S.
13
25
    25.884 S=H/I,J+14/:H/1,J+13/:4+
37
       848 118*
98
       BH4 H/I,J/ms B/K/ms+
       #08 28 J=1 (16), K=1 (1), 3+
9
10
       BH4 $1=STR/1,1/+
       HAR HA BPH :$1.8(3)+
11
12
       MOS 28 [=1 (1) No
13
    29.884 4/1,1/=0 M/2,1/=0 T1/1,1/=0 T1/2,1/=0 T1/3,1/=0
```

T2/1,1/=0 T2/2,1/=0 T2/3,1/=0 T2/4,1/=0 T2/5,1/=8.

ECNH : X/1/)2 TO 30+

*** T/1/=T/1/-To-

14

15

RVCT 54

```
33.884 H/I,J/=0 H/I,J+1/=0 H/I,J+2/=0+
91
       ПОВ 30 J=14 (16) 46+
3 2
13
       Πο8 29 [=1 (1) N*
14
       Bu6 H1/14/=0 H1/15/=0 H1/16/=0 H1=0 T3=T3=T0+
25
    31.8um 111+
16
       NOB 31 41+
       BN4 B/1/=T0 B/2/=J1 B/3/=41 B/4/=22 B/5/=71
77
       5/6/=U 9/7/=N 5/8/=41 5/15/=RR1 5/15/=RR2+
15
       844 : S1=1 S2=3 94=2384*
19
10
       BHB PRO 166($1,$1,$2,$1,$TR1/1,1/,84).
11 111, NOT OSNOWNOU BLOK+
12
       544 T0*#18*
13
       BH4 : 12 = 0 +
    45.884 : I2=12+1*
14
15
       ECAN :X/I/ )=3 TO 49+
       ЕСЛИ Т/[/ )=ТО ТО 49●
15
   лист о5
21
       Bu4 [1=12 S1=X/I/ T0=T/I/+
    49, 008 45 [#1 (1) N#
12
       ECNH : $1 =2 TO 58+
23
        Bu4 :52=2+
34
95
       8 Mm 112 .
       8W4 : 12=11+
15
97
    50.884 :S=STR1/2,1/+
       NOB 50 [=[1 (1),1+
99
17
       ЕСЛИ :S =0 ТО 52+
10
       584 :11 = S+
    51.844 :S1=X/I/ S=y/I/ Y/I/=S-1+
11
12
       nos 51 (=11 (1).1+
13
       ЕСЛИ :S )1 TO 52+
       844 :52=4+
14
15
       5un 112.
15
       115 50 +
   лист об
11
    52.884 : 11=12+
    53.884 : S=STR2/1,1/+
2 0
23
       ПОВ 53 [=[] (1),1●
14
       ECAN :S =0 TO 110.
15
       544 :12=0 ·
    54.8WN 113+
36
37
       ЕСЛИ : I1 ×0 ТО 110+
    55.544 : $1=X/1/*
18
       ПОВ 55 [=[] (1),1 =
ЕСЛИ :S1 )1 ТО 56+
19
10
       BH4 : $2=3.
11
12
       TEP 57*
13
    55,884 :S2=5.
14
    57.5WT 112+
15
       75P 34+
16
```

```
лист от
21
        ЛОВ 58 (#11 (1),1+
ງ 2
        ECRM :55 =0 TO 40+
23
    59,844 :S7=X/I/*
24
        ПОВ 59 [=55 (1),1*
        ЕСЛИ :S7 #1 TO 50 *
ЕСЛИ :S7 #4 TO 50 INA 72 *
15
15
    60.ECMN :54 =0 TO 52+
37
    61.844 :56=9/1/*
25
39
        MOS 61 [=71 (1),1*
    ECAN :35 =0 TO 56+
52.844 :52=1+
1 2
11
12
        548 112.
        ECNU : $5 =0 TO 55+
13
14
        Bu4 12=11 11=55.
15 63.844 :S1=X/I/ Y/I/=Y/I/+1 S5=STR1/2,I/+
16 R08 63 I=11 (1),1+
   AACT 08
        ЕСЛИ :S1 =1 ТО 54 €
21
        884 :52=1+
2 0
03
        5 MM 112+
        544 I1=35+
24
15
        ECAN :55 )0 TO 43+
0 6
    64.884 |1=12+
17
    65, ECMU : $5 #0 TO 110 INA 57*
    56.8W4 :52=4+
38
99
       Bun 112+
10
    57.BH4 :12=0+
11
    68,8yn 113•
12
       ЕСЛИ : I1 =0 TO 110+
13
    59,884 :S18X/1/*
14
       NOS 69 1#11 (1).1*
15
       ЕСЯИ :$1 =5 ТО 70•
16
       Bu4 :52=1+
.....
   ANCT 09
        ПЕР 71 €
11
    70.844 :52=4+
2 (
    71,8WM 112+
23
74
        TEP 48.
    72.ECAN : $5 =0 TO 74*
15
    73.844 :$6=4/1/*
16
        mos 73 t#t1 (1).1*
. 7
        ESAN :55 #6 TO 78*
18
    74.834 :52=30
9 )
1.
        9un 112.
        344 11=55+
11
    75.884 : $1 = X/I/ Y/I/= Y/I/+1 $5 = $TR1/2, I/+
12
       TOB 75 I#I1 (1).1+
13
```

ECAM : 51 (5 TO 110+

B44 :52=3+

14

15

ЛИСТ 10

```
884 11:55 ·
11
        ECRN :55 #0 TO 110 tha 75+
2 (
     78.884 :52=5.
23
        Bun 112+
14
95 110.BMX *
16 112. NOA RESISTRACIO PEREHODA.
    79.884 X/1/=52 $=T0-T1/1,1/
07
75
        T1/1+1/=T0 T2/J,1/=T2/J,1/+5*
ŋ 9
        ПОВ 79 J=S1 (1).1+
10
        ЕслИ :51 )1 ТО 53+
        BW4 : $4#1#
11
        5un 114.
12
13
        ЕСЛИ : 11 #J1 TO 80 INA 81*
    80.844 T3 # T0 +
14
15
    81.ECNM : $2 )2 TO 82*
        BW4 M1=M1+1 H/1, I/=H/1; I/+1 -5=T0=T1/2, I/+
1 5
    JUCT 11
        Bu4 : 54=2+
01
22
        89# 114+
        Bun 116+
33
14
        BH4 T/1/=10+5+
95
        TEP 85 *
25
    82.8W4 M/2,1/#M/2,1/+1 T1/3,1/#T0 F/1/#T/1/-T0+
        166 48U
2.7
    83.8CRN : S1 )2 TO 86+
9.8
09
        Bu4 T1/2,1/=T0+
10
        ECAN :32 )2 TO 85.
11
        Bun 115+
15
        BH4 T/1/=T0+5+
13
        ЕСЛИ : I1 =J1 TO 84 INA 88+
14
    84.884 S=(T0-T3).60+
15
        BU4. : $4 = 0 +
        848 114*
15
   AMCT 12
1 0
        SEP 88.
2 0
    85.Bu4 H/2,1/=H/2,1/+1 T1/3,1/#T0+
3
        Bun 115.
14
        BU4 T/1/*5+
15
        REP $8+
96
    86.ECHH : $2 )1 TO 88+
17
        BU4 T/1/=T/1/+TO S=(TO-T1/3:1/).60+
38
        BH4 :54=3+
9
        BMU 114+
10
        ЕСЛИ : I1 #J1 TO 87 INA 88+
11
    87.844 3=(T0-T3).4g=
12
       BW4 : $4 = 0 =
13
       BWR 114.
14
    88. NOB 79 I=I1 (1).1*
15
       BWX .
16 113, HOR KTO SLEDU # [Jo
```

лист 13

```
ECAN :12 =0 TO 90+
11
    89.884 :S=STR2/1.1/+
12
       nos sy [=[1 (1).1.
ŋ 3
       ECAN : 5 =0 TO 97*
04
95
    90.Bu4 : 12 = 12 + 1 =
    91.884 : C/1.1/=1 C/2.1/=11+
96
0.7
       #OB 91 [=[2 (1).1+
9 9
    92.844 S=C/1,1/ S2=C/2,1/*
       MOB 92 [=12 (1),1+
19
    93.844 :S1#S+STR2/2.1/+
10
11
       MOB 93 [=$2 (1),1*
    95.8W4 I1=STR2/3,I/+
12
13
       TOB 95 [=S1 (1),1*
    96.884 5=X/1/+
14
15
       mos $6 [=[1 (1),1+
       ECHH :5 #2 TO 97 [NA 103+
16
    NACT 14
    97.884 S1#S/1:1/ S#C/2:1/*
21
        nos 97 [*12 (1).1+
0.2
     98.884 S2=STR2/1:1/+
03
        nos 98 (1),1+
9 4
        ECRN : S1 )=52 TO 101*
05
96 100.BW4 : C/1, I/#C/1, I/+1.
        nos 100 1*12 (1).1*
37
        DEP 92.
15
99 101.ECNN :12 (=1 TO 102+
        Bu4 : 12 = 12 - 14
1,0
        TEP 97*
11
12 102.884 : I1 = 0 +
13 103,8WX *
14 114. HOD GISTOGRAMMIROWANIE*
        если :Z1 )4 ТО 119+
15
       EGNM :54 =0 TO 187+
16
    NUCT 15
        BN4 :34=54,16-15+
91
 02 104.8W6 H/1,J+13/=H/1,J+13/+1 H/1,J+14/=H/1,J+14/+S
        H/1,J+15/=H/1,J+15/+5.5 $3=H/1,J/+
 03
        MOS 104 JES4 (1).1.
 94
        ECRM : 21 )1 TO 119.
 25
        544 S#S:53+(1:2)+
 96
        BUB PRO 26(5:33)*
 17
        ECNH : $3 )12 TO 105*
 0.8
        BW4 :53=53+54#
 0.9
        NEP 106-
 10
 11 105,884 ;$3 = $4 + 12 +
12 106, BW4 H/I, J/4H/I, J/+1+
        MOS 106 J=$3 (1),1+
13
        пов 104 1:11 (1).1.
 14
        ΠΕΡ 119 •
15
16 167.844 H1/14/=H1/14/+4 H1/13/AH1/13/48
```

- 86 лист 15 H1/16/2H1/16/+5.5* 11 ECAM : 21 31 TO 119. 2 2 BW4 S=5:H1/1/+(1:2)+ 0.3 9.4 546 PRO 26(5.53) . ЕСЛИ : \$3)12 TO 10 ... 15 95 105,884 H1/J+1/#H1/J+1/#1+ 17 ROB 105 Jas3 (1).1. 19 ## 119 # 39 109.884 H1/13/aH1/13/+1+ 13 11#.8WX . 11 115. TOB WREMA BEZOTKAZNOJ RABOTY+ BW4 :5=3.11-2. 1.2 13 23.884 P=DF/1,1/ P1=P4R/1,J/ P2=P4R/1,J+1/ P3=4/1,1/+ 738 20 1#11 (1),J=5 (1),1* 14 1.5 840 P17. BUX . 1.6 DUCT 17 91 116. HOS WRENG WOSSTANONLENIGO BH4 :34=3.11-2+ 2 (BU4 SUH=0-0.3 21.BW4 PEDF/1,3/ PISPAR/JiK/ PZSPAR/JiK+1/ PERS/Jil/+ 26 BWN 117. 25 BH4 SUN=SUN+S+ 35 NOS 21 J=2 (1) N3+ 17 BH4 \$=\$UM:40+ 18 nos 21 [=[1 (1), k=54 (1),1* 9 13 BHX 4 11 117. HOR SLUAAJNAR BELTAINA* 544 : P#P-1 . 12 544 P4=0* 13 SUR 126. 14 546 PRO 37(F)+ 15 **MEP 120** • 16 ANCT 18 BEP 121. 31 **J 2 MEP 121.** 13 8:4 Pl*P1-1. 2 4 22 BUR 126+ 15 B44 P4#5* 15 BMU 156+

```
17
       B44 $=5,P3 $0=(5;P1)*P1.EXP(P1-5)+
25
       ЕСЛИ Р4 158 ТО 22•
17
       344 S#$: P2+
17
        17P 12 14
11 129 546 $#(~LN($):P1)'(1:P2)*
1?
       ПE≈ 122●
13 121.8W4 P4=P4+S+
14
       341 126 ·
       MOB 121 6.
15
       BH4 $4(P4-3).2'(1:2) $#$-(3,8+8,8,8):188 $48,P2+P1+
1 6
```

NUCT 19

```
ECAN : P #1 TO 122*
21
       844 S#13'S*
12
13 132.88X .
14 118. HOA OKRUGLENIE AGA GISTOGRAMMY*
       544 $3=14
15
       ECAN $ (10 TO 1234
36
37
       BUS PRO 26(5:51) .
18
       BNB PRO 25(51,5).
19
       REP 125+
10 123,884 51=5-(1:2)+
11
       538 PRO 26(51,52)+
       ECAN :52 10 TO 124+
12
13
       BH4 $=$.10 $3=$3+1+
       MEP 123+
14
15 124,844 3=5,10 $3=53+1+
       BUS PRO 26(5:51) .
16
```

SACT 20

```
BUS PRO 25($1.5) .
11
12
       BW4 3=5:10:53+
03 125,8MX .
94 126, HOE DAT41K+
95
       KOS
       +3400 RR2 RR1.
95
       -3300 7002 7002.
97
       -7000 RR1 RR2.
95
       -3300 7004 7004.
9
       +7200 7011 0040.
10
       -7500 0040 0041,
11
12
       +1200 0041 5.
13
       +1600 RR2 RR2.
       -3077 0003 0000,
14
       +7777 7777 7600.
15
15
       +5271 3170 2400.
```

NUCT 21

21 +6234 6345 5200+ 22 BMX + 23 HA4 1+

	- 00 -	
5 TOK 2 .		
PACRPERE	LEHNE HAMATH	
•		
PABOANE RAERKI	0066 - 0143	
RPOCTME R	EPEMENHWE	
N2	0144	
	0145	
\$	0146	
B4	0147	
N	0190	
U	0131	
Z1	0152	
N1	0153	
NO	0154	
J1	0155	
	0136	
	6137	
RR1	0160	
RR2	0161	
73	0162	
M1	0163	
11	6164	
	0165	
	0146	
	0167	
	0170	
S 5	0171	
s7	0172	
\$4	0173	
\$3	0174	
P	0175	
P1	0176	
P2	01//	
	0200	
	0201	
	0202	
79	0203	
35		
HACCH	и	
6	. 0204 - 0373	
De	. 0374 - 0543	
2701	. 0564 - 0657	
5182	. 0660 - 1011	
3186 11,1	. 1012 - 1047	
510	1850 - 1143	
PAG	1144 - 1713	
Y	1714 - 1751	
*	1752 - 2045	
71	. 2046 - 2177	
12	. 2208 - 2429	
м	. 2426 - 5265	
H1	. 5266 - 5305	
V	. 5306 - 5343	
1	5344 - 5481	
C		

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		4147	Al	4372	105
TKA	AUPEC VETKM ;	Marka	ADPEC NETKU :	METKA	ABPEC HETKH ;	HETK
			TABRULA	METOK		
		0374)	00 22 0001 0463			
		0073)	00 21 0001 0414			
		0072)	00 33 0001 0326			
		0071)	00 34 0001 0232			
		8870)	00 30 0001 0161			
		0167)	00 25 0001 0122			
		0966)	00 05 0001 0064			
		0065)	00 04 0001 0022			
		00641	00 01 0000 7734			
		0063)	00 37 0000 7725			
		0062)	00 24 0000 7640			
		0061)	00 15 0000 7534			
		0040)	00 26 0000 7513			
		0057)	00 40 0000 7451			
	- 07 -	0056)	00 23 0000 7432			
	- 89 -	00551	01 66 0000 7242			

СТАНДАРТНЫЕ ПРОГРАММЫ

;	HETKA	ANPEC YETKN	, Mg	TKA	ADPEC HETKU	: METKA	ABPEC HETKY	;	HETKA	ADPEC METKU	:
1	,	,	:	 57	6143	: 81	6372	:	105	6675	:
•	1 0	5570		58	6145	: 82	6406	:	106	6675	:
•	20	6752		39	6157	: 83	6412	:	107	6715	:
:		7005	•	50	6172	84	6424	:	108	6731	:
:	2 1 2 2	7073		51	6174	85	6431	:	109	6741	:
•	23	5615		5 2	4205	. 86	6436	:	110	4330	:
•	24	5625		63	4213	: 87	6447	1	111	6024	:
:	25	5634		5 4	4236	: 88	6453	:	112	4333	:
•	26	5644		65	4237	: 89	6470	:	113	6443	:
	28	5575		56	6241	: 98	6901	:	114	6613	:
•	29	5734		67	6243	: 91	6302	:	115	6745	:
;	30	5763		48	4244	. 92	6312		116	6777	:
	31	5777		69	6247	93	6522	:	117	7061	:
÷	ÁÀ	6031		70	6262	95	6532	:	118	7154	:
:	49	6047		71	6263	96	6541	•	119	6742	:
	50	6055		72	4245	97	6352	1	120	7113	:
•	51	6047		73	4247	96	6542	1	121	7124	:
÷.	52	6111		74	4300	100	6573	•	122	7193	:
:	53	5112		75	4303	101	6503	•	123	7165	:
:	54	4124		78	4325	102	6507	•	124	7176	:
:	55	5127		79	6336	103	6510	:	125	7207	•
:	36	4342		90	6371	104	6524	•	126	7210	:
	20	4472	:	7 4			V-14	•		• • • •	•
÷			•								

NYCKOBON ARPEC 0037

ПАНЯТЬ СВОБОВНА С АПРЕСА 0514

```
- 91 -
   DACT 31
       HAG STR1(60 2.30) STR2(90 3.30) 8(30),
       .5 10K 3*
11
       STR(60 30,2), PAR(360 4.M2), X(30), M(60 2.30),
12
       T1(90 3.30),T2(150 5.30),H(1440 30.48),H1(15),
13
14
       84(8 2.4),
       81(6 2.3),82(185 62.3),83(8 2.4)*
95
     1.844 : $1=1 $3=2 HO1=0 84=2386
96
97
        $8=202 $2=8 [NT=0+
       BAB PRO 156($1,401,53,$1,$TR1/1,1/,84)*
99
       544 T0=5/1/ J1=6/2/ H1=5/3/ Z2=8/4/ Z1=8/5/
09
13
       J=8/6/ N=8/7/*
       544 (N2=3,N $3=(2,H+2).3 $=$3+1*
11
12
       BW4 :511=5+8*
13
       BNB PRO 33($1,58,HO1,82/1,1/,51,51,51,53,
1 4
       M01,84/1,1/,51,51,511,52,
15
       HO1, B3/1,1/, $1,$1,5,$2).
15
   SUCT 02
    32.884 $1=H/1.1/+H/2.1/ $2=H/1.15/:H/1.14/ $3=T2/1.1/:T0+
91
       nos 32 1=Ji (1).1*
       BW4 S=M1:TO B/1/=S1:T0.100 B/2/=B/1/.55 B/3/=B/1/.74
12
03
       S4=H1/15/:H1/14/ S7=(1-S3).100+
94
       HAR NA BPH TO.M1.5.51.8(3).52.53.544
25
       BUS PRO 26(5/2/:8/2/).
16
       BNB PRO 25(8/3/.8/3/).
77
       548 PRO 26(52,52).
) 3
       5/8 PRO 26(54,54)+
29
       HAR TEK
10
                              FFEKTIWNOSTI
       ( 20) PARAMETRY
11
       FÜNKCIONIROWANIQ""
12
       C 2014 H T O M A T I Z I R O W A N N O J
13
          SISTEMY UPRANLENIQ(').
14
       HAT TAS 10 ZNA 50 B(INT),41 :U-
15
       MAR TEX '( 35) AHTY( 27)KORBINATA( ))
15
   ANCT 03
       HAR TAS 10 ZNA 40 B(INT),27 B3(2.4),
91
       . B(INT),27 $4(2.4)*
2
       HAR TEK "".
13
                               (*125)
       HAR TEK ( 113)TABLICA
94
             : ( 20): ( 24)P A R A H E T R Y( 12)N A
95
        D E V N D S T [( 25):"
25
            :( 20):(-97):*
27
             : ( 20):
                      41SLO OTKAZDW
                                      : 41SLO WYNUYDEN
95
       NYH : ( 6): ( 6): SRED+ : ( 6): ( 6): W TON 415LE( 5):
19
            :( 20):(-20):
                              OSTANOWOK( 6):( 6):( 6):NEE
10
      SRED- : SRED- : SREDNEE HRENG
```

: (20): (5): (13): 12-24 OTKAZON DRUGIN: NARA- :

: (-20); *

LEMENTOW SISTEMY : BOTKA : PIG! - : PREBY-: WREME :

INEE

: MAIMENOWANIE (3): ZA : ZA BOD

11

12

13

14

15

16

KO F- INRENG INCE

UREMR : (5): (6): (5): (5): (6):

(4):

NACT 04

```
: 100
                          LEMENTOW
                                                  : (-13): (-20):
91
       HAS TEK :
         NA :ENT : WANTE : NEPRE-: HOS- : ORGA- : POISKA: BEHON-:
12
        :P/P : ( 6) SISTEMVE 7) : 4450W : ( 6) : ( 6) :
                                                  2.4
13
                   :OTKAZ .: TEHNI -: W IS- : RYWNOJ:STA-
34
          ZA SOD
95
       NIZA- :NEIS- : TA,
             :( 20): KSP-: 3-H : 4-H : 100 :(-13):
115
                                                :PRAW+ : HIN. :'
        4AS. : 4ESK. : PRAWN. : RABOTY: NOWLE -: CIT
97
             1 ( 20): LUATA-: SHEN- : SHEN- : 4450W : 3-H : 4-H : ( 6):19-
38
       SOSTO-: 4AS. : VIQ. :REHON-:NOSTI: ( 6):'.
19
                    :( 20): CII :NYJ : KSP+:SHEN+ :
       HAR TEK :
10
       SHEN- : ( 5): POLXZ.: QNII, : ( 6): MIN. :TA
                                                    ; MIN, :( 6):'
11
             :( 20):( 5):REVIM :REVIM :LUATA-:NYJ
                                                      :NYJ
12
       ( 6):( 5); 4AS. :( 6):( 6): HIN. :( 6):( 6):
13
        : :( 20):( 5):RABOTY:RABOTY: CII. :REVIN :REVIN :
14
       ( 6):( 5):( 6):( 6):( 6):( 6):( 6):( 5):'
15
             1 ( 20): ( 5): ( 6): ( 6): ( 6): RABOTY: RABOTY: ( 6): ( 6):
16
....
   SE TORR
       ( 6):( 5):( 6):( 5);( 6):( 6):'
11
        : (-123): **
0.2
       HAR TEK : 1 :( 10)2( 9):
                                   3
23
                                                           14
                                                     13
                                             12
         7 : 8 : 9 : 10
                                  :
                                      11
14
       15 : 16 : (*1231: **
95
       ECAN :22 =1 TO 35.
95
    33.ECNM :STR2/1+I/ )1 to 35+
27
       nos 33 1=1 (1) No
15
       584 5/4/=0 5/5/=0 B/6/=0+
99
    34.884 8/J+2/=5/J+2/+T2/2.1/.PAR/J.K/:H1/14/.60*
13
       005 34 K#3 (3).[*1 (1) Ne
11
       544 S=B/J+2/4
12
       545 PRO 26(5.5).
13
       BU4 B/J+5/=50
14
       nos 34 J=2 (1) 4.
15
       HAT NA SPH 5/4/(3).
16
  AUCT 05
       HAR TEK ( 51)-( 6)-( 5)-( 20)-( 6)-(')+
11
       HAN TAS 2 ZNA 5 :INT, 21 82(2.3), 7 8/1/, 7 :8/2/.7 :8/3/.7 8(INT),
12
       7 B(INT),7 B(INT),7 :$2,7 $3,7 B(INT),7 B(INT),7 :$4,7 :8/7/,
23
       7 :8/8/.7 :8/9/.
14
       HAD TEK :---: (-20): (-6): (-6): (-6): (-6): (-6): (-6): (-6):
15
       (-6):(-6):(-6):(-6):(-6):(-6):/*
15
       NEP 34
37
    35, HAR TEK ( 51)-( 6)-( 6)-( 20)-( 6)-( 13)-( 6)-( 6)-(*)+
25
       HART TAS 2 ZNA 5 : INT, 21 82(2.3), 7 8/1/, 7 :8/2/, 7 :8/3/,
9
       7 8(INT),7 8(INT),7 8(INT),7 :52,7 53,7 8(INT),7 8(INT),
10
       7 :54,7 B(INT),7 B(INT),7 S(INT)*
11
       HAN TEK :---: (-20): (-6): (-6): (-6): (-6): (-6): (-6):
12
       (-6):(-6):(-6):(-5):(-6):(-6):/*
13
    36.884 9/J/#1:T0.T2/J,T/+
14
       nos 36 J=1 (1) 5.
15
       844 S=X/I/ S1=STR/1,1/+
16
```

```
nuct 07
```

```
75.884 8/4/28/3/+1-1:70.71/1:1/4
31
       nos 74'J=S (1).1.
12
       BW4 8/6/=1-8/1/ 8/7/=1-5/2/ 8/8/=5/7/-8/1/+
33
       HAT NA SPH : $1.8(8)4
94
       844 51=4/1, [/ 52=51:T0:100 8/1/=$2.55 8/2/=$2.74 $3=4/2, [/
25
       $4#$3:T0.100 8/3/#$4.55 8/4/#$4.74 8/9/#1:H/1.1/.T2/1.1/
16
       $5#1:TO.T2/1:1/ B/6/#H/1:31/:H/1:30/ B/7/#H/1:15/:H/1:14/
37
       5/8/=60.72/2:1/:N/1:1/ S6=STR1/1:1/ S8=8/8/*
15
       HAT NA SPH $1,52,8(2),$3,$4,8/3/(2),8/5/+$5,8/6/(3)+
29
    77 884 5=5/J/.1*
10
       BUB PRO 25(5:5).
11
       544 9/J/*S.
12
       nos 77 J=1 (1) 5+
13
       544 51/1:1/=82/L:1/ 51/1:2/=82/L:2/ 81/1:3/=82/L:3/
14
       81/2,1/=82/L+1,1/ 81/2/2/=82/L+1,2/ 81/2,3/=82/L+1,3/+
15
       ЕСЛИ : Z2 =2 ТО 37€
16
   NUCT 08
```

```
HAR TEK ( 107)-( 6)-( 6)-(')+
11
       HAN TAB 2 ZNA 5 :56,21 81(2.3),7 52,7 :8/1/,7 :8/2/,7 54,
72
       7 :8/3/.7 :8/4/.7 :8/5/.7 $5.7 :8/6/.7 :8/7/.7 :8/8/.
13
       7 8(INT) . 7 8(INT) . 7 8(INT) .
14
       nep 35.
15
    37.844 S#$8.PAR/J.K/ 8/J+7/#5.
16
       5/16 PRO 26(5/5).
77
       BH4 B/J+10/=5.
98
       nos 37 J=2 (1) 4.
9
       HAT NA SPH 8/9/(3).
10
       HAN TAB 2 ZNA 5 :56,21 51(2,3),7 52,
11
       7 :8/1/,7 :8/2/,7 $4.7 :8/3/,7 :8/4/,
12
      7 :8/5/.7 $5.7 :8/6/.7 :8/7/.7 :8/8/.7 :8/12/.7 :8/13/.7 :8/14/.
13
    39. 008 34 K#3 (3).L#3 (2).1#1 (1) N*
14
      15
      BH4 5/1/=57.55 5/2/=57.74 8/9/=0 5/10/=0 5/11/=0+
16
```

NACT 09

```
11 HAT NA 5PM S7,8(2) = 

12 BMS PRO 25(8/1/,8/1/) = 

13 BMS PRO 26(8/2/,8/2/) = 

14 BMS PRO 26(8/2/,8/2/) = 

15 BMA 5/3/±TO 5/4/±Z2 5/5/±Z1 B/7/±N B/14/±$7 = 

15 BMA :S1±1 S±4 = 

16 BMS PRO 156(S1,S1,S,S1,STR1/1,1/,94) = 

17 HAA 1 =
```

РАСПРЕВЕЛЕНИЕ ПАНЯТИ

PA604H	Ē	Я	4 E	a	Ķ	И		0	0	5	6		-	0	0	7	6	
nı	0	C 1	' W	E	- (۸į	E P	E	M	E	H	H	u E					
N 2	?										,	٠		0	0	7	7	
5.1						. ,	, .		•		•			0	1	0	0	
s:						• •			٠	•	٠			•	ı	_	-	
M C	1			•	٠			•	•	•	•	•	٠		1			
5 (•			٠	•	•		•	٠	•	٠	•	٠	-	1			
s:	}	•		•		•		-	•		٠	٠	•	_	1			
\$ 3	2	•		٠	٠	•	٠.	•	•	٠	٠	٠	٠	-	1			
-	T p		٠.	•	•		٠.		٠	٠	٠	٠	٠		1			
T (-		• •								٠	•	٠		1			
J:	-		• •				• •		٠	•	٠	٠	٠	_	1			
M :		•					• •		٠	٠	٠				1			
2 3	_	•			٠		• •		•	٠	٠	٠			i			
2 :	-		• •				• •		٠	٠	٠				i			
J.			• •				• •		•	•	•	٠	-	-	i	-		
N S		•	• •	-	-		• •	-			-	٠	•		i			
_	ıi	٠			:		• •			:	٠	:	-		ì			
5 .			• •								•	•	-	_	i			
S .	-	•	• •	•	•		• •		:	•	•		:		i			
s:		•	• •	•	•		• •			•	•		-		ī			
S		•					• •								ī			
•	•	•	•	٠	•	•	• •	•	Ĭ	٠	•	٠	•	•	_	_	•	
		H A	ı Ç	c	'n	8 (4											
.2	1 R						_	0	1	2	4		-	9	2	1	7	
_	t R	-		:				_	2	_			-	0	3	5	1	
3					-				3				-	0	4	0	7	
	ĪŘ				-			Ö	4	1	0		-	0	5	0	3	
	l R			-				0	5	0	4		-	1	2	5	3	
x			٠.				٠	1	2	5	4		-	1	3	1	1	
	• -			•	•	-		-	-	-	-	-		•	-	•	•	
H	٠				٠		•		3				-	_	4			
T:	l				٠	•	•	_	4				•	_	5			
T ;	2	•	٠.	٠	•	٠	٠		5				•	-	7	_	-	
H	•	•	٠.	٠	٠	٠	•		?				-	•	6	_	_	
H;	l	•		٠	•	٠	•		ě				•	-	6		-	
S (-	٠		٠	•	٠	٠				6		•		5		-	
B :	-	•	• •	•	•		•	•	_	_	6		•				3	
5 :	-	٠	• •		-	٠			•				•	-	i			
B :		٠		٠				-	1				•	-	_		5	
	T A											-	r					
) 5				0	_		6			0	-	-	6				
-) 5				7			3		-	0	•	-		7			
_) 5				0	_	_	. 5			0	_	-		0	-	-	
	•				0	_	_	6			0	-			1		_	
	Ì				0			. 4		_	0	•	-	-	1		_	
-) 6	-			0	_	_	7		-	0	•	-		3			
) 5				3	_	_	3		-	0	-	•		4			
	5				2	-	_	0		•	0	•	-		4			
	16				0		_	4		•	0	-	_		5			
• •	1	-			0		_	1			0	•	-		7		_	
	6				9			2		•	0	•	-		7			
	7				9		_				0	_	-		0			
0 3	7	1	•		0	U	ı	5		U	U	J	•	9	U	•	•	

				TABRILL	HETOK			
:	HETKA	ARPEC HETKH	: HETKA	AMPEC YETKH :	METKA	ARPEC HETKH	: METKA	ADPEC METKH :
:	1	5220	: 34	4043 ;	37	6440	76	6277 ;
:	33	5267 1059	: 35 : 36	6201 : 6255 :	38	6511	; 77	6370

NYCKOBON ARPEC 0037

MAMRTE CBOSOMHA C AMPECA 0242

```
JUCT 01
```

```
6/10K 4.
0.1
       HAC STRICKO 2.30), STR2(9h 3.3h), B(3r),
02
       STR(60 30,2) PAR(360 4.N2), Y(30), M(60 2.30),
03
       71(9n 3.3n), 72(15n 5.30), M(1440 3n.48), M1(16),
0.4
0 5
       81(6 2.3),82 186 A2.3),83(8 2.4).
     1.884 :S1=1 INT=0 S3=3 84=2384.
0.6
       BND PRO 146(51 INT, 53, S1, STR1/1, 1/, 843+
0.7
       BN4 TO=8/3/ Z2=8/4/ Z1=8/5/ N=B/7/ S7+8/14/+
08
09
       384 : N2=3 N.
       HAR TEK ( 82)TABLICA
                                /PRODOLVENIE/ (=118)
10
             :( 17)W R E M Q
                               PROIZWOOSTWENN
11
              PRISTOQ
                                1 2 - Z A( 21):
12
13
              :(-111)
              : ( 2215 0 8 5 T W E N H V H
14
                                             OTKAZOW,
15
       445. ( 19) OTK ZOW DRUGIH LEMENTOW :
16
              : (-:11)
   SHCT 02
       : :( A): ZA GOD :( 13)W T O H 4 I S
W R F M R( 14:( A): ZA GOD :SKEDN.; 
: : ZA (+13):(-62): ZA :(-13):DLT : 
P/P: 100 : 3-H : 4-H :OPGANIZACII REMONTA:
0.1
                                                       4 I S L E
02
03
04
05
       POISKA NEISPPANNOSTI: ( 5) REMONTA ( 8): 100 : 3-H : 4-H :
06
       TELX- : ..
07
                     :4450W :5MFH- :5MEN- : (-41): (-20) 4450W :
       HAT TEK :
0.8
       SMEN- : SMEN- : NOSTX :'
0
                            :NYJ : ZA :
             : KSP-:NVJ
                                               ZA GOD
10
        ZΑ
                             : ZA : ZA GOD : KSP-:
                 ZA GOD
11
       NYJ
              ':-VUNVW; LVP:
12
             :LUATA-: REVIM : REVIM : 100 : (-13): 100 : (-13): 100
13
        : (-13): LUA+A-: REVIH : PEVIH : DEN- :
14
             : CTI :RABOTA:RAROTY:4850W :3-H
15
       4AFOW : 3-H
                     :4-H :4ASOW :3-H :4-H : CII/:
16
       RAROTY: RAMOTY: NOGO :'
   NºCT 03
             : ( A): ( 6): ( 6): KSP-: SMEN. : KSP-:
0 1
02
       SHEN. : SMEN. : KRP-: SMEN. : SMEN. : 445. : 445.
03
        445. : PRn- : '
       REVIM : REVIM : LUATA -: REVIM : REVIM : LUATA -: STOR : ""
HAD TEK
04
0.5
                                                           : RABBTY:
06
       HAN TEK
             IC A): ( 6): ( A): GIT : RABOTY: RABOTY: GIT
07
       RABOTY: CII : RABOTY: RAPOTY: ( 6): ( 6): ( 6): MIN.
0.8
0.0
                                                               22
        : (-1161: +
                                                       21
10
                                                               31
                                        19
       HAD TEK : 1 : 17 :
                               18
                                                       311
11
                                   : 28 :
                                               29 :
         24 : 25 : 26
                                27
12
         32 : ' : (=116): '*
13
       ECDM : 22 ml TO 41 m
14
    39.ECHH STR2/1, 1/ 11 TO 41
15
       Tre 30 (1) No.
16
    40.8N4 8/J+7/==/J+7/+T2/2,1/.PAR/J+K/:T0.100=
```

```
noe 40 FER (3), 121 (1) No
01
      005 40 Jap (1) 4.
02
      BH4 P/3/ER/9/.55 R/4/EB/9/.74 B/5/EB/10/.55
03
      B/6/=8/10/.74 B/7/=8/11/.55 B/8/=8/11/.74.
0.4
      HAR HA APH P/9/,8/3/(2),8/19/,8/5/(2),8/11/,8/7/(2)+
0.5
   04.8H4 S=8/1/#
96
      546 PRO 24(5,5)+
n 7
      3H4 2/1/= ..
08
      HOE 94 1=1 (1) A.
09
      HAR TEK : 0 : ( 87)-
10
                                             . . . . . .
      HAR TAB 2 ZNA 12 57.7 :F/1/.7 :5/2/.
11
      7 8/9/.7 :8/3/.7 :8/4/,7 8/10/.7 :8/5/.
12
      7 :8/6/17 8/11/17 :8/7/17 :8/8/*
13
      HAR TEF .
14
      ( 6) ( 5):( 6):( 7):( 6):( 6):( 6):( 6):
15
      ( 6): ( 4): ( A): ( A): ( 6): ( A): ( 6): ( 6): (
16
  SHET CS
0 1
       0.2
      0.3
      TEP 420
0.4
   41. HAR TEK P : ( 24) - : - :
                                     -
                                                         :(')*
0.5
06
      MAR TAR 2 ZHA 12 57.7 :8/1/17 18/2/*
07
      HAR TEK :
0.8
      0 9
10
       11
      12
   42.884 S1=STp/1,1/ S2=STp1/1,1/ S3=H/1,47/:H/1,46/
13
      $4=(1, T?/5, T/+T2/4, 1/+T2/5, T/): TO, 100 B/1/=$4,55 B/2 =$4.74
14
      $5=100.72/2.1/:TO B/3/#55.55 8/4/#55.74+
15
      HAT NA BPM :51,53,54,8(2),54,8/3/(2).
1 6
      BUR PPO 2648/1/18/1/1+
  DACT NA
91
      5HB RPO 24(8/2/+8/2/)+
9.2
93
      515 PRO 24(8/3/18/3/14
'n.
      BUF P 0 2K(8/4/18/4/).
      545 PRO 26(53,53).
ů÷
      FGRM : 22 =2 TO 43.
      HAR TER ( 30) -
0 >
      HART TAR 2 2NA 5 :52,7 55 7 18 3/,
0.8
Ŋο
      7 18/4/,56 B(INT),7 B(INT),7 5417 19/1/17 .8.2 7 -4.
10
      TEP AL.
11
   43.884 8/J+9/255.PAR/J.P/ #/E/##/J+9/.55 8/L-1 ##/J+9/.
1.5
      DOP AT LES (2) Jep (1) 4+
13
      HAD NA RPH #/11/1=/5/(2), #/12/-5/7 (2), # 13/, 4/9/(2)+
1.
   "9.866 SEH / J/+
2 4
      BP# PPO 24(5,5)*
1 6
      BNO Agr new
```

```
01
       No. 99 Jas (1) 10.
02
       HATT TAB 2 ZNA 5 :52,7 55,7 :8/3/,7 :8/4/,7 8/11/,
       7 :8/5/.7 :8/6/.7 8/17/.7 :8/7/.7 :8/8/.7 8/13/.
03
       7 :8/9/,7 :8/10/,7 54,7 :8/1/,7 :8/2/,7 :534
0 4
                    : ( 6): ( 6): ( 6): ( 6): ( 6): ( 6): ( 6): ( 6):
    44.HAD TEK :
05
       ( 6)'(' 6) + ( 6): ( A): ( 6): ( A): ( 6): ( 6): (*
0.6
0.7
       nob 42 Km3 (3), Imp (1) No
       HAR TEK (=118) ******** (.127) *******
6.0
09
       ЕСЛИ : Z1 )1 ТО 31+
       BH4 :5=H1/14/ J2=2+
10
       BUB PRO 24(5,51)+
11
12
   45.884 8/1/=H1/1+1/:c+
13
       non 45 I=1 (1) 12.
14
       BH4 F/13/2H1/15/15 F/14/2(H1/16/:5-B/13/.F/13/)*(1:2)+
15
       HAD NA 5PM H1/1/, R(12), :51, 8/13/(2)*
16
   46.8H4 5=STR/1:1/#
```

JUCT OF

```
8 1
       HAD NA BPH 15.
    47.884 8/K/EH/I,L/:H/I,J+13/+
02
03
       NOB 47 L=J2 (1).K=1 (1) 12+
0 4
       BH4 :S=H/1,J+137 S1=H/1,J/ J2=J2+16+
05
       BUB PRO 26(5,52).
       BH4 B/13/=H/1,J+14/:5 B/14/=(H/1,J+15/:5-8/13/,B/13/)+(1:2)+
06
07
       HAT NA BPM $1.8(12): 52.8/13/(2)+
8 0
       NOB 47 J=1 (16) 33+
0 9
       BH4 : J2:2.
       ПОВ 46 1=1 (1) N+
10
11
    31.KOHFU .
12
       HA4 1.
```

РАСПРЕДЕЛЕНИЕ ПАМОТИ

PARO4	и	E		a		_	_	r	u			n		4	4		_				7						
		_	a			_							-				ы		U	"	•	_					
	N		•	•		•				-					•				0	n	7	,					
		ï		:		:						:			•	:	•		-	-		n					
		_	•	٠		:			:	_	:				:					-	0						
	5	3				:												1	0	ī	Ō	2					
		4				•				:	Ĭ,						•					3					
	•	9																	n	1	0	4					
	7	?																	C	1	0	5					
	?	ı																	n	i	0	4					
	*											•							_	-	0						
	5	7									•	•	•	•	•	•			ŋ	1	1	٥					
	5		•								٠	•	•	•	•	•	•			_	1	_					
		2		•	•	٠	•	•	٠	٠	•	•	•	•	٠	٠	•				1						
		4		•	٠		•	•	•	•	•	•	٠	•	•	٠	٠			_	_	3					
		5		•	•	•	•	•	٠		•	•	٠	٠	•	٠	•			-	-	4					
	J	2		•	•	•	٠	٠	•	•	٠	•	•	•	•	•	•		C,	1	1	5					
				j. 1		_	c	u		u																	
	ŧ	Ŧ	P		"					•		n	,	1	6				n	,	i	1					
			R			•		-	:	٠			_	ī						_	i	-					
	В	•				-	:	•	•	•				4			_		0	۷.	٥	1					
	-	Ţ	Ř	٠	:	•	:	:	:	:		n	4	0	2		-			_	7	_					
	P	A	R			•	:	:	Ì			n	4	7	6		-		ı	?	4	5					
	X					:			·	:		1	2	4	6		-		1	4	0	3					
	M					_				-		i	3	ņ	4		-		ı'	3	7	7					
	T	1				ï								0			-				3						
	Ŧ	2										1	5	3	2		-		l	7	5	7					
	H		٠	•	٠			•						6			-		4	4	1	7					
	Н	1		•	•		•	•	٠					-	0		•				3						
	B	1		•	•	•	•	•	•	•		4	6	4	0		-	•	4	ለ	4	5					
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	 	_
	В	,	_	•		-			_	_				4		_			5	•	3	7	_	_	_		
	В				•	•	:	:	:	•				4			_			-	4						
			A			•							_			^	r			_							
			5			_	_		1	_		6					Ö					7					
			5		-				0		_	4			_		٥				_	7					
	-	•	5						0		_	3			_		Õ		_		_	2					
	-		6						0			•			_		ŏ				-	ī					
	•	_	6		•				c		_	٨			_		Ō					5					
	-		6	_	-				0			7					ō					Ä					
			6						0			1					٥			•		1					
	0	0	6	4	,				0			0		0	0	0	ō					1					
	0	n	6	5	,			n	0		3	4		0	0	1	0		7	4	2	2					
	0	0	6	6)			Ð	0		3	3		0	0	1	0		7	,	ı	Ą					
	0	0	6	7)			0	0		2	7		0	0	7	0		7	4	0	4					
	0	0	7	Ð	,			0	0		2	1		0	0	ŋ	0		7	6	7	٦					
	0	n	7	1)			9	0		-	7			_		0				_	7					
	_		7		•				0		_	6					0					3					
	-		7		•				0		_	5					1			•		7					
	0	0	7	4	>			0	0		0	٠		n	0	n	1		D	2	6	6					

		_			ТАБЛИЧА				
;	METKA	ADPEC METKN	:	METKA	ARPEC METKH :	METKA	ADPEC METKH	METKA	ARPEC METKH :
:	1	5200	:	41	6000 :	44	6267	47	6364 :
•	31	6436	.:	42	6070	4.5	6330	94	5701
•	39	5617	:	43	6177 :	4.6	6352	99	6234 :
•	40	5627	:		:		;	•	:

NYCKOBON ADPEC 0037

ПАМЯТЬ СВОБОЛНА С АДРЕСА 0330

- IO3 nwor ol 01 ПРОГРАММА ЗАПИСИ КАТАЛОГА+ 1.44C PARA(1440 120.12), KAT(720 240.3), 0 2 03 Z(120), T(120), DF1(480 120.4), B(6 2.3), C(12). BU4 : INTED REALET TEXTES 53=3 04 0 5 51=1 5200=120 S4=4 S12=12 5400=240+ 2.B34 :KAT/I:J/=0+ 0 6 NOB 2 J=1 (1) 3. 0.7 08 nos 2 (=1 (1) 5400+ 546 PRO 31(TEXT, KAT/1, 1/, \$3, \$400, 0 9 10 INT, Z/1/, S1, S200, INT, DF1/1, 1/, 54, 5200, 11 12 REAL, PARA/1, 1/, 512, 5200. 13 INT: T/1/: S1, S1) + 844 : N=T/1/ P=1+ 14 HART TEK (=51)? : :(20): PARAMETRY NADEV 16 RUCT 32 01 ": ITECH a 2 : :(20):(5)050RUDOWANIQ 0.3 (5):1 0.4 :(20):(-23):' 05 : (20): NARA-: SREDNEE WREMQ : :P/P : 06 NAIMENOWANIE :BOTKA:(-17):' PINAMOCURCEO 0.7 : NA :ORGA-:POIS-:RE- :' 0.8 :(20):OTKAZ:NIZA-:KA :MONTA: 09 : (20): 4AS.: CII : NEIS-: MIN.: : (20): (5): REMON: PRAW-; (5): ' 10 :(20):(5):TA; :NOSTI:(5):' 11 12 :(20);(5); MIN.; MIN.;(5);' :(-49):':1 :(9)2(10): 3 5 : 6 :' 13 : 4 : 14 (=51)'* 3.544 8/1,1/±K4T/[,1/ 3/1,2/=KAT/[,2/ 8/1,3/=KAT/[,3/ 8/2,1/=KAT/[+1,1/ 8/2,2/=KAT/[+1,2/ 8/2,3/=KAT/[+1,3/ 15 JUCT 03 0 1 4.BU4 A=PARA/K,J/. 0.2 5/15 PRO 25(A,D). 03 3 84 : C/L/=D-0 4 **ΠΟΒ 4 J=3 (3),L=1 (1),4**+ 0 5 HAR TABL 5 : 7,21 8(2.3), 06 6 :C/1/,6 :C/2/,6 :C/3/, 0.7 6 : 0/4/+

0.6 544 : PEP+1+ 0 9 ПОВ 3 I=1 (2).K±1 (1).N∗ 13 HAT TEK (=51) .. BW4 : MOZU=0 NML=1 NM1=1 11 12 N42=3 N43=19 N44=20 N45=6+ 13 BNB PRO 34(53,5200,512, +(0052,12,144,1,1/,441,51,5200)+ 1 4 15 6MB PRO 34(53,5400,53, 16 *(0002,12,27/1,1/,N42,51,5400)

лист о4

HETKA

ARPEC HETKH :

```
PASO4NE 94ERKM 0066 - 0072
    RESCHUE REPEMBRANE
    INT .......... 0073
    REAL ..... 0074
    TEXT ..... 0075
    $3 ......... 0076
    $1 ..... 0077
    $200 ......... 0100
    $4 .... 0101
    $12 ..... 0102
    $400 ......... 0103
    A ..... 0106
    MOZU ......... 0110
    NHL .... 0111
    N41 ......... 0112
   NH2 ..... 0113
   M43 ......... 0114
   NM4 ........ 0115
   NH5 ......... 0115
      HACCUBU
    PARA .... 0117 - 2756
    KAT ..... 2757 - 4276
    2 ..... 4277 - 4466
    T ..... 4467 - 4556
    DE1 ..... 4657 - 5516
    5 ..... 5617 - 5524
    C ..... 5625 - 5640
    STANDARTHUE TROFPANNU
    0055) 00 23 0000 6172
    0095) 90 31 0000 6211
    0057) 00 14 0000 6557
    3360) 00 26 0000 6702
   0361) 00 17 0000 6723
0062) 30 34 0000 7070
   0363) 00 27 0000 7164
   3364) 00 16 0000 7253
   0065) 90 30 0000 7510
   0365) 30 22 0030 7561
   3367) 00 21 0000 7612
                 TABRULA
                            METOK
 HETKA
           ASPEC HETKI :
                          METKA
                                    ADPEC HETKH :
                                                   HETKA
```

ABPEC METKA :

THE THE COURSE AND THE COURSE THE