Товары в корзине: 0 шт Оформить заказ
Стр. 1 

19 страниц

396.00 ₽

Купить ГОСТ 28353.3-2017 — бумажный документ с голограммой и синими печатями. подробнее

Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО "ЦНТИ Нормоконтроль"

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

Способы доставки

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Распространяется на серебро с массовой долей серебра не менее 99,5 %. Стандарт устанавливает метод атомно-абсорбционного определения массовой доли примесей: алюминия, висмута, железа, золота, кадмия, кобальта, магния, марганца, меди, мышьяка, никеля, олова, палладия, платины, родия, свинца, селена, сурьмы, теллура, титана, хрома и цинка в серебре.

 Скачать PDF

Оглавление

1 Область применения

2 Нормативные ссылки

3 Термины и определения

4 Сущность метода

5 Точность (правильность и прецизионность) метода

     5.1 Показатели точности метода

     5.2 Правильность

     5.3 Прецизионность

6 Требования

7 Средства измерений, вспомогательное оборудование, материалы, реактивы

     7.1 Средства измерений, вспомогательное оборудование

     7.2 Материалы

     7.3 Реактивы

8 Подготовка к анализу

     8.1 Приготовление основных растворов

     8.2 Приготовление промежуточных растворов

     8.3 Приготовление градуировочных образцов

     8.4 Подготовка графитовых трубок атомизатора

     8.5 Подготовка проб

     8.6 Подготовка спектрометра к работе

9 Проведение анализа

     9.1 Анализ с атомизацией проб в пламени

     9.2 Анализ с атомизацией проб в графитовом атомизаторе.

10 Оценка приемлемости результатов параллельных определений и получение окончательного результата анализа

11 Оформление результатов анализа (измерений)

12 Контроль точности результатов анализа

     12.1 Контроль промежуточной прецизионности и воспроизводимости

     12.2 Контроль правильности

Библиография

 
Дата введения01.02.2019
Добавлен в базу01.01.2019
Актуализация01.01.2021

Этот ГОСТ находится в:

Организации:

30.11.2017УтвержденМежгосударственный Совет по стандартизации, метрологии и сертификации52
28.09.2018УтвержденФедеральное агентство по техническому регулированию и метрологии667-ст
РазработанОАО Красноярский завод цветных металлов имени В.Н. Гулидова
РазработанАО Екатеринбургский завод по обработке цветных металлов
РазработанМТК 304 Благородные металлы, сплавы и промышленные изделия из них
ИзданСтандартинформ2018 г.
РазработанГосударственный научный центр - Государственный научно-исследовательский и проектный институт редкометаллической промышленности Гиредмет
РазработанОАО Иргиредмет

Silver. Method of atomic-absorption analysis

Нормативные ссылки:
Стр. 1
стр. 1
Стр. 2
стр. 2
Стр. 3
стр. 3
Стр. 4
стр. 4
Стр. 5
стр. 5
Стр. 6
стр. 6
Стр. 7
стр. 7
Стр. 8
стр. 8
Стр. 9
стр. 9
Стр. 10
стр. 10
Стр. 11
стр. 11
Стр. 12
стр. 12
Стр. 13
стр. 13
Стр. 14
стр. 14
Стр. 15
стр. 15
Стр. 16
стр. 16
Стр. 17
стр. 17
Стр. 18
стр. 18
Стр. 19
стр. 19

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ

(МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION

(ISC)


МЕЖГОСУДАРСТВЕННЫЙ

СТАНДАРТ


ГОСТ

28353.3-

2017


СЕРЕБРО

Метод атомно-абсорбционного анализа


Издание официальное


Москва

Стандартинформ

2018


Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Порядок разработки, принятия, обновления и отмены»

Сведения о стандарте

1    ПОДГОТОВЛЕН Межгосударственным комитетом по стандартизации МТК 304 «Благородные металлы, сплавы и промышленные ювелирные изделия из них», Открытым акционерным обществом «Иргиредмет», Государственным научным центром — Государственный научно-исследовательский и проектный институт редкометаллической промышленности «Гиредмет», Открытым акционерным обществом «Красноярский завод цветных металлов имени В.Н. Гулидова», Акционерным обществом «Екатеринбургский завод по обработке цветных металлов»

2    ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3    ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 ноября 2017 г. № 52)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97

Код страны по МК (ИСО 3166) 004—97

Сокращенное наименование национального органа по стандартизации

Армения

AM

Минэкономразвития Республики Армения

Беларусь

BY

Госстандарт Республики Беларусь

Казахстан

KZ

Госстандарт Республики Казахстан

Киргизия

KG

Кыргызстандарт

Россия

RU

Росстандарт

Узбекистан

UZ

Узстандарт

4    Приказом Федерального агентства по техническому регулированию и метрологии от 28 сентября 2018 г. № 667-ст межгосударственный стандарт ГОСТ 28353.3-2017 введен в действие в качестве национального стандарта Российской Федерации с 1 февраля 2019 г.

5    Настоящий стандарт подготовлен на основе применения ГОСТ Р 56308-20141

6    ВЗАМЕН ГОСТ 28353.3-89

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Погрешность определения массовой концентрации каждого элемента в растворе составляет ±0,005 мг/см3.

8.1.6 Раствор с массовой концентрацией титана 2 мг/см3

Навеску титана массой 0,2 г взвешивают с погрешностью не более +0,0003 г и растворяют в 20 см3 раствора соляной кислоты 1:1 при нагревании в стакане вместимостью 250 см3, закрытом часовым стеклом, не доводя до кипения. Раствор соляной кислоты прибавляют порциями по 5 см3 до полного растворения титана. Раствор охлаждают, переносят в мерную колбу вместимостью 100 см3, доводят объем до метки раствором соляной кислоты 1:5 и перемешивают.

Погрешность определения массовой концентрации титана в растворе составляет ±0,005 мг/см3.

Допускается использование других методик приготовления основных растворов, а также использование готовых стандартных или аттестованных растворов при условии получения метрологических характеристик, не уступающих указанным в таблице 2.

8.2 Приготовление промежуточных растворов

8.2.1    Раствор А. В мерную колбу вместимостью 100 см3 помещают по 5 см3 одноэлементных основных растворов, содержащих 2 мг/см3 висмута, железа, золота, кобальта, меди, никеля, палладия, платины, родия, свинца, сурьмы и цинка. Объем раствора доводят до метки раствором соляной кислоты 1:5 и перемешивают.

Массовая концентрация каждого из перечисленных элементов в растворе составляет 100,0 мкг/см3.

Погрешность определения массовой концентрации каждого элемента в растворе составляет ±1,1 мкг/см3.

8.2.2    Раствор Б. В мерную колбу вместимостью 100 см3 помещают 10 см3 раствора А. Объем раствора доводят до метки раствором соляной кислоты 1:5 и перемешивают.

Массовая концентрация каждого из перечисленных элементов в растворе составляет 10,00 мкг/см3.

Погрешность определения массовой концентрации каждого элемента в растворе составляет ±0,15 мкг/см3.

8.2.3    Раствор А1. В мерную колбу вместимостью 100 см3 помещают по 5 см3 одноэлементных основных растворов, содержащих 2 мг/см3 алюминия, кадмия, магния, марганца, мышьяка, олова, селена,теллура,титана и хрома.

Объем раствора доводят до метки раствором соляной кислоты 1:5 и перемешивают.

Массовая концентрация каждого из перечисленных элементов в растворе составляет 100,0 мкг/см3.

Погрешность определения массовой концентрации каждого элемента в растворе составляет ±1,1 мкг/см3.

8.2.4    Раствор Б1. В мерную колбу вместимостью 100 см3 помещают 10 см3 раствора А1. Объем до метки доводят раствором соляной кислоты 1:5 и перемешивают.

Массовая концентрация каждого из перечисленных элементов в растворе составляет 10,00 мкг/см3.

Погрешность определения массовой концентрации каждого элемента в растворе составляет ±0,15 мкг/см3.

8.2.5    Промежуточные растворы устойчивы в течение месяца при массовой концентрации элементов 100,0 мкг/см3 и в течение пяти дней при массовой концентрации элементов 10,00 мкг/см3.

На емкостях с растворами должны быть наклеены этикетки с указанием наименования или условного обозначения элементов, массовой концентрации элементов и предела абсолютной погрешности ее установления, даты приготовления и срока хранения раствора.

8.3 Приготовление градуировочных образцов

Для определения градуировочной характеристики используют градуировочные образцы — растворы массовой концентрацией определяемых элементов до 5,0 мкг/см3.

8.3.1 Градуировочные образцы для пламенной атомизации

В мерные колбы вместимостью 25 см3 каждая пипетками отбирают аликвотные части промежуточных растворов А, А1 или Б, Б1 (таблица 3), доводят до метки раствором соляной кислоты 1:5 и перемешивают. В качестве фонового раствора используют раствор соляной кислоты 1:5.

Таблица 3 — Градуировочные образцы

Обозначение градуировочного образца

Обозначение промежуточного раствора

Вводимый объем промежуточного раствора, см3

Массовая концентрация элементов, мкг/см3

ГО-1

Б, Б1

0,5

0,200

ГО-2

Б, Б1

1,25

0,50

ГО-3

Б, Б1

2,5

1,00

ГО-4

Б, Б1

5,0

2,00

ГО-5

А, А1

1,25

5,00

8.3.2 Градуировочные образцы для атомизации в графитовом атомизаторе

8.3.2.1    Растворы с массовыми концентрациями алюминия, висмута, мышьяка, олова, платины, селена, свинца, сурьмы, титана и теллура 0,2; 0,4; 0,6; 1,0 мкг/см3.

Четыре навески серебра высокой чистоты массой 0,5 г каждая взвешивают с погрешностью не более +0,0003 г, каждую помещают в стакан вместимостью 250 см3, прибавляют по 10 см3 раствора соляной кислоты 1:1 и кипятят в течение от 5 до 10 мин. Растворы сливают, навески промывают водой от 6 до 7 раз декантацией. Добавляют 10 см3 раствора азотной кислоты 1:1 и растворяют при слабом нагревании. В стаканы вводят по 1,0; 2,0; 3,0 и 5,0 см3 растворов Б и Б1, добавляют горячей воды до объема 150 см3, прибавляют по 2 см3 соляной кислоты и далее приготовление растворов ведут по 8.5. Растворы помещают в мерные колбы вместимостью 50 см3 каждая, доводят водой до метки и перемешивают.

8.3.2.2    Растворы с массовыми концентрациями определяемых элементов 0,1; 0,2; 0,3; 0,5 мкг/см3.

В мерные колбы вместимостью 25 см3 каждая помещают по 5 см3 растворов по 8.3.2.1, прибавляют при помощи пипетки по 5 см3 раствора винной кислоты при определении сурьмы или по 5 см3 раствора соляной кислоты 1:20 при определении алюминия, висмута, мышьяка, олова, платины, селена, свинца, титана и теллура и перемешивают. До метки не доводят.

8.3.2.3    Растворы с массовыми концентрациями определяемых элементов 0,01; 0,02; 0,03; 0,05 мкг/см3.

Пипеткой отбирают по 2,5 см3 растворов с массовыми концентрациями элементов 0,1; 0,2; 0,3 и 0,5 мкг/см3, приготовленных по 8.3.2.2, помещают в мерные колбы вместимостью 25 см3 каждая, доводят до метки раствором соляной кислоты 1:7 и перемешивают.

8.3.3    Градуировочные образцы готовят в день использования и хранят не более двух дней. На емкостях с растворами должны быть наклеены этикетки с указанием наименования или условного обозначения элементов, массовой концентрации элементов и предела абсолютной погрешности ее установления, даты приготовления и срока хранения раствора.

Допускается использование других способов приготовления растворов при условии получения метрологических характеристик, не уступающих указанным в таблице 2.

8.4 Подготовка графитовых трубок атомизатора

Обработку графитовых трубок и платформ оксидом ниобия проводят следующим образом: графитовые трубки и платформы погружают в водную суспензию оксида ниобия, выдерживают в течение от 2 до 3 ч, вынимают и высушивают в сушильном шкафу в течение 1 ч при температуре от 100 °С до 110 °С. Затем трубки с платформами подвергают тепловой обработке в графитовом атомизаторе: высушивают в течение 60 с при температуре 100 °С, обжигают в течение 30 с при температуре 1000 °С и 10 с— при температуре 2650 °С в потоке инертного газа. Цикл температурной обработки повторяют не менее трех раз.

Обработку графитовых трубок раствором вольфрамовокислого натрия проводят следующим образом: графитовые трубки погружают в раствор вольфрамовокислого натрия и оставляют на время от 10 до 12 ч, затем высушивают в сушильном шкафу в течение от 3 до 4 ч. Перед анализом трубки обжигают в графитовом атомизаторе: высушивают 60 с при температуре 100 °С, обжигают 30 с при температуре 400 °С, медленно нагревают в течение 90 с до температуры 2200 °С и выдерживают при этой температуре 10 с. Цикл повторяют не менее трех раз.

9

8.5 Подготовка проб

8.5.1 Две навески серебра массой от 0,2 до 2,5 г взвешивают с погрешностью не более +0,0003 г (таблица 4), каждую из которых помещают в стакан вместимостью 250 см3, прибавляют от 10 до 20 смраствора соляной кислоты 1:1 и кипятят в течение от 5 до 10 мин. Растворы сливают, навески промывают водой от 6 до 7 раз декантацией.

Таблица 4 — Зависимость массы навески от содержания элементов

Диапазон массовых долей элементов, %

Масса навески, г

От 0,00010 до 0,00050 включ.

2,0—2,5

Св. 0,00050 до 0,0020 включ.

О

L

о

Св. 0,0020 до 0,010 включ.

0 сл

1 о

Св. 0,010 до 0,040 включ.

0,2—0,5

К навеске прибавляют 10 см3 раствора азотной кислоты 1:1 и растворяют при слабом нагревании до полного растворения пробы. Прибавляют 5 см3 соляной кислоты, растворяют золото и родий при слабом нагревании в течение от 3 до 5 мин. Затем добавляют горячую воду до объема от 100 до 150 см3 и сразу фильтруют в стакан вместимостью 250 см3 через фильтр «синяя лента», предварительно промытый от 4 до 5 раз горячим раствором соляной кислоты 1:100 и от 2 до 3 раз горячей водой, не перенося осадок хлорида серебра на фильтр. Осадок промывают декантацией от 5 до 6 раз горячим раствором соляной кислоты 1:100. Полученный раствор (фильтрат 1) упаривают до объема от 2 до 3 см3.

8.5.2    Фильтр помещают в стакан с осадком хлорида серебра, прибавляют по 10 см3 серной и азотной кислот, выдерживают при комнатной температуре до прекращения бурной реакции, затем нагревают до выделения густых паров серного ангидрида. Стакан переставляют на переднюю часть плиты, осторожно по стенке стакана прибавляют от 4 до 5 капель азотной кислоты и снова нагревают до выделения густых паров серного ангидрида. Операцию добавления азотной кислоты повторяют до полного растворения хлорида серебра. Раствор упаривают до влажных солей, охлаждают, прибавляют 10 см3 азотной кислоты, от 50 до 100 см3 горячей воды и нагревают до растворения солей. Прибавляют к раствору 3 см3 соляной кислоты и сразу фильтруют в стакан с фильтратом 1 через фильтр «синяя лента», предварительно промытый, как указано в 8.5.1. Осадок промывают декантацией от 5 до 6 раз горячим раствором соляной кислоты 1:100. Полученный раствор упаривают до объема от 2 до 3 см3.

8.5.3    К упаренному раствору прибавляют 3 см3 соляной кислоты, раствор переносят в мерную колбу вместимостью 25 или 50 см3, доводят водой до метки и перемешивают.

Полученный раствор поступает на анализ.

Одновременно через все стадии подготовки проб проводят два контрольных опыта на чистоту реактивов.

8.5.4    Определение железа, золота, кобальта, меди, мышьяка, никеля, платины, теллура и цинка допускается проводить без переосаждения хлорида серебра из фильтрата 1 после разбавления раствора, как указано в 8.5.3.

8.6 Подготовка спектрометра к работе

Атомно-абсорбционный спектрометр подготавливают к работе согласно эксплуатационным документам прибора.

9 Проведение анализа

9.1 Анализ с атомизацией проб в пламени

Для определения висмута, железа, золота, кадмия, кобальта, магния, марганца, меди, мышьяка, никеля, палладия, платины, родия, свинца, селена, сурьмы, теллура, цинка используют пламя пропан-бутан-воздух или ацетилен-воздух; для определения хрома используют пламя ацетилен-воздух (восстановительное пламя, обогащенное горючим газом).

10

ГОСТ 28353.3-2017

При определении родия и платины в растворы вводят буферный раствор сернокислого кадмия: в колбу вместимостью 25 см3 помещают 5 см3 анализируемого раствора или градуировочного образца, добавляют 5 см3 буферного раствора и перемешивают.

Последовательность распыления в пламя газовой горелки градуировочных образцов, растворов контрольного опыта и растворов анализируемых проб проводят в соответствии с программным обеспечением спектрометра.

Длины волн аналитических линий приведены в таблице 5.

Таблица 5 — Длины волн аналитических линий

В нанометрах

Определяемый

элемент

Длина волны аналитической линии

Определяемый

элемент

Длина волны аналитической линии

Висмут

223,06

Палладий

247,64

Железо

248,83

Платина

265,94

Золото

242,80

Родий

343,49

Кадмий

228,8

Свинец

283,31

Кобальт

240,72

Селен

196,0

Магний

285,2

Сурьма

217,58

Марганец

279,48

Теллур

214,28

Медь

324,75

Хром

357,9

Мышьяк

193,70

Цинк

213,86

Никель

232,0

Допускается использование других аналитических линий при условии получения показателей точности, не уступающих указанным в таблице 2.

Градуировочные характеристики получают, используя градуировочные образцы, приготовленные по 8.3.1. По градуировочным характеристикам находят массовую концентрацию определяемого элемента в анализируемом растворе.

Если значение поглощения для анализируемой пробы превосходит значение поглощения, соответствующее линейному участку градуировочной характеристики, раствор пробы разбавляют раствором соляной кислоты 1:7.

9.2 Анализ с атомизацией проб в графитовом атомизаторе

Для определения висмута, мышьяка, платины, свинца, селена, сурьмы и теллура при содержании менее 0,005 %, а также алюминия, олова и титана во всем диапазоне определяемых содержаний применяют атомизацию проб в графитовом атомизаторе (кювете). Последовательность процедуры анализа — в соответствии с программным обеспечением спектрометра. Условия атомизации в графитовом атомизаторе HGA-74 приведены в таблице 6.

Таблица 6 — Условия атомизации в графитовом атомизаторе

Опреде

ляемый

элемент

Длина

ВОЛНЫ,

нм

Высушивание

Озоление

Атомизация

Дополнительные

условия

Температура, °С

Время, с

Температура, °С

Время,

с

Температура, °С

Время,

с

Платина

265,9

130

15

1300

10

2650

Ramp-0

2

Трубка пиролитическая*

Мышьяк

193,7

130

15

1200

10

2500

Ramp-0

2

Трубка пиролитическая*

Висмут

306,8

130

15

900

10

2100

Ramp-1

3

Трубка пиролитическая*

11

Окончание таблицы 6

Опреде

ляемый

элемент

Длина

ВОЛНЫ,

нм

Высушивание

Озоление

Атомизация

Дополнительные

условия

Температура, °С

Время, с

Температура, °С

Время,

с

Температура, °С

Время,

c

Теллур

214,3

130

15

1000

10

2100

Ramp-0

2

Трубка пиролитическая*

Селен

196,0

130

15

1000

10

2100

Ramp-0

2

Трубка пиролитическая*

Сурьма

217,6

130

15

1100

10

2400

Ramp-0

2

В растворы добавляют винную кислоту**

Олово

286,3

200

15

1200

10

2400

Ramp-0

2

Трубка обработана раствором Na2W04

Свинец

283,3

130

15

850

10

1800

Ramp-0

2

Трубка пиролитическая с пиролитической платформой

Алюминий

309,3

130

15

1700

10

2650

Ramp-0

3

Трубка пиролитическая с пиролитической платформой

Титан

364,3

130

15

1400

10

2650

Ramp-0

4

Трубка пиролитическая

Примечание — Для других типов графитовых атомизаторов условия атомизации выбирают экспериментально.

Допускается использование других режимов при условии получения показателей точности, не уступающих указанным в таблице 2.

* Трубка и платформа обработаны пятиокисью ниобия Nb2Os. В атомизатор вводится 0,01 см3 раствора Ni(N03)2.

** В колбу вместимостью 25 см3 отбирают 2 см3 раствора пробы или градуировочного образца, добавляют 2 см3 раствора винной кислоты и перемешивают.


Градуировочные характеристики получают, используя градуировочные образцы, приготовленные по 8.3.2. По градуировочным характеристикам находят массовую концентрацию определяемого элемента в анализируемом растворе.

Если величина поглощения для анализируемой пробы превосходит величину поглощения, соответствующую линейному участку градуировочной характеристики, раствор пробы разбавляют. Для разбавления раствора пробы при определении висмута, мышьяка, олова, платины, селена, свинца, сурьмы, теллура и титана используют раствор соляной кислоты 1:20. При определении алюминия раствор разбавляют водой.

10 Оценка приемлемости результатов параллельных определений и получение окончательного результата анализа

10.1 Массовую долю определяемого элемента X, %, вычисляют по формуле

=хк)УК

т10000 ’    К)

где Сх — значение массовой концентрации определяемого элемента в анализируемом растворе, полученное по градуировочной характеристике, мкг/см3;

Ск — среднеарифметическое значение двух результатов параллельных определений массовой концентрации элемента в растворах контрольного опыта, мкг/см3;

V—объем анализируемого раствора пробы, см3;

ГОСТ 28353.3-2017

К— коэффициент разбавления анализируемого раствора; m — масса навески пробы, г.

10.2 Приемлемость результатов параллельных определений оценивают по ГОСТ ИСО 5725-6 путем сопоставления абсолютного расхождения двух результатов параллельных определений rk со значением предела повторяемости г, приведенным в таблице 2.

Если rk не превышает г, то два результата параллельных определений признают приемлемыми и за окончательный результат анализа принимают их среднеарифметическое значение.

Если rk превышает г, то проводят еще два параллельных определения. Если при этом диапазон четырех результатов параллельных определений (Xmax_-Xmin) не превышает критический диапазон для л = 4, CRQ g5 (4), то за окончательный результат анализа принимают среднеарифметическое значение четырех результатов параллельных определений.

Критический диапазон CRQ g5(4) вычисляют по формуле

CR0,95 (4) = f (4) ■ Sr,    (3)

где f(4) = 3,6 — коэффициент критического диапазона для четырех параллельных определений;

Sr — стандартное отклонение повторяемости, значения которого приведены в таблице 2.

Если диапазон четырех результатов параллельных определений превышает CR0 95 (4), то за окончательный результат анализа принимают медиану четырех результатов параллельных определений.

11    Оформление результатов анализа (измерений)

Результат анализа (измерений) представляют в виде:

Х± А при Р = 0,95,    (4)

где X— массовая доля определяемого элемента, %;

А — граница интервала абсолютной погрешности определения массовой доли элемента при Р = 0,95, %. Значения А приведены в таблице 2.

При этом численное значение результата анализа округляют до разряда, в котором записана последняя значащая цифра его погрешности в соответствии с таблицей 2.

12    Контроль точности результатов анализа

12.1    Контроль промежуточной прецизионности и воспроизводимости

При контроле промежуточной прецизионности (с изменяющимися факторами оператора и времени) абсолютное значение разности двух результатов анализа одной и той же пробы, полученных разными операторами с использованием одного и того же оборудования в разные дни, не должно превышать предел промежуточной прецизионности R^T0), указанный в таблице 2.

При контроле воспроизводимости абсолютное значение разности двух результатов анализа одной и той же пробы, полученных двумя лабораториями в соответствии с требованиями настоящего стандарта, не должно превышать предел воспроизводимости R, указанный в таблице 2.

12.2    Контроль правильности

Контроль правильности проводят путем анализа образцов для контроля (ОК) и контрольных проб.

При контроле правильности абсолютное значение разности между результатом анализа и опорным значением массовой доли элемента в образце для контроля или контрольной пробе не должно превышать критического значения К.

Критическое значение К вычисляют по формуле

К = ^AqK +    ,    (5)

где Док — погрешность опорного значения массовой доли элемента в ОК или контрольной пробе, %;

А — значение показателя точности результата анализа, соответствующее опорному значению массовой доли элемента в ОК или контрольной пробе, %.

Значения А приведены в таблице 2.

13

Библиография

[1] Рекомендации по межгосударственной стандартизации РМГ61—2010

Государственная система обеспечения единства измерений. Показатели точности, правильности, прецизионности методик количественного химического анализа. Методы оценки

14


УДК 669.214;543.06;543.42; 311.214: 006.354    МКС    77.120.99

Ключевые слова: серебро, примеси, элементы, атомно-абсорбционный метод анализа, атомизация в пламени, атомизация в графитовом атомизаторе, градуировочные образцы, контроль точности результатов анализа, правильность, прецизионность

15

БЗ 11—2018/23

Редактор Р.Г. Говердовская Технический редактор И.Е. Черепкова Корректор Е.Д. Дульнева Компьютерная верстка И.А. Налейкиной

Сдано в набор 01.10.2018. Подписано в печать 15.10.2018. Формат 60><841/8. Гарнитура Ариал.

Уел. печ. л. 2,32. Уч.-изд. л. 2,10.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

Создано в единичном исполнении ФГУП «СТАНДАРТИНФОРМ» для комплектования Федерального информационного фонда стандартов, 117418 Москва, Нахимовский пр-т, д. 31, к. 2. www.gostinfo.ru info@gostinfo.ru

ГОСТ 28353.3-2017

Содержание

1    Область применения.............................................................

2    Нормативные ссылки.............................................................

3    Термины и определения..........................................................

4    Сущность метода................................................................

5    Точность(правильность и прецизионность) метода....................................

5.1    Показатели точности метода...................................................

5.2    Правильность...............................................................

5.3    Прецизионность..............................................................

6    Требования.....................................................................

7    Средства измерений, вспомогательное оборудование, материалы, реактивы..............

7.1    Средства измерений, вспомогательное оборудование..............................

7.2    Материалы..................................................................

7.3    Реактивы...................................................................

8    Подготовка к анализу.............................................................

8.1    Приготовление основных растворов.............................................

8.2    Приготовление промежуточных растворов........................................

8.3    Приготовление градуировочных образцов........................................

8.4    Подготовка графитовых трубок атомизатора......................................

8.5    Подготовка проб.............................................................

8.6    Подготовка спектрометра к работе..............................................

9    Проведение анализа.............................................................

9.1    Анализ с атомизацией проб в пламени...........................................

9.2    Анализ с атомизацией проб в графитовом атомизаторе.............................

10    Оценка приемлемости результатов параллельных определений и получение окончательного

результата анализа.............................................................

11    Оформление результатов анализа (измерений)......................................

12    Контроль точности результатов анализа............................................

12.1    Контроль промежуточной прецизионности и воспроизводимости...................

12.2    Контроль правильности.....................................................

Библиография....................................................................

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
СЕРЕБРО
Метод атомно-абсорбционного анализа

Silver. Method of atomic-absorption analysis

Дата введения — 2019—02—01

1    Область применения

Настоящий стандарт распространяется на серебро с массовой долей серебра не менее 99,5 %. Стандарт устанавливает метод атомно-абсорбционного определения массовой доли примесей: алюминия, висмута, железа, золота, кадмия, кобальта, магния, марганца, меди, мышьяка, никеля, олова, палладия, платины, родия, свинца, селена, сурьмы, теллура, титана, хрома и цинка в серебре.

2    Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ OIML R 76-1—20111) Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания ГОСТ 123-2008 Кобальт. Технические условия ГОСТ 804-93 Магний первичный в чушках. Технические условия ГОСТ 849-2008 Никель первичный. Технические условия ГОСТ 859-2014 Медь. Марки ГОСТ 860-75 Олово. Технические условия ГОСТ 1089-82 Сурьма. Технические условия ГОСТ 1467-93 Кадмий. Технические условия

ГОСТ 1770-74 (ИСО 1042—83, ИСО 4788) Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия ГОСТ 3640-94 Цинк. Технические условия ГОСТ 3778-98 Свинец. Технические условия

ГОСТ 4055-78 Реактивы. Никель (II) азотнокислый 6-водный. Технические условия ГОСТ 4456-75 Реактивы. Кадмий сернокислый. Технические условия ГОСТ 5457-75 Ацетилен растворенный и газообразный технический. Технические условия ГОСТ ИСО 5725-1-20032) Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения

ГОСТ ИСО 5725-3-20033) Точность (правильность и прецизионность) методов и результатов измерений. Часть 3. Промежуточные показатели прецизионности стандартного метода измерений

^ В Российской Федерации действует ГОСТ Р 53228-2008 «Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания».

2)    В Российской Федерации наряду с вышеуказанным действует ГОСТ Р ИСО 5725-1-2002 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения».

3)    В Российской Федерации наряду с вышеуказанным действует ГОСТ Р ИСО 5725-3-2002 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 3. Промежуточные показатели прецизионности стандартного метода измерений».

Издание официальное

ГОСТ ИСО 5725-4-20032) Точность (правильность и прецизионность) методов и результатов измерений. Часть 4. Основные методы определения правильности стандартного метода измерений ГОСТ ИСО 5725-6-20033) Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике ГОСТ 5817-77 Реактивы. Кислота винная. Технические условия

ГОСТ 5905-2004 (ИСО 10387:1994) Хром металлический. Технические требования и условия поставки

ГОСТ 6008-90 Марганец металлический и марганец азотированный. Технические условия

ГОСТ 10157-2016 Аргон газообразный и жидкий. Технические условия

ГОСТ 10298-79 Селен технический. Технические условия

ГОСТ 10928-90 Висмут. Технические условия

ГОСТ 11069-2001 Алюминий первичный. Марки

ГОСТ 11125-84 Кислота азотная особой чистоты. Технические условия

ГОСТ 12342-2015 Родий аффинированный в порошке. Технические условия

ГОСТ 13610-79 Железо карбонильное радиотехническое. Технические условия

ГОСТ 14261-77 Кислота соляная особой чистоты. Технические условия

ГОСТ 14262-78 Кислота серная особой чистоты. Технические условия

ГОСТ 17614-80 Теллур технический. Технические условия

ГОСТ 17746-96 Титан губчатый. Технические условия

ГОСТ 18289-78 Реактивы. Натрий вольфрамовокислый 2-водный. Технические условия ГОСТ 20448-90 Газы углеводородные сжиженные топливные для коммунально-бытового потребления. Технические условия

ГОСТ 22861-93 Свинец высокой чистоты. Технические условия

ГОСТ 22864-834) Благородные металлы и их сплавы. Общие требования к методам анализа ГОСТ 23620-79 Ниобия пятиокись. Технические условия

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 28058-2015 Золото в слитках. Технические условия

ГОСТ 29227-91 (ИСО 835-1—81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

ГОСТ 31290-2005 Платина аффинированная. Технические условия ГОСТ 31291-2005 Палладий аффинированный. Технические условия

ГОСТ Р 52501-2005 (ИСО 3696—1987) Вода для лабораторного анализа. Технические условия.

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ ИСО 5725-1, [1].

ГОСТ 28353.3-2017

4 Сущность метода

Метод настоящего стандарта основан на испарении и атомизации раствора в пламени газовой горелки или графитового атомизатора (кюветы), измерении атомного поглощения аналитических (резонансных) спектральных линий определяемых элементов-примесей (далее — элементов) и последующем определении их содержания по градуировочным характеристикам. Метод позволяет определять массовую долю элементов в диапазонах, приведенных в таблице 1.

Таблица 1 — Диапазоны измерений массовых долей определяемых элементов

В процентах

Определяемый

элемент

Диапазон измерения массовой доли

Определяемый

элемент

Диапазон измерения массовой доли

Алюминий

От 0,00020 до 0,010 вкпюч.

Олово

От 0,00020 до 0,010 вкпюч.

Висмут

От 0,00020 до 0,010 вкпюч.

Палладий

От 0,00020 до 0,020 вкпюч.

Железо

От 0,00020 до 0,040 вкпюч.

Платина

От 0,00020 до 0,020 вкпюч.

Золото

От 0,00020 до 0,020 вкпюч.

Родий

От 0,00020 до 0,010 вкпюч.

Кадмий

От 0,00010 до 0,010 вкпюч.

Свинец

От 0,00020 до 0,010 вкпюч.

Кобальт

От 0,00020 до 0,010 вкпюч.

Селен

От 0,00020 до 0,010 вкпюч.

Магний

От 0,00020 до 0,010 вкпюч.

Сурьма

От 0,00020 до 0,010 вкпюч.

Марганец

От 0,00020 до 0,010 вкпюч.

Теллур

От 0,00020 до 0,010 вкпюч.

Медь

От 0,00010 до 0,020 вкпюч.

Титан

От 0,00020 до 0,010 вкпюч.

Мышьяк

От 0,00020 до 0,010 вкпюч.

Хром

От 0,00020 до 0,010 вкпюч.

Никель

От 0,00020 до 0,010 вкпюч.

Цинк

От 0,00020 до 0,010 вкпюч.

5 Точность(правильность и прецизионность) метода

5.1 Показатели точности метода

Показатели точности метода: границы интервала, в котором с вероятностью Р = 0,95 находится погрешность любого из совокупности результатов анализа ±Д, стандартные отклонения повторяемости Sr, воспроизводимости SR и промежуточной прецизионности S^TOj, значения предела повторяемости г, предела промежуточной прецизионности R^T0) и предела воспроизводимости R, — в зависимости от массовой доли определяемого элемента приведены в таблице 2.

Таблица 2 — Показатели точности метода (Р= 0,95)

В процентах

Массовая

доля

опреде

ляемых

элементов

Стандартное отклонение повторяемости, sr

Стандартное отклонение промежуточной прецизионности, Sl(TO)

Стандартное отклонение воспроизводимости SR

Границы интервала абсолютной погрешности, ± Л

Предел повторяемости, г

Предел промежуточной прецизионности, /?|(Т0)

Предел воспроизводимости, R

0,00010

0,000007

0,00002

0,00003

0,00006

0,00002

0,00006

0,00008

0,00030

0,00002

0,00003

0,00004

0,00008

0,00006

0,00008

0,00011

0,00050

0,00003

0,00004

0,00005

0,00010

0,00008

0,00011

0,00014

0,0010

0,00007

0,00007

0,00010

0,0002

0,0002

0,0002

0,0003

0,0030

0,0001

0,0002

0,0002

0,0004

0,0003

0,0006

0,0006

0,0050

0,0002

0,0003

0,0003

0,0006

0,0006

0,0008

0,0008

Окончание таблицы 2    В    процентах

Массовая

доля

опреде

ляемых

элементов

Стандартное отклонение повторяемости, Sr

Стандартное отклонение промежуточной прецизионности, Sl(TO)

Стандартное отклонение воспроизводимости SR

Границы интервала абсолютной погрешности, ± Д

Предел повторяемости, г

Предел промежуточной прецизионности, /?|(Т0)

Предел воспроизводимости, R

0,010

0,0004

0,0006

0,0007

0,0014

0,0011

0,0017

0,0019

0,020

0,0007

0,0011

0,0013

0,003

0,002

0,003

0,004

0,040

0,0011

0,0022

0,0026

0,005

0,003

0,006

0,007

Для промежуточных значений массовых долей определяемых элементов значения показателей точности находят методом линейной интерполяции по формуле

Дх=^+(Х-Сн)^К    (1)

где Ах — значение показателя точности для результата анализа X; %;

Ан, Ав — значения показателей точности, соответствующие нижнему и верхнему уровням массовых долей определяемых элементов, между которыми находится результат анализа, %;

X— результат анализа, %;

Сн, Св — нижний и верхний уровни массовых долей элементов, между которыми находится результат анализа, %.

5.2    Правильность

Систематическая погрешность метода при уровне значимости а = 5 %, установленная в соответствии с требованиями ГОСТ ИСО 5725-4, на всех уровнях массовых долей определяемых элементов незначима.

5.3    Прецизионность

Диапазон двух результатов определений, полученных для одной и той же пробы одним оператором с использованием одного и того же оборудования в пределах кратчайшего из возможных интервалов времени, может превышать указанный в таблице 2 предел повторяемости г, установленный в соответствии с требованиями ГОСТ ИСО 5725-6, в среднем не чаще одного раза в 20 случаях при правильном использовании метода.

В пределах одной лаборатории два результата анализа одной и той же пробы, полученные разными операторами с использованием одного и того же оборудования в разные дни, могут различаться с превышением указанного в таблице 2 предела промежуточной прецизионности R^T0), установленного в соответствии с требованиями ГОСТ ИСО 5725-3, в среднем не чаще одного раза в 20 случаях при правильном использовании метода.

Результаты анализа одной и той же пробы, полученные двумя лабораториями, могут различаться с превышением указанного в таблице 2 предела воспроизводимости R, установленного в соответствии с требованиями ГОСТ ИСО 5725-1, в среднем не чаще одного раза в 20 случаях при правильном использовании метода.

6 Требования

6.1    Общие требования к методу анализа, требования к обеспечению безопасности выполняемых работ — по ГОСТ 22864.

6.2    К выполнению анализа допускаются лица не моложе 18 лет, обученные в установленном порядке и допущенные к самостоятельной работе на используемом оборудовании.

4

ГОСТ 28353.3-2017

7 Средства измерений, вспомогательное оборудование, материалы, реактивы

7.1    Средства измерений, вспомогательное оборудование

Весы по ГОСТ OIML R 76-1 с пределом допускаемой погрешности взвешивания не более +0,0003 г. Колбы мерные 1-25-2, 1-50-2, 1-100-2, 2-25-2, 2-50-2, 2-100-2, 2-1000-2 по ГОСТ 1770.

Мензурки вместимостью 50, 100, 250, 1000 см3 по ГОСТ 1770.

Микропипетки поршневые вместимостью 0,01; 0,02 и 0,05 см3.

Печь муфельная с терморегулятором с температурой нагрева до 1000 °С.

Пипетки 1-1-2-1, 1-1-2-2, 1-1-2-5, 1-1-2-10 по ГОСТ 29227.

Плита электрическая с закрытой спиралью и регулируемой температурой нагрева до 300 °С. Спектрометр для атомно-абсорбционного анализа с пламенным и/или графитовым атомизаторами.

Спектральные лампы с полым катодом для определяемых элементов и/или безэлектродные газоразрядные лампы для определения висмута, мышьяка, олова, селена, сурьмы и теллура.

Цилиндры мерные вместимостью 10 см3 по ГОСТ 1770.

Шкаф сушильный с температурой нагрева до 150 °С.

7.2    Материалы

Аргон газообразный или жидкий по ГОСТ 10157.

Ацетилен растворенный и газообразный по ГОСТ 5457.

Воронки лабораторные по ГОСТ 25336.

Емкости полиэтиленовые, полипропиленовые или тефлоновые вместимостью 50 и 100 см3. Пропан-бутан в баллонах технический по ГОСТ 20448.

Стаканы стеклянные вместимостью 250 см3 по ГОСТ 25336.

Стекла часовые.

Ступка агатовая.

Тигли корундовые.

Фильтры бумажные обеззоленные «синяя лента» и «белая лента» по нормативно-технической документации5).

7.3    Реактивы

Алюминий металлический по ГОСТ 11069.

Бария пероксид (бария перекись) ос.ч. по нормативно-технической документации6).

Буферный раствор сернокислого кадмия с массовой концентрацией кадмия 5 г/дм3: навеску сернокислого кадмия массой 11,4 г помещают в мерную колбу вместимостью 1000 см3, приливают 500 см3 воды, перемешивают до растворения соли, доводят водой объем до метки и перемешивают.

Висмут по ГОСТ 10928.

Вода для лабораторного анализа 1-й степени чистоты по ГОСТ Р 52501 (далее — вода).

Водная суспензия пятиокиси ниобия с массовым соотношением 1:5: к навеске пятиокиси ниобия массой 4,0 г прибавляют 20 см3 воды и перемешивают до состояния суспензии.

Железо карбонильное, радиотехническое по ГОСТ 13610.

Золото в слитках по ГОСТ 28058 с массовой долей основного вещества не менее 99,99 %. Кадмий металлический по ГОСТ 1467.

Кадмий сернокислый по ГОСТ 4456.

Кислота азотная особой чистоты по ГОСТ 11125, разбавленная 1:1.

Кислота винная по ГОСТ 5817, раствор массовой концентрацией 10 г/дм3.

Кислота серная особой чистоты по ГОСТ 14262, разбавленная 1:9.

Кислота соляная особой чистоты по ГОСТ 14261, разбавленная 1:1, 1:5, 1:7, 1:20, 1:100.

Кобальт по ГОСТ 123.

Магний по ГОСТ 804.

Марганец металлический по ГОСТ 6008.

Медь по ГОСТ 859.

Мышьяк металлический особой чистоты по нормативно-технической документации7).

Натрий вольфрамовокислый 2-водный по ГОСТ 18289.

Никель по ГОСТ 849.

Никель азотнокислый 6-водный по ГОСТ 4055.

Ниобия пятиокись по ГОСТ 23620.

Олово по ГОСТ 860.

Палладий аффинированный по ГОСТ 31291 с массовой долей основного вещества не менее

99.98    %.

Платина аффинированная по ГОСТ 31290 с массовой долей основного вещества не менее

99.98    %.

Раствор азотнокислого никеля (модификатор матрицы) с массовой концентрацией никеля 1 г/дм8: навеску азотнокислого никеля массой 0,494 г помещают в мерную колбу вместимостью 100 см8, прибавляют 50 см8 воды, перемешивают до растворения соли, доводят водой до метки и перемешивают.

Раствор вольфрамовокислого натрия с массовой концентрацией вольфрама 5 г/дм8: навеску вольфрамовокислого натрия массой 0,897 г помещают в мерную колбу вместимостью 100 см8, прибавляют 50 см8 воды, перемешивают до растворения соли, доводят до метки водой и снова перемешивают.

Родий в порошке по ГОСТ 12342 с массовой долей основного вещества не менее 99,97 %.

Свинец высокой чистоты по ГОСТ 22861 или ГОСТ 3778.

Селен технический по ГОСТ 10298.

Серебро высокой чистоты по нормативно-технической документации9).

Смесь соляной и азотной кислот в соотношении 3:1, свежеприготовленная.

Сурьма по ГОСТ 1089.

Теллур по ГОСТ 17614.

Титан губчатый по ГОСТ 17746.

Хром металлический по ГОСТ 5905.

Цинк по ГОСТ 3640.

Допускается применение других средств измерений, вспомогательного оборудования, материалов и реактивов при условии получения метрологических характеристик, не уступающих указанным в таблице 2.

Растворы реактивов по настоящему подразделу хранят в закрытой стеклянной или полиэтиленовой посуде при комнатной температуре, срок годности растворов не ограничивается. При использовании растворов, хранившихся более года, следует убедиться в отсутствии осадка, хлопьев, изменения цвета раствора. В противном случае растворы заменяют свежеприготовленными.

8 Подготовка к анализу

8.1 Приготовление основных растворов

В приведенных ниже процедурах приготовления основных растворов указаны массы навесок материалов чистотой не ниже 99,96 %. В случае использования реактивов чистотой ниже, чем 99,96 %, вводят поправку массы навески в соответствии с массовой долей основного вещества, указанной в паспорте на реактив.

Приготовленные растворы хранят при комнатной температуре в герметично закрытых емкостях из стекла и/или пластика не более одного года.

На емкостях с растворами должны быть наклеены этикетки с указанием наименования или условного обозначения элементов, массовой концентрации элементов и предела абсолютной погрешности ее установления, даты приготовления и срока хранения раствора.

ГОСТ 28353.3-2017

8.1.1    Раствор с массовой концентрацией родия 2 мг/см3

Навеску родия массой 0,2 г взвешивают с погрешностью не более +0,0003 г, тщательно перемешивают в агатовой ступке с пятикратным количеством пероксида бария. Полученную смесь переносят в корундовый тигель, помещают тигель в холодную муфельную печь и спекают при температуре от 800 °С до 900 °С в течение от 2 до 3 ч.

Тигель со спеком охлаждают до комнатной температуры, переносят спек в стакан вместимостью 250 см3, смачивают его водой и обрабатывают раствором соляной кислоты 1:1. Стакан нагревают на плите до полного растворения спека, не доводя раствор до кипения. Охлажденный до комнатной температуры раствор фильтруют через фильтр «синяя лента». Фильтр промывают горячим раствором соляной кислоты 1:5.

При наличии на фильтре темного осадка его переносят в корундовый тигель вместе с фильтром, подсушивают на воздухе, помещают тигель в холодную муфельную печь, включают нагрев и прокаливают при температуре от 700 °С до 800 °С в течение от 30 до 40 мин. Охлажденный остаток растирают с 1,0 г пероксида бария, спекают, растворяют, фильтруют, как описано выше.

Фильтраты объединяют, упаривают до объема от 20 до 30 см3, разбавляют водой до объема 50 см3, нагревают до кипения и осаждают сульфат бария горячим раствором серной кислоты 1:9. Через от 2 до 3 ч проверяют полноту осаждения сульфата бария, добавив несколько капель раствора серной кислоты 1:9. Раствор фильтруют через фильтр «синяя лента» или двойной фильтр «белая лента» в мерную колбу вместимостью 100 см3, промывая осадок на фильтре горячим раствором соляной кислоты 1:5, затем от 5 до 6 раз горячей водой. Объем раствора доводят до метки раствором соляной кислоты 1:5 и перемешивают.

Погрешность определения массовой концентрации родия в растворе составляет ±0,005 мг/см3.

8.1.2    Растворы с массовыми концентрациями платины, палладия, золота, сурьмы, мьшьяка, селена, теллура, кадмия и олова 2 мг/см3.

Навеску каждого металла массой 0,2 г взвешивают с погрешностью не более +0,0003 г и растворяют при нагревании в стакане вместимостью 250 см3 в смеси соляной и азотной кислот 3:1. Растворы упаривают до объема от 2 до 3 см3, прибавляют 20 см3 раствора соляной кислоты 1:5, охлаждают и переносят в мерные колбы вместимостью 100 см3 каждая, доводят объем до метки этим же раствором кислоты и перемешивают.

Погрешность определения массовой концентрации каждого элемента в растворе составляет ±0,005 мг/см3.

8.1.3    Растворы с массовыми концентрациями железа, меди, кобальта, марганца, висмута, никеля 2 мг/см3.

Навеску каждого металла массой 0,2 г взвешивают с погрешностью не более ±0,0003 г, растворяют при нагревании в стакане вместимостью 250 см3 в 10 см3 раствора азотной кислоты 1:1. Растворы упаривают до объема от 2 до 3 см3, прибавляют 20 см3 раствора соляной кислоты 1:5, переносят в мерную колбу вместимостью 100 см3, доводят объем до метки этим же раствором кислоты и перемешивают.

Погрешность определения массовой концентрации каждого элемента в растворе составляет ±0,005 мг/см3.

8.1.4    Раствор с массовой концентрацией свинца 2 мг/см3

Навеску свинца массой 0,2 г взвешивают с погрешностью не более ±0,0003 г и растворяют в стакане вместимостью 250 см3 в 10 см3 раствора азотной кислоты 1:1 при нагревании. Раствор прогревают до удаления оксидов азота (прекращение выделения бурых паров), не доводя до кипения. Охлаждают, переносят в мерные колбы вместимостью 100 см3 каждая, доводят объем до метки водой и перемешивают.

Погрешность определения массовой концентрации свинца в растворе составляет ±0,005 мг/см3.

8.1.5    Растворы с массовыми концентрациями алюминия, хрома, магния и цинка 2 мг/см3.

Навеску каждого металла массой 0,2 г взвешивают с погрешностью не более ±0,0003 г и растворяют в стакане вместимостью 250 см3 в 10 см3 раствора соляной кислоты 1:1 при нагревании, не доводя до кипения. Растворы охлаждают, переносят в мерные колбы вместимостью 100 см3 каждая и доводят объем до метки раствором соляной кислоты 1:5 и перемешивают.

7

1

Приказом Федерального агентства по техническому регулированию и метрологии от 28 сентября 2018 г. № 667-ст национальный стандарт ГОСТ Р 56308-2014 отменен с 1 февраля 2019 г.

© Стандартинформ, оформление, 2018

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

2

^ В Российской Федерации наряду с вышеуказанным действует ГОСТ Р ИСО 5725-4-2002 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 4. Основные методы определения правильности стандартного метода измерений».

3

)    В Российской Федерации наряду с вышеуказанным действует ГОСТ Р ИСО 5725-6-2002 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике».

4

)    В Российской Федерации действует ГОСТ Р 52599-2006 «Драгоценные металлы и их сплавы. Общие требования к методам анализа».

2

5

)    В Российской Федерации необходимо использовать ТУ 6-09-1678—95 «Фильтры обеззоленные (белая, красная, синяя ленты)».

6

)    В Российской Федерации необходимо использовать ТУ 6-09-5295—86 «Барий пероксид (бария перекись) чистый для анализа, чистый».

5

7

)    В Российской Федерации необходимо использовать ОСТ 6-12-112—73 «Мышьяк металлический особой чистоты. Технические условия».

8

ческие условия».

9

)    В Российской Федерации необходимо использовать ТУ 117-1-10—93 «Серебро высокой чистоты. Техни