Товары в корзине: 0 шт Оформить заказ
Стр. 1 

28 страниц

456.00 ₽

Купить ГОСТ 30804.4.13-2013 — бумажный документ с голограммой и синими печатями. подробнее

Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО "ЦНТИ Нормоконтроль"

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

Способы доставки

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Устанавливает методы испытаний на помехоустойчивость и номенклатуру основных уровней испытательных сигналов на частотах не выше 2 кГц для электротехнических, электронных и радиоэлектронных изделий и оборудования с номинальным потребляемым током не более 16 А (в одной фазе).

 Скачать PDF

Модифицирован (MOD) IEC 61000-4-13:2002

Оглавление

1 Область применения и цель

2 Нормативные ссылки

3 Термины и определения

4 Общие положения

     4.1 Описание явлений

     4.2 Источники помех

5 Уровни испытательных сигналов

     5.1 Гармонические составляющие напряжения электропитания

     5.2 Интергармоники напряжения электропитания и сигналы, передаваемые по сетям

6 Испытательное оборудование

     6.1 Испытательный генератор

     6.2 Проверка характеристик испытательного генератора

7 Испытательная установка

8 Методы испытаний

     8.1 Процедуры испытаний

     8.2 Проведение испытаний

9 Оценка результатов испытаний

10 Протокол испытаний

Приложение А (справочное) Цепь полного сопротивления между источником напряжения и ИТС

Приложение В (справочное) Точка резонанса

Приложение С (справочное) Классы электромагнитной обстановки

Приложение ДА (справочное) Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам

Библиография

 
Дата введения01.01.2014
Добавлен в базу01.10.2014
Актуализация01.01.2021

Этот ГОСТ находится в:

Организации:

07.06.2013УтвержденМежгосударственный Совет по стандартизации, метрологии и сертификации43-2013
22.07.2013УтвержденРосстандарт405-ст
РазработанЗАО Научно-испытательный центр САМТЭС
РазработанТК 30 Электромагнитная совместимость технических средств
ИзданСтандартинформ2014 г.

Еlectromagnetic compatibility of technical equipment. Immunity to non-sinusoidal distortion of supply voltage including mains signalling. Requirements and test methods

Нормативные ссылки:
Стр. 1
стр. 1
Стр. 2
стр. 2
Стр. 3
стр. 3
Стр. 4
стр. 4
Стр. 5
стр. 5
Стр. 6
стр. 6
Стр. 7
стр. 7
Стр. 8
стр. 8
Стр. 9
стр. 9
Стр. 10
стр. 10
Стр. 11
стр. 11
Стр. 12
стр. 12
Стр. 13
стр. 13
Стр. 14
стр. 14
Стр. 15
стр. 15
Стр. 16
стр. 16
Стр. 17
стр. 17
Стр. 18
стр. 18
Стр. 19
стр. 19
Стр. 20
стр. 20
Стр. 21
стр. 21
Стр. 22
стр. 22
Стр. 23
стр. 23
Стр. 24
стр. 24
Стр. 25
стр. 25
Стр. 26
стр. 26
Стр. 27
стр. 27
Стр. 28
стр. 28

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ

(МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ

ГОСТ

30804.4.13—

СТАНДАРТ

2013

(IEC 61000-4-13:2002)

Совместимость технических средств электромагнитная

УСТОЙЧИВОСТЬ К ИСКАЖЕНИЯМ СИНУСОИДАЛЬНОСТИ НАПРЯЖЕНИЯ ЭЛЕКТРОПИТАНИЯ, ВКЛЮЧАЯ ПЕРЕДАЧУ СИГНАЛОВ ПО ЭЛЕКТРИЧЕСКИМ СЕТЯМ

Требования и методы испытаний

(IEC 61000-4-13:2002, MOD)

Издание официальное

Москва

Стандартинформ

2014

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

1    ПОДГОТОВЛЕН Закрытым акционерным обществом «Научно-испытательный центр «САМТЭС» и Техническим комитетом по стандартизации ТК 30 «Электромагнитная совместимость технических средств»

2    ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (Росстан-

дарт)

3    ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол №43—2013 от 7 июня 2013 г.)

За принятие стандарта проголосовали:

Краткое наименование страны по МК(ИС0 3166) 004-97

Код страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Беларусь

BY

Госстандарт Республики Беларусь

Кыргызстан

KG

Кыргызстандарт

Молдова

MD

М олд ова-Ста нд а рт

Российская Федерация

RU

Ростехрегул и рова н ие

Узбекистан

UZ

Агентство «Узстандарт»

Украина

UA

Госпотребстандарт Украины

4    Приказом Федерального агентства по техническому регулированию и метрологии от 22 июля 2013 года №405-ст межгосударственный стандарт ГОСТ 30804.4.13-2013 (IEC 61000-4-13:2002) введен в действие в качестве национального стандарта Российской Федерации с 1 января 2014 г.

5    Настоящий стандарт модифицирован по отношению к международному стандарту IEC 61000-4-13:2002 Electromagnetic compatibility (EMC) - Part 4—13: Testing and measurement techniques - Harmonics and interharmonics including mains signalling at a.c. power port, low frequency immunity tests (Электромагнитная совместимость (ЭМС). Часть 4—13. Методы испытаний и измерений. Гармоники и интергармоники, включая передачу сигналов по электрическим сетям, воздействующие на порт электропитания переменного тока, низкочастотные испытания на помехоустойчивость).

Международный стандарт IEC 61000-4-13:2002 разработан подкомитетом 77А «Низкочастотные электромагнитные явления» Технического комитета 77 IEC «Электромагнитная совместимость».

Перевод с английского языка (ел).

Наименование настоящего стандарта изменено относительно наименования международного стандарта для приведения в соответствие с ГОСТ 1.5-2001 (подраздел 3.6).

Ссылки на международные стандарты, которые приняты в качестве межгосударственных стандартов, заменены в разделе «Нормативные ссылки» и тексте стандарта ссылками на соответствующие межгосударственные стандарты.

Дополнительные фразы и слова, внесенные в текст стандарта для уточнения области распространения и объекта стандартизации, выделены полужирным курсивом.

Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам приведены в дополнительном приложении ДА.

Степень соответствия — модифицированная (MOD).

Стандарт разработан на основе применения ГОСТ Р 51317.4.13-2006 (МЭК 61000-4-13:2002)

6 ВВЕДЕН ВПЕРВЫЕ

Таблица 4 — Уровни испытательных сигналов для напряжений, частоты которых расположены между частотами гармонических составляющих

Полоса частот, ГЦ

Уровень испытательного сигнала, % от Ц, применительно к классу электромагнитной обстановки

Класс 1

Класс 2

Класс 3

Класс X

16—100

Требования не устанавливают

2,5

4

Открытый

100—500

Требования не устанавливают

5

9

Открытый

500—750

Требования не устанавливают

3,5

5

Открытый

750—1000

Требования не устанавливают

2

3

Открытый

1000—2000

Требования не устанавливают

1,5

2

Открытый

Примечания

1    Классы электромагнитной обстановки 1,2 и 3 см. в приложении С.

2    Для класса X уровни испытательных сигналов в настоящем стандарте не регламентированы. Данные уровни должны быть установлены техническими комитетами, разрабатывающими стандарты на ТС конкретного вида.

Уровни испытательных сигналов для испытаний на помехоустойчивость при воздействии напряжений сигналов, передаваемых по электрическим сетям на частотах более 100 Гц, являются одновременно и уровнями испытательных сигналов для интергармоник. Кроме того, устойчивость к интергармоникам и напряжениям сигналов проверяют испытаниями в соответствии с 8.2.4.

Уровни напряжений сигналов составляют от 2 % до 6 % напряжения основной частоты Ц. Уровни интергармоник на дискретных частотах составляют около 0,5 % Ц (в отсутствие резонанса). Для класса электромагнитной обстановки 3 (промышленные электрические сети) эти уровни должны быть значительно выше.

6 Испытательное оборудование

6.1 Испытательный генератор

Испытательный генератор (ИГ) должен иметь возможность генерировать необходимое напряжение основной частоты (50 Гц) с наложением на него напряжений гармонических составляющих и интергармоник с требуемыми частотами и фазовыми сдвигами. В ИГ должны быть предусмотрены меры по исключению значительной эмиссии гармоник и интергармоник в электрическую сеть, что может оказать влияние на результаты испытаний. Испытательные сигналы необходимого уровня в соответствии с таблицами 1-4 должны быть созданы на входном порте электропитания ИТС. Качество функционирования ТС при испытаниях на помехоустойчивость должно соответствовать критериям, установленным в стандарте на ТС конкретного вида или указанным изготовителем.

Характеристики ИГ должны соответствовать установленным в таблице 5.

Таблица 5 — Характеристики ИГ

Наименование параметра выходного тока (в одной фазе)

Значение параметра при функционирующем ИТС

при установленном напряжении

(см. примечание 1)

Напряжение основной составляющей Щ

- среднеквадратическое значение

Номинальное напряжение сети ± 2 % (для однофазных и трехфазных ИГ)

- частота 7,, Гц

(50 ± 0,5) %

- угол сдвига фаз, ... °

120° ± 1,5° (соединение звездой)

Окончание таблицы 5

Наименование параметра выходного тока (в одной фазе) при установленном напряжении

Значение параметра при функционирующем ИТС (см. примечание 1)

Генерация отдельных гармонических составляющих:

- порядок л

От 2 до 40

- напряжение^

диапазон значений погрешность установки

От 0 % до 14 % Ц

Большая из величин: ±5 %Un или 0,1 % Ц

- фазовый угол ср„ при п = 2 - 9

0°; 180° (см. примечание 2)

- погрешность установки момента пересечения нуля относительно основной составляющей напряжения электропитания, ... °

± 2° относительно основной составляющей

Генерация комбинации гармонических составляющих:

См. примечание 3

- частоты между гармоническими составляющими

См. примечание 4

- напряжения:

диапазон значений

ОтО %до 10 %Ц

погрешность установки

Большая из величин: ±5 %Un или 0,1 % Ц

- частоты:

полоса настройки

от 0,33 f, до 40 fA

шаг настройки:

f = (0,33-2)^

<о,ц

f = (2-20)fi

<0,2 ^

f > 2Щ

<0,5 Ц

- максимальная погрешность установки частоты

±0,5 % ^

Внутреннее сопротивление ИГ

См. примечание 5

Внешняя цепь полного сопротивления

См. примечание 6

Примечания

1    ИГ должен обладать достаточной выходной мощностью для проведения испытаний ТС или для подачи максимального номинального потребляемого тока, равного 16 А (на фазу) (среднеквадратичное значение). В стандартах на группы однородной продукции или на продукцию конкретного вида могут быть установлены иные значения потребляемого тока.

2    ср„ —фазовый сдвиг между положительным пересечением нулевого уровня напряжением основной составляющей и напряжением гармонической составляющей, выраженный в градусах фазы напряжения гармонической составляющей.

3    ИГ должен обеспечивать подачу более чем одного напряжения в одной фазе.

4    Должна быть обеспечена возможность управления ИГ для выбора выходного напряжения, частоты, сдвига фаз, последовательности подаваемых напряжений.

5    Значение внутреннего сопротивления ИГ не нормируется, так как внутренний источник напряжения должен быть сконструирован так, чтобы падение напряжения на внутреннем сопротивлении ИГ было компенсировано и испытательное напряжение устанавливалось на входном порте ИТС. Соединительные проводники должны быть максимально короткими.

6    Для определения возможных резонансов, возбуждаемых гармоническими составляющими напряжения, может быть использована цепь внешнего последовательного полного сопротивления. Для этого может быть использовано полное сопротивление по [2] (см. приложение А).

6.2 Проверка характеристик испытательного генератора

Перед проведением испытаний характеристики выходного напряжения ИГ должны быть проверены. Для проверки характеристик ИГ применяют анализатор формы сигналов, соответствующий требованиям ГОСТ30804.4.7, класс А. Для качественного анализа работы ИГ рекомендуется использование осциллографа.

Проверка характеристик ИГ должна проводиться с применением резистивной нагрузки, сопротивление которой равно входному сопротивлению ТС.

При подаче напряжения основной частоты от ИГ на ИТС гармонические искажения не должны превышать значений, установленных в ГОСТ 30804.3.2, приложение А. Максимально допустимые гармонические искажения при подаче испытательных сигналов приведены в таблице 6.

Таблица 6 — Максимально допустимые гармонические искажения

Порядок гармонической составляющей п

%и.|

3

0,9

5

0,4

7

0,3

9

0,2

2—10 (четные гармоники)

0,2

11—40

0,1

Амплитудное значение напряжения основной составляющей на выходе ИГ должно составлять от 1,4 до 1,42 действующего значения и находиться в пределах фазового угла 87° — 93° от момента прохождения напряжения через нуль. Максимальное изменение выходного напряжения ИГ при работе без нагрузки и с максимальным током, потребляемым ТС, не должно превышать ± 2 % номинального напряжения электропитания.

Характеристики ИГ, приведенные в 6.1, соответствуют испытательному генератору с низким внутренним сопротивлением. Для упрощения процедуры проверки в соответствии с 6.2 характеристики ИГ проверяют при отсутствии внешней цепи полного сопротивления.

7 Испытательная установка

При испытаниях ТС на устойчивость к гармоническим составляющим и интергармоникам напряжения электропитания помимо ИГ (см. раздел 6) применяют следующие средства испытаний:

-    анализатор формы сигналов для проверки характеристик испытательных сигналов на входе ТС;

-    управляющее устройство (персональный компьютер) для формирования выбранной последовательности напряжений гармонических составляющих и интергармоник, накладываемых на напряжение основной частоты при проведении испытаний;

-    принтер или графопостроитель для фиксации последовательности испытательных сигналов;

-    осциллограф для наблюдения за характером испытательных сигналов.

Некоторые из этих устройств могут быть объединены в одном корпусе.

Схемы установок для испытаний ТС на устойчивость к воздействию гармонических составляющих и интергармоник напряжения электропитания приведены на рисунках 1 (для однофазных ИГ) и 2 (для трехфазных ИГ).

8


Электрическая сеть


L — фазный проводник; N — нейтральный проводник; РЕ — проводник защитного заземления; и — измеряемое напряжения; / — измеряемая сила тока


Рисунок 1 — Схема испытательной установки с использованием однофазного ИГ


Электрическая р-сеть


N ■ РЕ-


Генератор форм сигналов


Источник переменного тока


Источник переменного тока

Источник переменного тока

(

(

L2

J

V ___1

ч

J

V

___1

N

(

РЕ

(

J

~\и *

J

"|и ^

j

11

Средство измерений


ИТС


Ц, /_2, /-3 — фазные проводники; N — нейтральный проводник; РЕ — проводник защитного заземления; и — измеряемое напряжения; / - измеряемая сила тока


Рисунок 2 — Схема испытательной установки с использованием трехфазного ИГ


9


8 Методы испытаний

8.1    Процедуры испытаний

8.1.1    Климатические условия

Если иное не установлено техническими комитетами, ответственными за разработку общих стандартов или стандартов на ТС конкретного вида, климатические условия при испытаниях должны соответствовать условиям, установленным изготовителями ИТС и испытательного оборудования. Испытания не проводят, если уровень относительной влажности вызывает конденсацию влаги на ИТС или испытательном оборудовании.

8.1.2    План испытаний

Испытания проводят в соответствии с планом испытаний, который должен быть включен в протокол испытаний ТС.

В план испытаний включают описание ИТС, а также сведения о:

-    входных портах электропитания ТС, на которые должны быть поданы испытательные сигналы;

-    подключаемых периферийных устройствах и применяемых соединительных кабелях;

-    представительных режимах функционирования ИТС;

-    видах и уровнях испытательных сигналов и критериях качества функционирования ТС при испытаниях;

-    испытательной установке.

Для отработки плана испытаний могут быть проведены предварительные испытания. При отсутствии источников сигналов, обеспечивающих функционирование ИТС, допускается заменять их имитаторами. При проведении испытаний контролируют качество функционирования ИТС во время и после окончания подачи помех. Оборудование, используемое при проведении контроля, должно быть способно установить любые изменения режима и характеристик функционирования ТС. После завершения каждой группы испытаний следует проводить проверку функциональных характеристик ИТС.

8.2    Проведение испытаний

Рекомендуемые алгоритмы проведения испытаний приведены на рисунках 3 и 4. Применение данных алгоритмов позволяет сократить длительность и обеспечить воспроизводимость результатов испытаний. При их применении следует иметь в виду, что уровни испытательных сигналов при проведении испытаний «Комбинация гармонических составляющих» и «Перестройка частоты» превышают соответствующие уровни при проведении испытаний «Отдельные гармонические составляющие и интергармоники».

8.2.1 Испытания «Комбинация гармонических составляющих»

При испытаниях ТС, непосредственно подключаемых к низковольтным электрическим сетям общего назначения, применяют напряжение электропитания 220 В1).

При проведении данных испытаний ИТС последовательно подвергают воздействию двух комбинаций гармонических составляющих напряжения: «ограниченная синусоида» и «треугольные импульсы». Время воздействия на ИТС каждой из комбинаций должно быть 2 мин. Характеристики комбинаций гармонических составляющих напряжения «ограниченная синусоида» и «треугольные импульсы» приведены в таблицах 7 и 8 соответственно. Формы испытательных сигналов (зависимости выходного напряжения ИГ от времени) при испытаниях «ограниченная синусоида» и «треугольные импульсы» приведены на рисунках 5 и 6.

При испытаниях на устойчивость к комбинации гармонических составляющих напряжения «ограниченная синусоида» каждый полупериод выходного напряжения ИГ состоит из трех участков (см. таблицу 7 и рисунок 5):

-    участка синусоидальной зависимости напряжения от времени от значения, равного нулю, до значения, составляющего 90 % амплитуды синусоиды для класса электромагнитной обстановки 2 и 80 % амплитуды синусоиды —для класса электромагнитной обстановки 3;

^ В соответствии с номинальным напряжением низковольтных электрических сетей общего назначения.

10


Рисунок 3 — Рекомендуемый алгоритм проведения испытаний (классы электромагнитной обстановки 1 и 2)


11



Рисунок 4 — Рекомендуемый алгоритм проведения испытаний (класс электромагнитной обстановки 3)


12


ГОСТ 30804.4.13-2013

-    участка постоянного напряжения;

-    участка синусоидальной зависимости от времени до значения, равного нулю.

Комбинация гармонических составляющих напряжения «треугольные импульсы» образуется путем добавления к напряжению основной частоты соответствующих напряжений 3-й и 5-й гармонических составляющих с установленными фазовыми углами (см. таблицу 8 и рисунок 6).

Таблица 7 — Характеристики комбинации гармонических составляющих «ограниченная синусоида»

Функция (участки 1 иЗ)

Напряжение (участки 1 и 3)

Функция (участок 2)

Напряжение (участок 2)

Класс

электромагнитной

обстановки

0 < sin(cof)| < 0,95

и = Ц>/2 sin(co()

0,95 < |sin(cof)| < 1

и = ±0,9Up/2

1

0 < sin(cof) < 0,9

и = (71>/2sin((»()

0,9 < |sin(cof)| < 1

и = ±0,9Ц>/2

2

0 < sin(cof) < 0,8

и = Ц>/2 sin(cof)

0,8 < |sin(cof)| < 1

и = ±0,8Ц>/2

3

0 < sin(cof) < X

и = sin(cof)

X < |sin(cof)| < 1

и = ±ХЦл/2

X

Примечания

1    Классы электромагнитной обстановки 1, 2 и 3 см. в приложении С.

2    Для класса X уровни испытательных сигналов в настоящем стандарте не регламентированы. Данные уровни должны быть установлены техническими комитетами, разрабатывающими стандарты на ТС конкретного вида. При этом для ТС, получающих питание от общественных распределительных электрических сетей низкого напряжения, уровни испытательных сигналов должны быть не ниже установленных для класса 2.

3    Максимальное отклонение Аи составляет ±(о,011/|>/2 + 0,005и).

Рисунок 5 — Форма испытательного сигнала при испытаниях «ограниченная синусоида»

13

Таблица 8 —Характеристики комбинации гармонических составляющих «треугольные импульсы»

Уровень гармонической составляющей, % от Ц / фазовый сдвиг, ...°

Класс электромагнитной обстановки

Гармоническая составляющая 3-го порядка

Гармоническая составляющая 5-го порядка

4 %/180 °

3 %/0 °

1

6 %/180 °

4 %/0 °

2

8 %/180 °

5 %/0 °

3

Х/180 °

Х/0 °

X


Примечания

1    Классы электромагнитной обстановки 1,2 и 3 см. в приложении С.

2    Для класса X уровни испытательных сигналов в настоящем стандарте не регламентированы. Данные уровни должны быть установлены техническими комитетами, разрабатывающими стандарты на ТС конкретного вида. При этом для ТС, получающих питание от общественных распределительных электрических сетей низкого напряжения, уровни испытательных сигналов должны быть не ниже установленных для класса 2.


Рисунок 6 — Форма испытательного сигнала при испытаниях «треугольные импульсы»


14


ГОСТ 30804.4.13-2013

8.2.2 Испытания «Перестройка частоты»

Примечания

1    Классы электромагнитной обстановки 1, 2 и 3 см. в приложении С.

2    Для класса X уровни испытательных сигналов в настоящем стандарте не регламентированы. Данные уровни должны быть установлены техническими комитетами, разрабатывающими стандарты на ТС конкретного вида. При этом для ТС, получающих питание от общественных распределительных электрических сетей низкого напряжения, уровни испытательных сигналов должны быть не ниже установленных для класса 2.


Рисунок 7 — Пример перестройки частоты при испытаниях ТС (класс электромагнитной обстановки 2)


При проведении данных испытаний амплитуда гармонических составляющих напряжения, суммируемых с напряжением основной частоты, изменяется в зависимости от частоты (см. таблицу 9 и рисунок 7).

Таблица 9 — Характеристики испытаний «Перестройка частоты»

Полоса

частот

Шаг изменения частоты

Класс электромагнитной обстановки

1

2

3

X

Уровень испытательного сигнала, % от Ц

ч^Г

СМ

1

со

со

о"

0,17,

2

3

4,5

Открытый

27, — ЮЛ,

0,27,

5

9

14

Открытый

Щ—20^

0,27,

4

4,5

9

Открытый

N)

0 -Г*»

1

00

о

-Г*»

0,57,

2

2

6

Открытый

О

со

1

О

'чГ

0,57,

2

2

4

Открытый

15

ГОСТ 30804.4.13-2013

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет

© Стандартинформ, 2014

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Скорость непрерывной или шаговой перестройки частоты должна быть такой, чтобы время перестройки в полосе частот, составляющей одну декаду, было не менее 5 мин. Перестройка частоты должна прекращаться в точках нарушения функционирования ИТС или возникновения резонансных явлений на время не менее 2 мин.

К точке резонанса относят значение частоты fpe3 при выполнении условий, указанных ниже.

Если сила тока при постоянной амплитуде напряжения гармонической составляющей или интергармоники достигает максимального значения при некоторой частоте fQ и уменьшается по крайней мере на 3 дБ при сдвиге частоты от f0 до \5f0, то частота f0 должна считаться резонансной частотой fpe3.

Если максимальная сила тока выявлена и при сдвиге частоты от^рез до 1,5fpe3 происходят изменения напряжения, проводят поиск резонансной частоты при меньшем, но постоянном напряжении. Резонансные частоты следует определить после проведения испытаний «Перестройка частоты».

Дополнительные сведения об определении резонансных частот приведены в приложении В.

8.2.3    Испытания «Отдельные гармонические составляющие и интергармоники»

В полосе частот от 2Ц до 40^ синусоидальные напряжения отдельных гармонических составляющих с амплитудами в соответствии с таблицами 1—3 должны быть наложены на основную составляющую ил. Гармоническое напряжение каждой частоты прикладывают в течение 5 с. Для перехода к следующей гармонической составляющей устанавливают интервал 1 с. При проведении испытаний на устойчивость к интергармоникам (см. таблицу 4) шаг изменения частоты устанавливают в соответствии с таблицей 9. Воздействие на каждой частоте осуществляют в течение 5 с. Интервал для перехода к следующему воздействию равен 1 с.

Действующее значение результирующего напряжения во время проведения испытаний должно поддерживаться постоянным.

8.2.4    Испытания «Последовательность Мейстера»

Если ТС предусматривается подключать к электрическим сетям, по которым осуществляется передача низкочастотных сигналов, проводят испытания «Последовательность Мейстера». При проведении данных испытаний время изменения частоты в полосе, составляющей одну декаду (с применением аналоговой или цифровой перестройки частоты), должно составлять не менее 5 мин. Шаг изменения частоты устанавливают в соответствии с таблицей 10. Уровни испытательных напряжений должны соответствовать значениям, установленным в таблице 11.

Таблица 10 — Шаг изменения частоты при испытаниях на устойчивость к интергармоникам и испытаниях «Последовательность Мейстера»

Полоса частот

Шаг изменения частоты

0,33^ —2Ц

o’

N)

-Г*»

О

-Г*»

О

N)

-Г*»

0

-Г*»

1

N)

О

-Г*»

О

N)

-Г*»

N)

0

1

-Рь

о

-Г*»

О

сл

-Г*»

Таблица 11 —Уровни испытательных напряжений при испытаниях «Последовательность Мейстера»

Полоса

частот

Шаг

изменения

частоты

Класс электромагнитной обстановки

1

2

3

X

Уровень испытательного сигнала, % от Ц

0,33^1 — 2^1

0,1/^

Испытания не проводят

3

4

Открытый

2/^ —Щ

0,2/^

Испытания не проводят

9

10

Открытый

ГОСТ 30804.4.13-2013

Содержание

1    Область применения и цель............................................................1

2    Нормативные ссылки..................................................................2

3    Термины и определения...............................................................2

4    Общие положения....................................................................2

4.1    Описание явлений................................................................2

4.2    Источники помех..................................................................3

5    Уровни испытательных сигналов........................................................3

5.1    Гармонические составляющие напряжения электропитания..............................3

5.2    Интергармоники напряжения электропитания и сигналы, передаваемые по электрическим

сетям...........................................................................5

6    Испытательное оборудование..........................................................6

6.1    Испытательный генератор..........................................................6

6.2    Проверка характеристик испытательного генератора....................................8

7    Испытательная установка..............................................................8

8    Методы испытаний...................................................................10

8.1    Процедуры испытаний............................................................10

8.2    Проведение испытаний...........................................................10

9    Оценка результатов испытаний........................................................17

10    Протокол испытаний................................................................18

Приложение А (справочное) Цепь полного сопротивления между источником напряжения и ИТС. ... 19

Приложение В (справочное) Точка резонанса...............................................19

Приложение С (справочное) Классы электромагнитной обстановки............................20

Приложение ДА (справочное) Сведения о соответствии межгосударственных стандартов

ссылочным международным стандартам....................................21

Библиография........................................................................21

IV

ГОСТ 30804.4.13-2013

Введение

Стандарты серии IEC 61000 публикуются отдельными частями в соответствии со следующей структурой:

-    часть 1.Основы:

общее рассмотрение (введение, фундаментальные принципы), определения, терминология;

-    часть 2. Электромагнитная обстановка:

описание электромагнитной обстановки, классификация электромагнитной обстановки, уровни электромагнитной совместимости;

-    часть 3. Нормы:

нормы помехоэмиссии, нормы помехоустойчивости (в случаях, если они не являются предметом рассмотрения техническими комитетами, разрабатывающими стандарты на продукцию);

-    часть 4. Методы испытаний и измерений:

методы измерений, методы испытаний;

-    часть 5. Руководства по установке и помехоподавлению:

руководства по установке, руководства по помехоподавлению;

-    часть 6. Общие стандарты;

-    часть 9. Разное.

Каждая часть подразделяется на разделы, которые могут быть опубликованы как международные стандарты либо как технические условия или технические отчеты. Некоторые из указанных разделов опубликованы. Другие будут опубликованы с указанием номера части, за которым следует дефис, а затем номер, указывающий раздел (например, 61000-6-1).

Международный стандарт IEC 61000-4-13:2002 представляет собой основополагающий стандарт в области ЭМС, устанавливающий требования помехоустойчивости и методы испытаний, относящиеся к воздействию на порт электропитания переменного тока гармонических составляющих напряжения, интергармоник напряжения и сигналов, передаваемых по электрическим сетям.

V

МЕЖГОСУДАРСТВЕННЫ ЙСТАНДАРТ

Совместимость технических средств электромагнитная

УСТОЙЧИВОСТЬ К ИСКАЖЕНИЯМ СИНУСОИДАЛЬНОСТИ НАПРЯЖЕНИЯ ЭЛЕКТРОПИТАНИЯ,

ВКЛЮЧАЯ ПЕРЕДАЧУ СИГНАЛОВ ПО ЭЛЕКТРИЧЕСКИМ СЕТЯМ

Требования и методы испытаний

Electromagnetic compatibility of technical equipment.

Immunity to non-sinusoidal distortion of supply voltage including mains signalling. Requirements and test methods

Дата введения — 2014—01—01

1 Область применения и цель

Настоящий стандарт устанавливает методы испытаний на помехоустойчивость и номенклатуру основных уровней испытательных сигналов на частотах не выше 2 кГц для электротехнических, электронных и радиоэлектронных^ изделий и оборудования с номинальным потребляемым током не более 16 А (в одной фазе) (далее — технические средства), подключаемых к низковольтным системам электроснабжения, подвергающихся воздействию гармонических составляющих и интергармоник напряжения, а также сигналов, передаваемых по электрическим сетям.

Настоящий стандарт не распространяется на технические средства (ТС), подключаемые к электрическим сетям частотой 16 2/3 или 400 Гц.

Цель настоящего стандарта заключается в установлении общих правил определения функциональной устойчивости ТС при искажениях синусоидальности напряжения электропитания в части воздействия на ТС гармонических составляющих напряжения электропитания, интергармоник напряжения и сигналов, передаваемых по электрическим сетям. Согласованный метод испытаний, установленный в настоящем стандарте, позволяет оценить устойчивость ТС к электромагнитным помехам данных видов (далее — помехи). В соответствии с [1] настоящий стандарт представляет собой основополагающий стандарт в области электромагнитной совместимости, предназначенный для применения техническими комитетами МЭК, разрабатывающими стандарты на продукцию. Технические комитеты МЭК, разрабатывающие стандарты на продукцию, несут ответственность за обоснование необходимости применения требований помехоустойчивости настоящего стандарта для ТС конкретного вида, а также за выбор соответствующих степеней жесткости испытаний на помехоустойчивость и критериев качества функционирования.

Требования настоящего стандарта не распространяются на проверку надежности электрических компонентов (например, конденсаторов, фильтров и т.д.). Настоящий стандарт также не распространяется на тепловые эффекты длительного действия (более 15 мин).

Установленные в настоящем стандарте виды испытательных сигналов и степени жесткости испытаний в наибольшей степени соответствуют условиям электромагнитной обстановки жилых, коммерческих зон и производственных зон с малым энергопотреблением. Для условий электромагнитной обстановки промышленных зон техническими комитетами МЭК, разрабатывающими стандарты на продукцию, могут быть определены уровни испытательных сигналов применительно к классу электромагнитной обстановки X (см. раздел 5 настоящего стандарта), а также более сложные формы испытательных сигналов. Следует, однако, учитывать, что установленные в настоящем стандарте простые формы

^ Радиоэлектронные изделия и оборудование выделены из состава электронных изделий и оборудования в целях соблюдения принятой терминологии

Издание официальное

испытательных сигналов практически наблюдались в различных электрических сетях, включая сети промышленных предприятий. При этом искажения синусоидальности напряжения электропитания вида «ограниченная синусоида» наиболее часто наблюдались в однофазных электрических сетях, искажения вида «треугольные импульсы» - в трехфазных системах.

2    Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 30372-95 Совместимость технических средств электромагнитная. Термины и

определения ГОСТ 30804.3.2-2013 (IEC 61000-3-2:2009) Совместимость технических

средств электромагнитная. Эмиссия гармонических составляющих тока техническими средствами с потребляемым током не более 16 А (в одной фазе). Нормы и методы испытаний

ГОСТ30804.4.7—2013 (IEC 61000-4-7:2009) Совместимость технических средств электромагнитная. Общее руководство по средствам измерений и измерениям гармоник и интергармоник для систем электроснабжения и подключаемых к ним технических средств

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим выпускам ежемесячно издаваемого информационного указателя за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3    Термины и определения

В настоящем стандарте применены термины по ГОСТ30372, а также следующие термины с соответствующими определениями:

3.1    устойчивость к помехе, помехоустойчивость (immunity): Способность ТС функционировать без ухудшения при наличии электромагнитных помех.

3.2    гармоническая составляющая [harmonic (component)]: Составляющая порядка выше, чем первый ряда Фурье периодической величины.

3.3    основная составляющая [fundamental (component)]: Составляющая первого порядка ряда Фурье периодической величины.

3.4    форма испытательного сигнала «ограниченная синусоида» (flat curve waveshape): Форма сигнала, представляющего собой периодическую функцию времени, в которой каждая половина волны состоит из трех частей:

-    части 1, начинающейся от нуля и следующей синусоидальной функции до достижения установленного значения;

-    части 2, представляющей собой постоянную величину;

-    части 3, следующей уменьшающейся синусоидальной функции до нуля.

3.5    форма испытательного сигнала «треугольные импульсы» (overswing waveshape): Форма сигнала, образованного основной составляющей напряжения и 3-й и 5-й гармоническими составляющими с определенными фазовыми сдвигами.

3.6    частоты сигналов (mains signalling frequencies): Частоты сигналов, передаваемых по электрической сети, применяемых для обеспечения связи и управления, расположенные между частотами гармонических составляющих.

4    Общие положения

4.1    Описание явлений

4.1.1    Гармонические составляющие

Помехи, представляющие собой синусоидальные напряжения и токи с частотами, кратными частоте электрической сети, обычно создаются ТС с нелинейной вольтамперной характеристикой или в результате периодической коммутации нагрузки, синхронизированной с частотой электрической сети. Указанные ТС могут рассматриваться как источники гармонических составляющих тока. Гармонические составляющие тока, создаваемые различными источниками, вызывают на полном сопротив-

2

ГОСТ 30804.4.13-2013

лении электрической сети соответствующие гармонические составляющие напряжения. В результате влияния электрической емкости и индуктивности кабелей и подключения конденсаторов для коррекции коэффициента мощности в электрической сети могут возникнуть параллельные и последовательные резонансы, что приводит к увеличению гармонических составляющих напряжений, в том числе в точках электрической сети, удаленных от источников помех. Возможно также суммирование гармонических составляющих напряжения от различных источников, что учитывается при установлении требований устойчивости ТС к искажениям синусоидальности напряжения электропитания в настоящем стандарте.

4.1.2    Интергармоники

На частотах, расположенных между частотами гармонических составляющих тока и напряжения, могут наблюдаться интергармоники. Интергармоники могут возникать на дискретных частотах или иметь спектральные составляющие в достаточно широкой полосе частот. Суммарное воздействие различных источников интергармоник маловероятно и в настоящем стандарте не учитывается.

4.1.3    Сигналы, передаваемые по электрическим сетям

Для передачи информации из одного пункта передачи в один или несколько пунктов приема с использованием электрических сетей обычно применяются сигналы на частотах от 110 Гц до 3 кГц. В настоящем стандарте полоса частот сигналов, передаваемых по электрическим сетям, ограничена частотой 2 кГц.

4.2 Источники помех

4.2.1    Гармонические составляющие

Гармонические составляющие тока в меньшей степени вызываются оборудованием, применяемым при генерации, передаче и распределении электрической энергии, и в большей степени — промышленными нагрузками, такими как, например, исполнительные механизмы систем управления. Возможны случаи, когда значительные гармонические составляющие тока генерируют несколько источников, а уровень гармонических токов, создаваемых другими нагрузками, незначителен, однако они могут вносить относительно высокий вклад в искажения синусоидальности напряжения, по крайней мере, для гармоник низкого порядка благодаря их суммированию. Значительные гармонические составляющие тока в электрических сетях могут создаваться нелинейными нагрузками, например управляемыми и неуправляемыми выпрямителями, особенно с емкостными сглаживающими фильтрами (например, источниками питания телевизоров и компьютеров, статическими преобразователями частоты и устройствами регулирования световых приборов с фазовым управлением), т.к. в этом случае гармонические токи различных источников приблизительно синфазны и их компенсация в сети отсутствует. В зависимости от режима работы источники могут создавать гармонические составляющие напряжения постоянного и меняющегося уровня.

4.2.2    Интергармоники

Токи и напряжения интергармоник могут возникать как в низковольтных электрических сетях, так и в сетях среднего и высокого напряжения. Интергармоники, возникающие в электрических сетях среднего и высокого напряжения, передаются в питаемые ими низковольтные электрические сети. Возможен обратный процесс передачи интергармоник из электрических сетей низкого напряжения в сети среднего и высокого напряжения.

4.2.3    Сигналы, передаваемые по электрическим сетям

Источниками сигналов, передаваемых по электрическим сетям, на частотах, соответствующих области применения настоящего стандарта (от 110 Гц до 2 кГц), являются передатчики сигналов, используемые главным образом поставщиками электрической энергии для управления оборудованием, применяемым в электрических сетях (включение уличного освещения в населенных пунктах, изменение тарифов в счетчиках электрической энергии и т.д.). Передаваемые сигналы могут вводиться в системы энергоснабжения высокого, среднего и низкого напряжения. Передатчики сигналов передают прерывистые сигналы и действуют обычно в течение короткого интервала времени. Применяемые частоты расположены, как правило, между частотами гармонических составляющих.

5 Уровни испытательных сигналов

Уровни испытательных сигналов, установленные в настоящем стандарте, представляют собой значения гармонических составляющих напряжения электропитания, выраженные в процентах от напряжения основной составляющей. В качестве основы для установления указанных уровней принято номинальное значение напряжения основной составляющей Ц.

5.1 Гармонические составляющие напряжения электропитания

Предпочтительные уровни испытательных сигналов применительно к индивидуальным гармоническим составляющим напряжения приведены в таблицах 1—3.

3

При проведении испытаний среднеквадратичное значение напряжения, подаваемого на входной порт электропитания испытуемого ТС (ИТС), поддерживают постоянным и равным номинальному напряжению электропитания (например, 220 В).

Применяемые для ТС конкретного вида уровни испытательных сигналов должны быть выше, чем уровни электромагнитной совместимости для соответствующего класса электромагнитной обстановки (например, в 1,5 раза).

Уровни электромагнитной совместимости для гармонических составляющих напряжения электропитания порядка п приведены в [2].

Гармонические напряжения до 9-й гармоники включительно при испытательных уровнях более 3 % должны быть поданы при фазовых сдвигах 0° и 180° по отношению к положительному пересечению нулевого уровня напряжением основной составляющей. Гармонические напряжения при испытательных уровнях не более 3 % должны быть поданы без сдвига относительно положительного пересечения нулевого уровня напряжением основной составляющей.

Порядок применения испытательных сигналов для многофазных ИТС - в соответствии с 8.2.5.

Таблица 1 — Уровни испытательных сигналов для нечетных гармонических составляющих напряжения, не кратных трем

Порядок гармонической составляющей п

Уровень испытательного сигнала, % от Ц, применительно к классам электромагнитной обстановки

Класс 1

Класс 2

Класс 3

Класс X

5

4,5

9

12

Открытый

7

4,5

7,5

10

Открытый

11

4,5

5

7

Открытый

13

4

4,5

7

Открытый

17

3

3

6

Открытый

19

2

2

6

Открытый

23

2

2

6

Открытый

25

2

2

6

Открытый

29

1,5

1,5

6

Открытый

31

1,5

1,5

3

Открытый

35

1,5

1,5

3

Открытый

37

1,5

1,5

3

Открытый

Примечания

1    Классы электромагнитной обстановки 1,2 и 3 см. в приложении С.

2    Для класса X уровни испытательных сигналов в настоящем стандарте не регламентированы. Данные уровни должны быть установлены техническими комитетами, разрабатывающими стандарты на ТС конкретного вида. При этом для ТС, получающих питание от общественных распределительных электрических сетей низкого напряжения, уровни испытательных сигналов должны быть не ниже установленных для класса 2.

Таблица 2 — Уровни испытательных сигналов для нечетных гармонических составляющих, кратных трем

Порядок гармонической составляющей п

Уровень испытательного сигнала, % от Ц, применительно к классам электромагнитной обстановки

Класс 1

Класс 2

Класс 3

Класс X

3

4,5

8

9

Открытый

9

2

2,5

4

Открытый

Окончание таблицы 2

Порядок гармонической составляющей п

Уровень испытательного сигнала, % от Ц, применительно к классам электромагнитной обстановки

Класс 1

Класс 2

Класс 3

Класс X

15

Требования не устанавливают

Требования не устанавливают

3

Открытый

21

Требования не устанавливают

Требования не устанавливают

2

Открытый

27

Требования не устанавливают

Требования не устанавливают

2

Открытый

33

Требования не устанавливают

Требования не устанавливают

2

Открытый

39

Требования не устанавливают

Требования не устанавливают

2

Открытый


Примечания

1    Классы электромагнитной обстановки 1, 2 и 3 см. в приложении С.

2    Для класса X уровни испытательных сигналов в настоящем стандарте не регламентированы. Данные уровни должны быть установлены техническими комитетами, разрабатывающими стандарты на ТС конкретного вида. При этом для ТС, получающих питание от общественных распределительных электрических сетей низкого напряжения, уровни испытательных сигналов должны быть не ниже установленных для класса 2.


Таблица 3 — Уровни испытательных сигналов для четных гармонических составляющих

Порядок гармонической составляющей п

Уровень испытательного сигнала, % от Ц, применительно к классам электромагнитной обстановки

Класс 1

Класс 2

Класс 3

Класс X

2

3

3

5

Открытый

4

1,5

1,5

2

Открытый

6

Требования не устанавливают

Требования не устанавливают

1,5

Открытый

8

Требования не устанавливают

Требования не устанавливают

1,5

Открытый

10

Требования не устанавливают

Требования не устанавливают

1,5

Открытый

12—40

Требования не устанавливают

Требования не устанавливают

1,5

Открытый


Примечания

1    Классы электромагнитной обстановки 1, 2 и 3 см. в приложении С.

2    Для класса X уровни испытательных сигналов в настоящем стандарте не регламентированы. Данные уровни должны быть установлены техническими комитетами, разрабатывающими стандарты на ТС конкретного вида. При этом для ТС, получающих питание от общественных распределительных электрических сетей низкого напряжения, уровни испытательных сигналов должны быть не ниже установленных для класса 2.


5.2 Интергармоники напряжения электропитания и сигналы, передаваемые по электрическим сетям

Предпочтительные уровни испытательных сигналов применительно к интергармоникам напряжения и сигналам, передаваемым по электрическим сетям, установлены в таблице 4.


5