Стр. 1
 

1 страница

Купить официальный бумажный документ с голограммой и синими печатями. подробнее

Цена на этот документ пока неизвестна. Нажмите кнопку "Купить" и сделайте заказ, и мы пришлем вам цену.

Официально распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО "ЦНТИ Нормоконтроль".

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

Способы доставки

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ
Это поправка для ГОСТ Р ИСО 5725-5-2002
Показать даты введения Admin

ГОСТ Р ИСО 5725-5-2002

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ТОЧНОСТЬ
(ПРАВИЛЬНОСТЬ И ПРЕЦИЗИОННОСТЬ)
МЕТОДОВ И РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Часть 5

Альтернативные методы определения
прецизионности стандартного метода измерений

ГОССТАНДАРТ РОССИИ

Москва

Предисловие

1 РАЗРАБОТАН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт метрологической службы» Госстандарта России (ВНИИМС), Всероссийским научно-исследовательским институтом стандартизации (ВНИИСтандарт), Всероссийским научно-исследовательским институтом классификации, терминологии и информации по стандартизации и качеству (ВНИИКИ) Госстандарта России

ВНЕСЕН Управлением метрологии и Научно-техническим управлением Госстандарта России

2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 23 апреля 2002 г. № 161-ст

3 Настоящий стандарт представляет собой полный аутентичный текст международного стандарта ИСО 5725-5:1998 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 5. Альтернативные методы определения прецизионности стандартного метода измерений».

4 ВВЕДЕН ВПЕРВЫЕ

СОДЕРЖАНИЕ

ПРЕДИСЛОВИЕ К ГОСУДАРСТВЕННЫМ СТАНДАРТАМ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р ИСО 5725-1-2002 - ГОСТ Р ИСО 5725-6-2002 ПОД ОБЩИМ ЗАГОЛОВКОМ «ТОЧНОСТЬ (ПРАВИЛЬНОСТЬ И ПРЕЦИЗИОННОСТЬ) МЕТОДОВ И РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ» 2

ПРЕДИСЛОВИЕ К МЕЖДУНАРОДНОМУ СТАНДАРТУ ИСО 5725 5

ВВЕДЕНИЕ К МЕЖДУНАРОДНОМУ СТАНДАРТУ ИСО 5725 6

1 Область применения 7

2 Нормативные ссылки 7

3 Определения 7

4 Модель эксперимента с разделенными уровнями 7

5 Модель эксперимента для гетерогенного материала 18

6 Робастные методы анализа данных 34

ПРИЛОЖЕНИЕ А 48

Условные обозначения и сокращения, используемые в ГОСТ Р ИСО 5725 48

ПРИЛОЖЕНИЕ В 50

Вывод факторов, используемых в Алгоритмах А и S 50

ПРИЛОЖЕНИЕ С 52

Вывод равенств, используемых для робастного анализа 52

ПРИЛОЖЕНИЕ D 53

Библиография 53


ПРЕДИСЛОВИЕ К ГОСУДАРСТВЕННЫМ СТАНДАРТАМ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р ИСО 5725-1-2002 - ГОСТ Р ИСО 5725-6-2002 ПОД ОБЩИМ ЗАГОЛОВКОМ «ТОЧНОСТЬ (ПРАВИЛЬНОСТЬ И ПРЕЦИЗИОННОСТЬ) МЕТОДОВ И РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ»

Целью разработки Государственных стандартов Российской Федерации ГОСТ Р ИСО 5725-1- 2002, ГОСТ Р ИСО 5725-2-2002, ГОСТ Р ИСО 5725-3-2002, ГОСТ Р ИСО 5725-4-2002, ГОСТ Р ИСО 5725-5-2002, ГОСТ Р ИСО 5725-6-2002, далее - ГОСТ Р ИСО 5725, является прямое применение в Российской Федерации шести частей основополагающего международного стандарта ИСО 5725 под общим заголовком «Точность (правильность и прецизионность) методов и результатов измерений» в практической деятельности по метрологии (разработке, аттестации и применению методик выполнения измерений), стандартизации методов контроля (испытаний, измерений, анализа), испытаниям продукции, в том числе для целей подтверждения соответствия, оценке компетентности испытательных лабораторий согласно требованиям ГОСТ Р ИСО/МЭК 17025-2000.

ГОСТ Р ИСО 5725 представляют собой полный аутентичный текст шести частей международного стандарта ИСО 5725, в том числе:

ГОСТ Р ИСО 5725-1-2002 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения»;

ГОСТ Р ИСО 5725-2-2002 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений»;

ГОСТ Р ИСО 5725-3-2002 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 3. Промежуточные показатели прецизионности стандартного метода измерений»;

ГОСТ Р ИСО 5725-4-2002 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 4. Основные методы определения правильности стандартного метода измерений»;

ГОСТ Р ИСО 5725-5-2002 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 5. Альтернативные методы определения прецизионности стандартного метода измерений»;

ГОСТ Р ИСО 5725-6-2002 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике».

Каждая часть содержит аутентичный перевод предисловия и введения к международному стандарту ИСО 5725, а также предисловие к государственным стандартам Российской Федерации ГОСТ Р ИСО 5725-1-2002 - ГОСТ Р ИСО 5725-6-2002 и издается самостоятельно.

Пользование частями 2-6 ГОСТ Р ИСО 5725 в отдельности возможно только совместно с частью 1 (ГОСТ Р ИСО 5725-1), в которой установлены основные положения и определения, касающиеся всех частей ГОСТ Р ИСО 5725.

В соответствии с основными положениями ИСО 5725-1 (пункт 1.2) настоящий стандарт распространяется на методы измерений непрерывных (в смысле принимаемых значений в измеряемом диапазоне) величин, дающие в качестве результата измерений единственное значение. При этом это единственное значение может быть и результатом расчета, основанного на ряде измерений одной и той же величины.

Стандарты ИСО 5725 могут применяться для оценки точности выполнения измерений различных физических величин, характеризующих измеряемые свойства того или иного объекта, в соответствии со стандартизованной процедурой. При этом в пункте 1.2 стандарта ИСО 5725-1 особо отмечено, что стандарт может применяться для оценки точности выполнения измерений состава и свойств очень широкой номенклатуры материалов, включая жидкости, порошкообразные и твердые материалы - продукты материального производства или существующие в природе, при условии, что учитывают любую неоднородность материала.

Применяемый в международных стандартах термин «стандартный метод измерений» адекватен отечественному термину «стандартизованный метод измерений».

В ИСО 5725: 1994-1998 и ИСО/МЭК 17025-99 понятие «метод измерений» («measurement method») включает совокупность операций и правил, выполнение которых обеспечивает получение результатов с известной точностью. Таким образом, понятие «метод измерений» по ИСО 5725 и ИСО/МЭК 17025 адекватно понятию «методика выполнения измерений (МВИ)» по ГОСТ Р 8.563-96 «Государственная система обеспечения единства измерений. Методики выполнения измерений» (пункт 3.1) и соответственно значительно шире по смыслу, чем определение термина «метод измерений» в Рекомендации по межгосударственной стандартизации РМГ 29-99 «Государственная система обеспечения единства измерений. Метрология. Основные термины и определения» (пункт 7.2).

Более того, в оригинале ИСО 5725 очень часто употребляется в качестве понятия «метод измерений» и английский термин «test method», перевод которого на русский язык - «метод испытаний» (см. примечание 1 к пункту 3.2 ИСО 5725-1) и который по смыслу совпадает с термином 6.2 ИСО 5725-1 «standard measurement method» (стандартизованный метод измерений). Соответственно в качестве термина «результат измерений» в оригинале стандарта чаще используется английский термин «test result» (см. пункт 3.2 ИСО 5725-1), причем в контексте как с термином «test method» (см. пункт 3.2), так и с термином «measurement method» (см. в оригинале, например, пункты 1.2 или 7.2.1 ИСО 5725-1).

При этом следует иметь в виду, что область применения ИСО 5725 - точность стандартизованных методов измерений, в том числе предназначенных для целей испытаний продукции, позволяющих количественно оценить характеристики свойств (показателей качества и безопасности) объекта испытаний (продукции). Именно поэтому во всех частях стандарта результаты измерений характеристик образцов, взятых в качестве выборки из партии изделий (или проб, отобранных из партии материала), являются основой для получения результатов испытаний всей партии (объекта испытаний). Когда объектом испытаний является конкретный образец (test speciment, sample), результаты измерений и испытаний могут совпадать. Такой подход имеет место в примерах по определению показателей точности стандартного (стандартизованного) метода измерений, содержащихся в ИСО 5725.

Следует отметить, что в отечественной метрологии точность (accuracy) и погрешность (error) результатов измерений, как правило, определяются сравнением результата измерений с истинным или действительным (условно истинным) значением измеряемой физической величины (являющимися фактически эталонными значениями измеряемых величин, выраженными в узаконенных единицах).

В условиях отсутствия необходимых эталонов, обеспечивающих воспроизведение, хранение и передачу соответствующих значений единиц величин, необходимых для оценки погрешности (точности) результатов измерений, и в отечественной, и в международной практике за действительное значение зачастую принимают общее среднее значение (математическое ожидание) установленной (заданной) совокупности результатов измерений. В ИСО 5725 эта ситуация отражена в термине «принятое опорное значение» (см. пункты 3.5 и 3.6 ГОСТ Р ИСО 5725-1) и рекомендуется стандартом ГОСТ Р ИСО 5725-1 для использования в этих случаях и в отечественной практике.

Термины «правильность» (trueness) и «прецизионность» (precision) в отечественных нормативных документах по метрологии до настоящего времени не использовались. При этом «правильность» - степень близости результата измерений к истинному или условно истинному (действительному) значению измеряемой величины или в случае отсутствия эталона измеряемой величины - степень близости среднего значения, полученного на основании большой серии результатов измерений (или результатов испытаний), к принятому опорному значению. Показателем правильности обычно является значение систематической погрешности (см. пункт 3.7 ГОСТ Р ИСО 5725-1).

В свою очередь «прецизионность» - степень близости друг к другу независимых результатов измерений, полученных в конкретных установленных условиях. Эта характеристика зависит только от случайных факторов и не связана с истинным или условно истинным значением измеряемой величины (см. пункт 3.12 ГОСТ Р ИСО 5725-1). Мера прецизионности обычно вычисляется как стандартное (среднеквадратическое) отклонение результатов измерений, выполненных в определенных условиях. Количественные значения мер прецизионности существенно зависят от заданных условий. Экстремальные показатели прецизионности - повторяемость, сходимость (repeatability) и воспроизводимость (reproducibility) регламентируют и в отечественных нормативных документах, в том числе в большинстве государственных стандартов на методы контроля (испытаний, измерений, анализа) (см. пункты 3.12-3.20 ГОСТ Р ИСО 5725-1).

В соответствии с ИСО 5725 цель государственных стандартов ГОСТ Р ИСО 5725 состоит в том, чтобы:

а) изложить основные положения, которые следует иметь в виду при оценке точности (правильности и прецизионности) методов и результатов измерений при их применении, а также при планировании экспериментов по оценке различных показателей точности (ГОСТ Р ИСО 5725-1);

б) регламентировать основной способ экспериментальной оценки повторяемости (сходимости) и воспроизводимости методов и результатов измерений (ГОСТ Р ИСО 5725-2);

в) регламентировать процедуру получения промежуточных показателей прецизионности методов и результатов измерений, изложив условия их применения и методы оценки (ГОСТ Р ИСО 5725-3);

г) регламентировать основные способы определения правильности методов и результатов измерений (ГОСТ Р ИСО 5725-4);

д) регламентировать для применения в определенных обстоятельствах несколько альтернатив основным способам (ГОСТ Р ИСО 5725-2 и ГОСТ Р ИСО 5725-4) определения прецизионности и правильности методов и результатов измерений, приведенных в ГОСТ Р ИСО 5725-5;

е) изложить некоторые практические применения показателей правильности и прецизионности (ГОСТ Р ИСО 5725-6).

Представленные в виде таблицы рекомендации по применению основных положений ГОСТ Р ИСО 5725 в деятельности по метрологии, стандартизации, испытаниям, оценке компетентности испытательных лабораторий со ссылками на нормы государственных стандартов Российской Федерации, содержащих требования к выполнению соответствующих работ, приведены в приложении к предисловию в ГОСТ Р ИСО 5725-1.

Алгоритмы проведения экспериментов по оценке повторяемости, воспроизводимости, промежуточных показателей прецизионности, показателей правильности (характеристик систематической погрешности) методов и результатов измерений рекомендуется внедрять через программы экспериментальных метрологических исследований показателей точности (характеристик погрешности) результатов измерений, выполняемых по разрабатываемой МВИ, и (или) через программы контроля показателей точности применяемых МВИ.

Использование приведенных в приложениях А к каждому стандарту условных обозначений в качестве обязательных рекомендуется только для тех показателей точности, которые до настоящего времени в отечественной метрологической практике не использовались (например, для показателей по пунктам 3.9-3.12 ГОСТ Р ИСО 5725-1). Для остальных показателей и критериев используемые в ГОСТ Р ИСО 5725 условные обозначения, как правило, могут применяться наряду с условными обозначениями этих показателей и критериев, принятыми в действующих отечественных документах (например, предел повторяемости (сходимости) с условным обозначением r по пункту 3.16 ГОСТ Р ИСО 5725-1 наряду с условным обозначением d, принятым для этого показателя в ряде рекомендаций по метрологии, а также в государственных стандартах на методы испытаний продукции).

ПРЕДИСЛОВИЕ К МЕЖДУНАРОДНОМУ СТАНДАРТУ ИСО 5725

Международная организация по стандартизации (ИСО) является Всемирной федерацией национальных организаций по стандартизации (комитетов-членов ИСО). Разработка международных стандартов обычно осуществляется техническими комитетами ИСО. Каждый член ИСО, заинтересованный в деятельности соответствующего технического комитета, имеет право быть представленным в этом комитете. Правительственные и неправительственные международные организации, сотрудничающие с ИСО, также принимают участие в этой работе. ИСО тесно сотрудничает с Международной электротехнической комиссией (МЭК) по всем вопросам стандартизации в области электротехники.

Проекты международных стандартов, принятые техническими комитетами, направляются техническим комитетам-членам ИСО на голосование перед их утверждением Советом ИСО в качестве международных стандартов. Стандарты утверждаются в качестве международных в соответствии с установленными в ИСО требованиями: в случае их одобрения по меньшей мере 75 % комитетов-членов ИСО, принимавших участие в голосовании.

Международный стандарт ИСО 5725-5 был подготовлен Техническим комитетом ИСО/ТК 69 «Применение статистических методов», Подкомитетом ПК 6 «Методы и результаты измерений».

ИСО 5725 состоит из следующих частей под общим заголовком «Точность (правильность и прецизионность) методов и результатов измерений»:

Часть 1. Основные положения и определения

Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений

Часть 3. Промежуточные показатели прецизионности стандартного метода измерений

Часть 4. Основные методы определения правильности стандартного метода измерений

Часть 5. Альтернативные методы определения прецизионности стандартного метода измерений

Часть 6. Использование значений точности на практике

ИСО 5725 (части 1-6) в совокупности аннулирует и заменяет ИСО 5725:1986, область распространения которого была расширена включением правильности (в дополнение к прецизионности) и условий промежуточной прецизионности (в дополнение к условиям повторяемости и воспроизводимости).

Приложение А является обязательным для настоящей части ИСО 5725, приложения В, С и D - справочные.

ВВЕДЕНИЕ К МЕЖДУНАРОДНОМУ СТАНДАРТУ ИСО 5725

0.1 В ИСО 5725 для описания точности метода измерений используют два термина: «правильность» и «прецизионность». Термин «правильность» характеризует степень близости среднего значения большого числа результатов испытаний к истинному или принятому опорному значению, термин «прецизионность» - степень близости результатов испытаний друг к другу.

0.2 Общие положения об этих понятиях представлены в ИСО 5725-1 и поэтому здесь не повторяются. Эта часть ИСО 5725 должна применяться совместно с ИСО 5725-1, поскольку в ней даны определения и общие положения.

0.3 ИСО 5725-2 посвящен методам количественной оценки прецизионности, а именно стандартных отклонений повторяемости и воспроизводимости посредством межлабораторных экспериментов. В нем рассматривается основной метод такой оценки, использующий эксперимент с однородными уровнями. ИСО 5725-5 описывает методы оценки, альтернативные этому основному.

a) При пользовании основным методом имеется риск, что оператор допустит, что результат измерения одной пробы повлияет на результат последующего измерения другой пробы того же материала, вызывая систематическую погрешность в оценке стандартных отклонений повторяемости и воспроизводимости. Когда этот риск считают значительным, модель с разделенными уровнями, описанная в ИСО 5725-5, может быть предпочтительнее, как снижающая этот риск.

b) Основной метод требует подготовки ряда идентичных проб материала для использования в эксперименте. С гетерогенными материалами это может быть невозможно, так как применение основного метода потом дает оценки стандартного отклонения воспроизводимости, которые искажаются различием между пробами. Схема для гетерогенного материала, приведенная в ИСО 5725-5, дает информацию о неоднородности проб, которая не выявляется основным методом; она может быть использована для расчетов оценки воспроизводимости, из которой исключена разница между пробами.

c) Основной метод требует проверок на наличие выбросов, чтобы идентифицировать данные, которые должны быть исключены из расчета стандартных отклонений повторяемости и воспроизводимости. Исключение выбросов может иногда значительно повлиять на оценку стандартных отклонений повторяемости и воспроизводимости; но на практике в случаях, когда применяют контроль выбросов, у аналитика есть основание принять решение, какие данные исключить. ИСО 5725-5 описывает робастные методы анализа данных, которые могут применяться для расчета стандартных отклонений повторяемости и воспроизводимости из данных, содержащих выбросы, без применения проверок на наличие выбросов в целях исключения таких данных, так что эти результаты больше не влияют на решение аналитика.

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ТОЧНОСТЬ (ПРАВИЛЬНОСТЬ И ПРЕЦИЗИОННОСТЬ) МЕТОДОВ И РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Часть 5

Альтернативные методы определения прецизионности стандартного метода измерений

Accuracy (trueness and precision) of measurement methods and results.
Part 5. Alternative methods for the determination of the precision of a standard measurement method

Дата введения 2002-11-01

1 Область применения

В настоящем стандарте детально представлены альтернативы основному методу определения стандартных отклонений повторяемости и воспроизводимости стандартного метода измерений, именуемые моделью эксперимента с разделенными уровнями и моделью эксперимента для гетерогенных материалов, а также описано использование робастных методов для анализа результатов экспериментов по оценке прецизионности без применения проверок наличия выбросов с целью их исключения из расчетов, и особенно - подробное использование одного из таких методов.

Настоящий стандарт дополняет ГОСТ Р ИСО 5725-2, описывая альтернативные методы, которые могут быть в отдельных случаях предпочтительнее основного метода, приведенного в ГОСТ Р ИСО 5725-2, и предусматривая робастный метод анализа, который дает оценки стандартных отклонений повторяемости и воспроизводимости, в меньшей мере зависимые от решений, принимаемых на основе данных аналитика, по сравнению с методами оценки, описанными в ГОСТ Р ИСО 5725-2.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ Р ИСО 5725-1-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения.

ГОСТ Р ИСО 5725-2-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений

3 Определения

В настоящем стандарте применяют термины в соответствии с ИСО 3534-1 [1] и ГОСТ Р ИСО 5725-1.

Условные обозначения, использованные в ГОСТ Р ИСО 5725, приведены в приложении А.

4 Модель эксперимента с разделенными уровнями

4.1 Применение модели

4.1.1 Эксперимент с однородными уровнями, описанный в ГОСТ Р ИСО 5725-2, требует по две или более идентичных проб материала для испытаний в каждой лаборатории - участнице эксперимента на каждом уровне. При этом имеется риск, что оператор допустит влияние результата предыдущих измерений одной пробы на результат последующего измерения другой пробы того же материала. В этом случае результаты эксперимента по оценке прецизионности будут искажены: оценки стандартного отклонения повторяемости sr будут уменьшены, а оценки межлабораторного стандартного отклонения sL возрастут. В эксперименте с разделенными уровнями каждую лабораторию - участницу эксперимента снабжают двумя подобными пробами материала для каждого уровня эксперимента, а операторам сообщают, что пробы не идентичны, но не информируют о степени их различия. Эксперимент с разделенными уровнями обеспечивает, таким образом, возможность определения стандартных отклонений повторяемости и воспроизводимости стандартного метода измерений способом, снижающим риск воздействия результата измерений, полученного на одной пробе, на результат измерений, полученный в эксперименте на другой пробе.

4.1.2 Данные, полученные на одном уровне в эксперименте с разделенными уровнями, можно представить на графике, в котором данные для одной пробы материала наносят против данных для другой пробы, относящейся к тому же уровню. Пример дан на рисунке 1. Такие графики могут помочь идентифицировать те лаборатории, которые имеют наибольшие систематические погрешности относительно других лабораторий, и исследовать источники наибольших лабораторных систематических погрешностей с целью принятия корректирующих действий.

4.1.3 В общем случае стандартные отклонения повторяемости и воспроизводимости метода измерений зависят от уровня измеряемой характеристики материала. Например, когда результат измерений пропорционален определяемому содержанию элемента, стандартные отклонения повторяемости и воспроизводимости обычно возрастают пропорционально возрастанию содержания элемента. Для эксперимента с разделенными уровнями необходимо, чтобы две пробы материала, используемые на одном уровне эксперимента, были настолько подобны, чтобы можно было ожидать тех же стандартных отклонений повторяемости и воспроизводимости. При этом для целей эксперимента с разделенными уровнями приемлемо, если две пробы материала, используемые на одном уровне, дают почти одинаковые результаты измерений, и не следует добиваться, чтобы эти результаты существенно отличались.

Во многих химических аналитических методах матрица с содержанием анализируемого вещества может влиять на прецизионность, тогда как для эксперимента с разделенными уровнями требуются для каждого уровня две пробы материала с одинаковыми матрицами. Подобная проба материала может иногда быть приготовлена путем добавки интересующего нас вещества. Для материалов природного или промышленного происхождения может быть трудно найти два достаточно подобных продукта, необходимых для эксперимента с разделенными уровнями: в этом случае возможным решением является использование раствора, полученного на основе двух партий одного и того же продукта. Необходимо помнить, что целью выбора материалов для эксперимента с разделенными уровнями является обеспечение операторов пробами, от эксперимента с которыми не ожидают идентичности.

4.2 План эксперимента

4.2.1 План эксперимента с разделенными уровнями показан в таблице 1.

Число лабораторий-участниц р, каждая из которых испытывает по две пробы на q уровнях.

Две пробы внутри уровня обозначены а (проба одного материала) и b (проба другого, подобного материала).

4.2.2 Данные эксперимента с разделенными уровнями обозначают yijk, где i - номер лаборатории (i = 1, 2, ..., р); j - уровень (j = 1, 2, ..., q); k - проба (k = а или b).

4.3 Организация эксперимента

4.3.1 Руководство по планированию эксперимента с разделенными уровнями приведено в разделе 6 ГОСТ Р ИСО 5725-1. Подраздел 6.3 ГОСТ Р ИСО 5725-1 содержит формулы (использующие величину, обозначенную буквой А), необходимые для принятия решений о числе лабораторий, привлекаемых к участию в эксперименте. Соответствующие формулы для эксперимента с разделенными уровнями приведены ниже.

Примечание - Формулы получены методом, описанным в примечании 24 ГОСТ Р ИСО 5725-1.

Для аналитического выражения неопределенности оценок стандартных отклонений повторяемости и воспроизводимости используют следующие равенства.

Для повторяемости

. (1)

Для воспроизводимости

, (2)

где g = sR/sr.

При п = 2 формулы (1) и (2) совпадают с формулами (9) и (10) ГОСТ Р ИСО 5725-1, за исключением того, что в них вместо р из ГОСТ Р ИСО 5725-1 появляется р - 1. Это небольшая разница, так что для представления неопределенности оценок стандартных отклонений повторяемости и воспроизводимости в эксперименте с разделенными уровнями могут быть использованы таблица 1 и рисунки В.1 и В.2 ГОСТ Р ИСО 5725-1.

Неопределенность оценки систематической погрешности метода измерений в эксперименте с разделенными уровнями рассчитывают в соответствии с формулой (13) из ГОСТ Р ИСО 5725-1 для п = 2 или определяют непосредственно из таблицы 2 ГОСТ Р ИСО 5725-1.

Неопределенность оценки лабораторной систематической погрешности в эксперименте с разделенными уровнями рассчитывают по уравнению (16) ГОСТ Р ИСО 5725-1 для п = 2. Поскольку число параллельных определений в эксперименте с разделенными уровнями равно двум, это не позволяет уменьшить неопределенность оценки лабораторной систематической погрешности увеличением числа параллельных определений. (Если необходимо снизить эту неопределенность, то необходимо использовать эксперимент с однородными уровнями).

4.3.2 Следуя руководству, приведенному в разделах 5 и 6 ГОСТ Р ИСО 5725-2, следует отнестись с вниманием к деталям организации эксперимента с разделенными уровнями. Число параллельных определений и в ГОСТ Р ИСО 5725-2 должно быть равным числу параллельных определений в эксперименте с разделенными уровнями, то есть двум.

Пробы а и b должны быть распределены среди участников случайным образом, причем процедуры рандомизации для а и b должны быть независимы. При этом необходимо, чтобы эксперты-статистики имели точную информацию о том, какие результаты были получены на материале а и какие - на материале b на каждом уровне эксперимента. Однако пробы следует зашифровать так, чтобы скрыть эту информацию от участников эксперимента.

Таблица 1 - Рекомендуемая форма для сравнения данных эксперимента с разделенными уровнями

Номер лаборатории

Уровень

1

2


j


q

а

b

а

b


а

b


а

b

1











2





















i






















p











4.4 Статистическая модель

4.4.1 Основная модель, используемая в настоящем стандарте, дана равенством (1) в разделе 5 ГОСТ Р ИСО 5725-1. Там установлено, что для оценивания точности (правильности и прецизионности) метода измерений каждый результат измерения полезно представлять как сумму трех составляющих:

yijk = mj + Bij + eijk, (3)

где для определенного испытуемого материала:

mj - общее среднее значение для определенного уровня j = 1, ..., q;

Bij - лабораторная составляющая систематической погрешности в условиях повторяемости в определенной лаборатории i = 1, ..., р на определенном уровне j = 1, ..., q;

eijk - случайная погрешность результата измерений k = 1, ..., п, полученная в лаборатории i на уровне j в условиях повторяемости.

4.4.2 Для эксперимента с разделенными уровнями эта модель принимает вид

yijk = mjk + Bij + eijk. (4)

Это неравенство отличается от равенства (3) только одной деталью: индекс k в mjk означает, что в соответствии с равенством (4) общее среднее значение может теперь зависеть от материала а или b (k = 1 или 2) на уровне j.

Отсутствие индекса k в Вij означает допущение, что систематическая ошибка, связанная с лабораторией i, не зависит от материала а или b на определенном уровне. Вот почему так важно, чтобы эти два материала были бы однородными (одинаковыми).

4.4.3 Определяют среднее значение в базовом элементе (ячейке)

yij = (yija + yijb)/2 (5)

и внутриэлементное расхождение (разброс)

Dij = yija - yijb. (6)

4.4.4 Общее среднее значение для уровня j в эксперименте с разделенными уровнями может быть определено как

mj = (mja + mjb)/2. (7)

4.5 Статистический анализ данных эксперимента с разделенными уровнями

4.5.1 Данные эксперимента сводят в таблицу (см. таблицу 1). Каждая комбинация лаборатории и уровня дает базовый элемент (ячейку) в этой таблице, а также содержит два результата yija и yijb.

Рассчитывают Dij - расхождения в элементах и сводят их в таблицу (см. таблицу 2). Метод анализа требует, чтобы все расхождения были рассчитаны с сохранением знака разности

а - b.

Рассчитывают средние значения уij и сводят их в таблицу (см. таблицу 3).

4.5.2 Если элемент в таблице 1 не содержит двух результатов измерений (например потому, что пробы были испорчены или данные исключены в последующем как выбросы), то соответствующие элементы в таблицах 2 и 3 оставляют пустыми.

4.5.3 Для каждого уровня j эксперимента рассчитывают среднее Dj и стандартное sDj отклонения расхождений в графе j таблицы 2 по формулам:

, (8)

, (9)

где Σ - знак суммирования по всем лабораториям i = 1, 2, ..., р.

Если в таблице 2 имеются пустые элементы, то р теперь становится числом элементов в графе j таблицы 2, содержащих данные, и суммирование выполняют без пустых элементов.

4.5.4 Для каждого уровня j в эксперименте рассчитывают среднее и стандартное отклонения средних значений в графе j таблицы 3, используя формулы:

, (10)

, (11)

где Σ - знак суммирования по всем лабораториям i = 1, 2, ..., р.

Если в таблице 3 имеются пустые элементы, то р теперь становится числом элементов в графе j, содержащих данные, и суммирование выполняют без пустых элементов.

4.5.5 Для проверки совместимости данных и наличия выбросов, как описано в 4.6, используют таблицы 2, 3 и статистики, рассчитанные по формулам (8-11). При исключении данных пересчитывают статистики.

4.5.6 Рассчитывают стандартные отклонения повторяемости srj и воспроизводимости sRj по формулам:

, (12)

. (13)

4.5.7 Исследуют, зависят ли srj и sRj от среднего уj и, если это так, находят соответствующие функциональные соотношения, используя методы, описанные в 7.5 ГОСТ Р ИСО 5725-2.

Таблица 2 - Рекомендуемая форма табулирования расхождений в базовых элементах для эксперимента с разделенными уровнями

Номер лаборатории

Уровень

1

2


j


q







1







2














i














p







Таблица 3 - Рекомендуемая форма табулирования средних значений в базовых элементах для эксперимента с разделенными уровнями

Номер лаборатории

Уровень

1

2


j


q







1







2














i












p







4.6 Исследование данных на совместимость и наличие выбросов

4.6.1 Проверяют данные на совместимость, используя статистику h, описанную в 7.3.1 ГОСТ Р ИСО 5725-2.

Чтобы проконтролировать совместимость расхождений в базовых элементах, рассчитывают серию для статистики h по формуле

hij = (Dij - Dj)/sDj. (14)

Для контроля совместимости средних значений в базовых элементах рассчитывают серию для статистики h по формуле

hij = (yij - yj)/syj. (15)

Для оценки различий лабораторий с точки зрения совместимости полученных данных, наносят на график обе серии в порядке возрастания уровней, но сгруппировав их по лабораториям, как показано на рисунках 2 и 3. Интерпретация этих графиков подробно рассмотрена в 7.3.1 ГОСТ Р ИСО 5725-2. Если лаборатория получила худшую повторяемость по сравнению с другими, это будет видно по необычно большому числу больших значений h на графике, построенном по расхождениям в элементах. Если данные лаборатории, в основном, содержат систематическую погрешность, то это будет видно по значениям h на графике, построенном для средних значений в элементах: большинство из них расположится в одном направлении. В любом случае лаборатория должна изучить причины расхождений и доложить о них организатору эксперимента.

4.6.2 Для контроля данных на наличие квазивыбросов и выбросов используют критерий Граббса, описанный в 7.3.4 ГОСТ Р ИСО 5725-2.

Для контроля наличия квазивыбросов и выбросов во внутриэлементных расхождениях, применяют тестирование по критерию Граббса к значениям в каждой графе таблицы 2 по очереди.

Для контроля наличия квазивыбросов и выбросов в средних значениях элементов применяют тестирование по критерию Граббса к значениям в каждой графе таблицы 3 по очереди.

Интерпретация результатов тестирования полностью рассмотрена в 7.3.2 ГОСТ Р ИСО 5725-2. Их используют для идентификации результатов, которые настолько не соответствуют остальным данным эксперимента, что в случае их включения в расчеты стандартных отклонений повторяемости и воспроизводимости они окажут существенное влияние на значения этих статистик. Обычно данные, идентифицированные как выбросы, исключают из расчетов, а данные, идентифицированные как квазивыбросы, включают в расчеты, если не имеется серьезных оснований для принятия других решений. Если результаты тестирования показывают, что данные в одной из таблиц 2 или 3 должны быть исключены из расчетов стандартных отклонений повторяемости и воспроизводимости, то соответствующие значения в другой таблице также должны быть исключены.

4.7 Представление результатов эксперимента

4.7.1 В 7.7 ГОСТ Р ИСО 5725-2 даны рекомендации по:

- созданию совета экспертов специально для организации эксперимента и рассмотрения его результатов;

- представлению результатов статистического анализа совету экспертов;

- решениям, принимаемым советом экспертов по результатам рассмотрения;

- подготовке полного отчета.

4.7.2 Рекомендации по форме представления установленных стандартных отклонений повторяемости и воспроизводимости стандартного метода измерений даны в 7.1 ГОСТ Р ИСО 5725-1.

4.8 Пример 1. Эксперимент с разделенными уровнями

4.8.1 Таблица 4 содержит данные эксперимента [2] по определению содержания протеина в кормах методом сжигания. Число лабораторий-участниц - девять, эксперимент содержал 14 уровней. В каждом уровне использовались две пробы кормов с одинаковой массовой долей протеина.

Таблица 4 - Пример 1. Определение массовой доли протеина в кормах (в процентах)

Номер лаборатории

Уровень

1

2

3

4

5

6

7

8

9

10

11

12

13

14

а

b

а

b

а

b

а

b

а

b

а

b

а

b

а

b

а

b

а

b

а

b

а

b

а

b

а

b

1

11,11

10,34

10,91

9,81

13,74

13,48

13,79

13,00

15,89

15,26

20,14

19,78

20,33

20,06

46,45

44,42

52,05

49,40

65,84

59,14

84,16

80,86

85,38

81,71

87,64

88,23

90,24

82,10

2

11,12

9,94

11,38

10,31

14,00

13,12

13,44

13,06

15,69

15,10

19,25

20,25

20,36

19,94

46,69

44,62

51,94

48,81

66,31

59,19

84,50

81,06

85,56

82,44

88,81

88,38

89,88

81,44

3

11,26

10,46

10,95

10,51

13,38

12,70

13,54

13,18

15,83

15,73

20,48

19,86

20,56

20,11

46,90

44,56

52,18

48,90

66,06

58,52

82,26

79,43

85,26

82,15

88,58

88,12

89,48

81,67

4

11,07

10,41

11,66

9,95

13,01

13,16

13,58

12,88

15,08

15,63

21,54

20,06

20,64

20,46

47,13

45,29

51,73

48,56

65,93

58,93

84,39

80,08

85,20

81,76

88,47

87,98

90,04

80,73

5

10,69

10,31

10,98

10,13

13,24

13,33

13,32

12,59

15,02

14,90

19,90

19,66

20,56

19,24

45,83

43,73

50,84

47,91

64,19

57,94

81,71

79,01

83,58

79,74

86,43

86,19

88,59

80,46

6

11,73

11,01

12,31

10,92

14,01

13,66

14,04

13,64

16,43

15,94

20,31

20,27

20,85

20,63

46,86

43,96

52,18

49,03

65,73

58,77

82,85

81,16

84,44

80,90

87,78

86,89

89,40

80,88

7

11,13

10,36

11,38

10,44

12,94

12,44

13,63

13,06

15,75

15,56

20,00

20,56

20,25

20,19

46,25

44,31

52,25

49,44

66,06

59,19

86,25

81,00

84,88

81,44

88,06

88,00

89,31

81,38

8

11,21

10,51

11,32

10,84

13,09

13,76

13,85

13,49

15,98

15,89

20,43

20,69

20,85

20,27

47,11

44,40

52,44

48,81

65,66

59,38

84,59

81,16

84,96

81,71

88,50

87,98

89,94

81,56

9

11,80

11,21

11,35

9,88

13,85

14,46

13,96

13,77

16,51

15,72

20,64

21,01

20,78

20,89

47,09

45,15

52,19

48,46

66,33

59,47

83,05

80,93

84,73

81,94

88,24

88,05

89,75

81,35

4.8.2 Таблицы 5 и 6 содержат средние значения и внутриэлементные расхождения, рассчитанные, как описано в 4.5.1, только для уровня 14 (j = 14) этого эксперимента.

Использование уравнений (8) и (9) по 4.5.3 для определения расхождений, приведенных в таблице 5, дает:

D14 = 8,34 %,

sD14 = 0,4361 %,

а применяя уравнения (10) и (11) в 4.5.4 к средним значениям, приведенным в таблице 6, получим:

у14 = 85,46 %,

s14 = 0,4534 %,

и тогда стандартные отклонения повторяемости и воспроизводимости, согласно уравнениям (12) и (13), равны:

sr14 = 0,31 %,

sR14 = 0,50 %.

Таблица 5 - Пример 1. Расхождения в элементах для уровня 14

Номер лаборатории

Расхождение, %

Статистика h

1

8,14

-0,459

2

8,44

0,229

3

7,81

-1,215

4

9,31

2,224

5

8,13

-0,482

6

8,52

0,413

7

7,93

-0,940

8

8,38

0,092

9

8,40

0,138

Таблица 6 - Пример 1. Средние значения в элементах для уровня 14

Номер лаборатории

Расхождение, %

Статистика h

1

86,170

1,576

2

85,660

0,451

3

85,575

0,263

4

85,385

-0,156

5

84,525

-2,052

6

85,140

-0,696

7

85,345

-0,244

8

85,750

0,649

9

85,550

0,208

Таблица 7 дает результаты расчетов и для других уровней.

Таблица 7 - Пример 1. Средние значения, средние расхождения и стандартные отклонения, рассчитанные по данным для 14 уровней из таблицы 4

Уровень j

Число лабораторий р

Общее среднее значение уj, %

Среднее расхождение Dj, %

Стандартные отклонения, %

syj

sDj

srj

sRj

1

9

10,87

0,73

0,35

0,21

0,15

0,36

2

9

10,84

1,05

0,36

0,43

0,30

0,42

3

9

13,41

0,13

0,44

0,55

0,39

0,52

4

9

13,43

0,50

0,30

0,21

0,15

0,32

5

9

15,66

0,27

0,39

0,40

0,29

0,44

6

9

20,27

0,06

0,40

0,73

0,52

0,54

7

9

20,39

0,38

0,30

0,41

0,29

0,37

8

9

45,60

2,21

0,44

0,37

0,26

0,47

9

9

50,40

3,16

0,44

0,35

0,25

0,47

10

9

62,37

6,84

0,53

0,40

0,28

0,57

11

9

82,14

3,23

1,01

1,08

0,77

1,15

12

9

83,17

3,45

0,74

0,46

0,33

0,77

13

9

87,91

0,30

0,69

0,41

0,29

0,72

14

9

85,46

8,34

0,45

0,44

0,31

0,50

4.8.3 На рисунке 1 для уровня 14 представлены результаты для проб а из таблицы 4, расположенных напротив соответствующих результатов, полученных для проб b, в виде так называемой диаграммы Юдена («Youden plot»). Лаборатория № 5 дает точку в нижнем левом углу рисунка, а лаборатория № 1 - в верхнем правом углу. Это означает, что лаборатория № 5 имеет согласованную отрицательную систематическую погрешность по пробам а и b; данные лаборатории № 1 имеют согласованную положительную систематическую погрешность по двум пробам. Представление данных эксперимента с разделенными уровнями в виде подобных диаграмм является обычным для нахождения таких отклонений (как показано на рисунке 1). Рисунок также показывает, что результаты лаборатории № 4 необычны, так как точка этой лаборатории сравнительно далеко отстоит от линии равенства (баланса) для двух проб. Другие лаборатории формируют группу результатов в середине графика. Этот рисунок, таким образом, указывает, что целесообразно исследовать источники систематических погрешностей в трех лабораториях.

Примечание - Относительно интерпретации диаграмм Юдена, см. [2] и [3].

4.8.4 Значения статистики h, рассчитанные согласно 4.6.1, представлены в таблицах 5 и 6 только для уровня 14. Значения для всех остальных уровней представлены на рисунках 2 и 3.

Из рисунка 3, где представлена статистика h для средних значений элементов, видно, что лаборатория № 5 дала отрицательные значения статистики h на всех уровнях, что указывает на согласованную отрицательную систематическую погрешность ее данных. На этом же рисунке значения статистики h для лабораторий № 8 и № 9 почти всегда положительны, что указывает на согласованные положительные систематические погрешности их данных (меньшие, чем отрицательная систематическая погрешность в лаборатории № 5). Для лабораторий № 1, 2 и 6 статистика h свидетельствует о том, что в каждой из этих лабораторий систематическая погрешность изменяется в зависимости от уровня. Такая взаимосвязь между лабораториями и уровнями может стать ключом к пониманию источников лабораторных систематических погрешностей.

Рисунок 2 не обнаруживает достойных внимания отклонений или зависимостей.

4.8.5 Значения статистики Граббса даны в таблице 8. Эти данные вновь свидетельствуют, что результаты, полученные от лаборатории № 5, сомнительны.

4.8.6 На этом этапе анализа эксперт по статистике должен инициировать исследования в лаборатории № 5 по поиску возможных причин получения сомнительных данных перед дальнейшим анализом. Если причина не может быть установлена, то в этом случае целесообразно исключить все данные лаборатории № 5 из расчетов стандартных отклонений повторяемости и воспроизводимости. Анализ потом можно продолжить в направлении исследования возможной функциональной зависимости между стандартными отклонениями повторяемости и воспроизводимости и общим средним (по уровню). Этот вопрос рассмотрен уже в ГОСТ Р ИСО 5725-2, поэтому здесь он не рассматривается.

Таблица 8 - Пример 1. Значения статистики Граббса

Уровень

Статистика Граббса для расхождений

Статистика Граббса для средних значений

Одно наименьшее

Два наименьших

Два наибольших

Одно наибольшее

Одно наименьшее

Два наименьших

Два наибольших

Одно наибольшее

1

1,653

0,5081

0,3139

2,125

1,070

0,6607

0,1291* (6; 9)

1,832

2

1,418

0,3945

0,4738

1,535

1,318

0,6288

0,2118

2,165

3

1,462

0,3628

0,5323

1,379

1,621

0,4771

0,4077

1,680

4

1,490

0,5841

0,4771

1,414

1,591

0,5339

0,3807

1,429

5

2,033

0,3485

0,6075

1,289

1,794

0,4018

0,5009

1,333

6

1,456

0,5490

0,3210

1,947

1,291

0,4947

0,4095

1,386

7

1,185

0,6820

0,1712

2,296* (5)

1,599

0,5036

0,4391

1,470

8

0,996

0,7571

0,1418* (6; 8)

1,876

1,872

0,3753

0,4536

1,404

9

1,458

0,5002

0,3092

1,602

2,328* (5)

0,1317* (4; 5)

0,7417

1,025

10

1,474

0,3360

0,4578

1,737

2,456** (5)

-

-

1,000

11

1,422

0,5089

0,2943

1,865

1,756

0,2469

0,5759

1,472

12

1,418

0,6009

0,2899

1,956

2,037

0,1063* (5; 6)

0,7116

1,130

13

2,172

0,2325

0,6326

1,444

2,308* (5)

0,0733** (5; 6)

0,7777

0,994

14

1,215

0,6220

0,2362

2,224* (4)

2,052

0,2781

0,5486

1,576

Примечание - в скобках указаны номера лабораторий, давших квазивыбросы или выбросы. Ниже приведены критические значения статистики Граббса для девяти лабораторий, применяемые как к расхождениям, так и к средним значениям.


* Квазивыброс

** Выброс

Для одного выброса

2,215 0

2,387 0

Для пары выбросов

0,149 2

0,085 1

Рисунок 1 - Пример 1. Данные, полученные на уровне 14

Рисунок 2 - Пример 1. Проверка совместимости по внутриэлементным расхождениям (сгруппированным по лабораториям)

Рисунок 3 - Пример 1. Проверка совместимости по средним значениям в элементах (сгруппированным по лабораториям)

5 Модель эксперимента для гетерогенного материала

5.1 Применение модели

5.1.1 Примером гетерогенного материала является кожа. Нет двух одинаковых шкур, а свойства кожи существенно меняются в пределах одной шкуры. Обычное испытание, которое применяют для кожи, это испытание на прочность по BS 3144 [4]. Испытание проводят на вырезанных из шкуры фрагментах (BS 3144 определяет число таких фрагментов, а также их расположение и ориентацию по шкуре так, чтобы естественным определением «пробы» при испытаниях кожи стала вся шкура). Если эксперимент по оценке прецизионности выполняют по модели с однородными уровнями, описанной в ГОСТ Р ИСО 5725-2, в соответствии с которой в каждую лабораторию посылают по одной шкуре для каждого уровня эксперимента и получают по два результата по каждой шкуре, то различия между шкурами будут добавляться к межлабораторной вариации, таким образом увеличивая стандартное отклонение воспроизводимости. Однако если в каждую лабораторию посылают по две шкуры для каждого уровня и получают два результата по каждой шкуре, то эти данные могут быть использованы для оценки расхождений между шкурами и по ним может быть рассчитано стандартное отклонение воспроизводимости метода испытаний, из значения которого различие между самими шкурами исключено.

5.1.2 Другим примером гетерогенного материала является гравий (который может быть использован, например, для производства бетона). Обычно под воздействием ветра или воды в нижнем пласте содержится гравий различных фракций, и их распределение по размеру представляет особый интерес. В технологии производства бетона распределение гравия по фракциям контролируют ситовым анализом (например, согласно BS 812-103 [5]). Для испытаний сначала отбирают пробу гравия определенного объема, затем из нее готовят одну или более порций для испытаний. Типичными являются проба массой около 10 кг и навески для испытаний около 200 г. Естественная неоднородность материала приводит всегда к некоторым различиям между объемами проб, отобранных из одного и того же продукта. Отсюда, по аналогии с кожей, если эксперимент проводят по модели с однородными уровнями, в каждую лабораторию посылают пробы одного объема для каждого уровня, и тогда расхождения между пробами будут увеличивать рассчитанное стандартное отклонение воспроизводимости метода испытаний, но если в лаборатории посылают по две пробы для каждого уровня, тогда значения стандартного отклонения воспроизводимости могут быть рассчитаны так, что эти различия между пробами будут исключены.

5.1.3 Вышеприведенные примеры также ставят на первый план характеристику неоднородности гетерогенных материалов, так как из-за неоднородности материала (образца) приготовленные для испытаний фрагменты или порции могут быть важным источником расхождений. Так, в примере с кожей процесс вырезки фрагментов шкуры может оказать заметное влияние на измеряемое усилие при вырезке. Аналогично при испытаниях гравия на сите процесс приготовления навесок для испытаний из всего объема пробы обычно является главным источником расхождений результатов. Если образцы или навески (пробы) готовят для эксперимента по оценке прецизионности с отклонениями от нормальной практики (в попытке приготовить идентичные «пробы»), то значения стандартных отклонений повторяемости и воспроизводимости, полученные в эксперименте, не будут представлять различие между образцами, имеющее место на практике. Иногда желательно приготовить «идентичные» пробы, чтобы исключить, насколько это возможно, неоднородность материала (например для квалификационного испытания или когда эксперимент по оценке прецизионности используют как часть программы по исследованию метода измерений). Однако, когда целью эксперимента по оценке прецизионности является установление расхождения, которое будет иметь место на практике (например, когда поставщик и покупатель испытывают пробы одного и того же продукта), тогда расхождение, возникающее вследствие гетерогенности материала, необходимо включать в оценку прецизионности метода измерений.

Необходимо также предусмотреть, чтобы каждый результат в эксперименте был получен с соблюдением процедуры испытаний, независимо от других испытаний. Это будет не так, если отдельные стадии приготовления образцов будут выполняться совместно для нескольких образцов таким образом, что систематические или случайные погрешности, обусловленные стадией приготовления образцов, будут иметь общее влияние на результаты испытаний, полученные на этих образцах.

5.1.4 Модель для гетерогенных материалов, предложенная в пункте 5.1, дает информацию о различиях между пробами, которые не могут быть получены по модели с однородными уровнями, описанной в ГОСТ Р ИСО 5725-2. Конечно, неизбежны расходы, связанные с получением дополнительной информации, так как предлагаемая модель требует большего количества проб для испытаний. Но эта дополнительная информация может быть ценной. В примере с кожей, рассмотренном в 5.1.1, информация о неоднородности шкур может быть использована для принятия решения о том, сколько шкур необходимо для испытаний при отправке товара, или же, что лучше - испытывать больше шкур с небольшим количеством фрагментов от каждой шкуры или испытывать шкур поменьше, но с бóльшим количеством фрагментов от каждой шкуры. В примере с гравием, рассмотренном в 5.1.2, информация о различиях между пробами может быть использована для решения, является ли процедура отбора проб из большого объема удовлетворительной или нуждается в совершенствовании.

5.1.5 Модель, описанная в этом пункте, применима к экспериментам, включающим три фактора, расположенных в такой последовательности: «лаборатории» - как высочайший уровень в иерархии, фактор «пробы внутри лабораторий» - как следующий уровень в иерархии и фактор «результаты испытаний в пределах проб» - самый низкий уровень в иерархии. Другой случай, с которым можно столкнуться на практике, - трехфакторная иерархия: «лаборатории» - как высочайший уровень, «результаты испытаний в пределах лабораторий» - как следующий уровень и «результаты параллельных определений в результатах испытаний» - как наинизший уровень. Этот случай может возникнуть, если лабораториям - участницам эксперимента по оценке прецизионности посылают по одной пробе гомогенного материала с просьбой о выполнении двух (возможно - более) испытаний на каждой пробе и если каждое испытание включает в себя некоторое число определений, а результаты испытаний рассчитывают как средние значения этих определений. К значениям, полученным в таком эксперименте, применимы формулы, приведенные в 5.5, 5.6 и 5.9, но стандартные отклонения повторяемости и воспроизводимости должны быть рассчитаны несколько иным способом, который приведен в примечании 2 к 5.5.5. Необходимо также правильно задавать число определений, подлежащих усреднению, для выдачи результата испытаний, так как это влияет на значения стандартных отклонений повторяемости и воспроизводимости.

5.2 План эксперимента

5.2.1 План эксперимента для гетерогенного материала представлен в таблице 9.

Каждую лабораторию из числа р, участвующую в эксперименте, обеспечивают двумя пробами на каждом из q уровней и получают два результата измерений по каждой пробе. Таким образом каждый элемент (ячейка) в эксперименте содержит четыре результата измерений (по два результата измерений для каждой из двух проб).

Эту простую модель можно обобщить на случай использования более чем двух проб на лабораторию и уровень или получение более чем двух результатов измерений по каждой пробе. Расчеты по более общей модели значительно сложнее, чем в случаях с двумя результатами измерений по каждой пробе или с двумя пробами на лабораторию и уровень. Однако принципы более общей модели остаются теми же, как и в случае простой модели, поэтому расчеты будут изложены здесь детально для простой модели. Формулы для расчетов стандартных отклонений повторяемости и воспроизводимости при использовании общей модели даны ниже в 5.9, а пример по их применению - в 5.10.

5.2.2 Данные эксперимента для гетерогенного материала обозначают yijtk, где i - номер лаборатории (i = 1, 2, ..., р´); j - уровень (j = 1, 2, ..., q); t - проба (t = 1, 2, ..., g); k - результат измерений (k = 1, 2, ..., n).

Обычно g = 2 и n = 2. В большинстве общих моделей g > 2 и n > 2 или оба - более двух.

Примечание - В ГОСТ Р ИСО 5725-1 и ГОСТ Р ИСО 5725-2 р используют как число лабораторий и как индекс в таблицах критических значений для критерия Кохрена: для модели эксперимента с однородными уровнями это одно и то же число. В модели для гетерогенного материала индекс для критерия Кохрена может быть кратен числу лабораторий, поэтому р´ используют здесь для обозначения числа лабораторий, а р - для индекса критерия Кохрена.

5.3 Организация эксперимента

5.3.1 При планировании эксперимента с гетерогенным материалом необходимо следовать руководству, изложенному в разделе 6 ГОСТ Р ИСО 5725-1. Дополнительный вопрос, который должен быть рассмотрен: сколько проб должно быть подготовлено для каждой лаборатории на каждом уровне?

Обычно с учетом затрат, потребуется две пробы для каждой лаборатории на каждом уровне.

Формулы, таблицы и рисунки в разделе 6 и приложении В ГОСТ Р ИСО 5725-1 могут быть использованы при выборе числа лабораторий, проб и параллельных определений, но с модификациями, изложенными в 5.3.2 до 5.3.5.

5.3.2 Неопределенность оценки стандартного отклонения повторяемости, полученной из эксперимента на гетерогенном материале, может быть оценена расчетом величины Аr (см. 6.3 ГОСТ Р ИСО 5725-1) по формуле

(16)

вместо определенной равенством (9) ГОСТ Р ИСО 5725-1. Однако вышеприведенная формула может быть получена заменой р в уравнении (9) ГОСТ Р ИСО 5725-1 на р´ ´ g. Значит, на рисунке В.1 данные для повторяемости под Аr в таблице 1 ГОСТ Р ИСО 5725-1 могут быть использованы для эксперимента с гетерогенным материалом внесением на рисунок или в таблицу величины p = р´ ´ g. В общем случае, когда g = 2, пробы, подготовленные для каждой лаборатории и каждого уровня, вносят в таблицу или на рисунок в ГОСТ Р ИСО 5725-1 с р = 2 р´.

Примечание - Формулы (16) для Аr и (17) для AR получены методом, описанным в примечании 24 ГОСТ Р ИСО 5725-1.

5.3.3 Неопределенность оценки стандартного отклонения воспроизводимости, полученной из эксперимента на гетерогенном материале, может быть оценена вычислением величины AR (см. 6.3 ГОСТ Р ИСО 5725-1) по формуле

(17)

вместо определенной уравнением (10) ГОСТ Р ИСО 5725-1,

где D1 = [ (g2 - 1) + (Ф2/g) + 1/ng]2/(p´ - 1);

D2 = [ (Ф2/g) + (l/ng)] 2/[p´(g - 1)];

D3 = 1/[р´ g (n - 1)];

Ф = sH/sr (sH определено в 5.4.1).

Поправка. ИУС 11-2003.

g = sR/sr. (18)

Величины Ф и g могут быть выведены из предварительных оценок стандартных отклонений sH, sR и sr, полученных в процессе стандартизации метода измерения.

5.3.4 Детальную организацию эксперимента с гетерогенным материалом осуществляют в соответствии с руководством, изложенным в разделах 5 и 6 ГОСТ Р ИСО 5725-2.

Подпункт 5.1.2 ГОСТ Р ИСО 5725-2 содержит требования для «группы из n испытаний» или «группы из п измерений» (например требование, что группа из п испытаний должна проводиться с соблюдением условий повторяемости). В эксперименте на гетерогенном материале эти требования относят к группе g ´ п испытаний в элементе, то есть ко всем испытаниям в одной лаборатории на одном уровне.

В эксперименте на гетерогенном материале число проб, которое должно быть приготовлено для каждого уровня, равно р´ ´ g (то есть 2 р´ в обычном случае, когда g = 2). Важно разместить эти р´ ´ g проб по лабораториям-участницам случайным образом.

5.4 Статистическая модель эксперимента с гетерогенным материалом

5.4.1 Основная модель, использованная в настоящем стандарте, описана в 4.1.1 равенством (3). Для эксперимента с гетерогенным материалом эта модель принимает вид

yijtk = mj + Bij + Hijt + eijtk. (19)

Члены т, В и е имеют те же значения, как и в равенстве (3), но равенство (19) содержит особый член Hijt, который означает различие между пробами (неоднородность проб), а индекс t - номер пробы в лабораториях (значения других индексов даны в 5.2.2).

Естественно полагать, что различие между пробами является случайной величиной, не зависящей от лаборатории, но оно может зависеть от уровня в эксперименте. Тогда член Нijt, имеет нулевое математическое ожидание и дисперсию

Var (Hijt) = s2Hj (20)

5.4.2 В обычном случае с двумя пробами для лаборатории и двумя результатами измерений для пробы (g = п = 2), определяют:

a) среднее для пробы и расхождения между результатами испытаний для лаборатории i, уровня j и пробы t (t = 1 или 2)

yijt = (yijt 1 + yijt 2)/2, (21)

wijt = | yijt 1 - yijt 2|; (22)

b) среднее для элемента и различие между пробами для лаборатории i и уровня j

yij = (yij 1 + yij 2)/2, (23)

wij = | yij 1 - yij 2|; (24)

с) общее среднее и стандартное отклонение средних для элементов на уровне j

, (25)

, (26)

где суммирование осуществляют по всем лабораториям i = 1, 2, ..., p´.

5.5 Статистический анализ данных эксперимента

5.5.1 В этом пункте детально рассматривают случай, когда для каждой лаборатории на каждом уровне приготовлены по две пробы и на каждой пробе получены два результата измерений (общий случай рассматривают в 5.9 и 5.10).

Группируют полученные данные в таблицу (см. таблицу 9). Каждая комбинация лаборатории и уровня образует «элемент» в этой таблице, содержащий четыре результата измерений.

Используя уравнения (21)-(26):

a) рассчитывают расхождения между результатами измерений и сводят их в таблицу (см. таблицу 10);

b) рассчитывают расхождения между пробами и сводят их в таблицу (см. таблицу 11);

c) рассчитывают средние для элементов и сводят их в таблицу (см. таблицу 12);

Записывают расхождения как положительные величины (то есть игнорируя знак).

Таблица 9 - Рекомендуемая форма для сопоставления данных эксперимента для гетерогенного материала

Номер лаборатории

Номер пробы

Уровень

1

2


j


q

Номер результата измерений

1

2

1

2


1

2


1

2

1

1







2

2

1







2









i

1







2









p´

1







2

Таблица 10 - Рекомендуемая форма для табулирования расхождений между результатами измерений в эксперименте для гетерогенного материала

Номер лаборатории

Номер пробы

Уровень

1

2


j


q

1

1







2

2

1







2









i

1







2









p´

1







2

Таблица 11 - Рекомендуемая форма для табулирования расхождений между пробами в эксперименте для гетерогенного материала

Номер лаборатории

Уровень

1

2


j


q

1







2














i














p´







Таблица 12 - Рекомендуемая форма для табулирования средних значений по элементам в эксперименте для гетерогенного материала

Номер лаборатории

Уровень

1

2


j


q

1







2














i














p´







5.5.2 Если элемент в таблице 9 содержит менее четырех результатов измерений (например, по причине порчи проб или исключения данных после применения методов контроля наличия выбросов, описанных ниже), тогда:

а) либо используют формулы для общего случая, приведенные ниже;

b) либо игнорируют все данные в элементе.

Альтернатива а) является предпочтительной. Выбор b) - бросовые данные, допускает применение простых формул.

5.5.3 Для каждого уровня j эксперимента рассчитывают:

a) сумму квадратов расхождений между результатами измерений в графе j таблицы 10 (суммируют по р´ лабораториям и двум пробам)

, (27)

b) сумму квадратов расхождений между пробами в графе j таблицы 11 (суммируют все р лабораторий)

, (28)

c) среднее значение и стандартное отклонение средних для элементов в графе j таблицы 12 с использованием уравнений (25) и (26).

5.5.4 Используют таблицы 10-12 и статистические результаты, рассчитанные по 5.5.3, чтобы оценить данные на однородность и наличие выбросов, как описано в 5.6. Если какие-то данные исключают, пересчитывают статистические результаты.

5.5.5 Рассчитывают стандартные отклонения повторяемости srj и воспроизводимости sRj, пользуясь формулами:

, (29)

. (30)

Если это дает

sRj < srj, (31)

тогда устанавливают

sRj = srj. (32)

Рассчитывают оценку стандартного отклонения sHj, являющегося мерой расхождения между пробами, по формуле