Товары в корзине: 0 шт Оформить заказ
244.00 ₽

Купить официальный бумажный документ с голограммой и синими печатями. подробнее

Официально распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО "ЦНТИ Нормоконтроль".

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

Способы доставки

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Устанавливает методы, применяемые для:

- оценки математического ожидания и дисперсии генеральной совокупности;

- проверки гипотез относительно значений этих параметров;

- оценки вероятности попадания (доли распределения) случайной величины в заданный интервал

Действие завершено 31.05.2004

Показать даты введения Admin

ГОСТ Р 50779.21-96

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ОРГАНИЗАЦИИ

СТАТИСТИЧЕСКИЕ МЕТОДЫ

ПРАВИЛА ОПРЕДЕЛЕНИЯ И МЕТОДЫ РАСЧЕТА СТАТИСТИЧЕСКИХ ХАРАКТЕРИСТИК ПО ВЫБОРОЧНЫМ ДАННЫМ

Часть 1. НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ

ГОССТАНДАРТ РОССИИ

МОСКВА

Предисловие

1 РАЗРАБОТАН И ВНЕСЕН Техническим комитетом по стандартизации «Стандартизация статистических методов управления качеством» ТК 125

АО «Нижегородский научно-исследовательский центр контроля и диагностики технических систем» (АО НИЦ КД)

2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 14 августа 1996 г. № 513

3 В настоящем стандарте учтены требования международного стандарта ИСО 2854-76 «Статистическое представление данных. Методы оценки и проверки гипотез о средних значениях и дисперсиях»

4 ВВЕДЕН ВПЕРВЫЕ

СОДЕРЖАНИЕ

1 ОБЛАСТЬ ПРИМЕНЕНИЯ 2

2 НОРМАТИВНЫЕ ССЫЛКИ 2

3 ОПРЕДЕЛЕНИЯ 2

4 ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ 3

5 ОБЩИЕ ТРЕБОВАНИЯ 4

6 ТОЧЕЧНОЕ И ИНТЕРВАЛЬНОЕ ОЦЕНИВАНИЕ МАТЕМАТИЧЕСКОГО ОЖИДАНИЯ ГЕНЕРАЛЬНОЙ СОВОКУПНОСТИ 5

7 ТОЧЕЧНОЕ И ИНТЕРВАЛЬНОЕ ОЦЕНИВАНИЕ ДИСПЕРСИИ ГЕНЕРАЛЬНОЙ СОВОКУПНОСТИ 13

8 ТОЧЕЧНОЕ И ИНТЕРВАЛЬНОЕ ОЦЕНИВАНИЕ ДОЛИ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ В ЗАДАННОМ ИНТЕРВАЛЕ* 16

ПРИЛОЖЕНИЕ А (справочное) 26

ТАБЛИЦА ЗНАЧЕНИЙ ФУНКЦИИ СТАНДАРТНОГО НОРМАЛЬНОГО ЗАКОНА РАСПРЕДЕЛЕНИЯ 26

ПРИЛОЖЕНИЕ Б (справочное) 27

ТАБЛИЦА ЗНАЧЕНИЙ КВАНТИЛЕЙ РАСПРЕДЕЛЕНИЯ СТЬЮДЕНТА 27

ПРИЛОЖЕНИЕ В (справочное) 28

ТАБЛИЦА ЗНАЧЕНИЙ КВАНТИЛЕЙ c2-РАСПРЕДЕЛЕНИЯ 28

ПРИЛОЖЕНИЕ Г (справочное) 29

ТАБЛИЦЫ ЗНАЧЕНИЙ КВАНТИЛЕЙ РАСПРЕДЕЛЕНИЯ ФИШЕРА 29

Введение

Стандарт устанавливает процедуры и методы решения ряда практических задач статистики в случае, когда наблюдаемые величины являются случайными и распределены по нормальному закону.

В стандарте изложены методы решения следующих задач:

а) точечного оценивания параметров нормального распределения случайной величины;

б) точечного оценивания вероятности попадания (доли распределения) случайной величины в заданный интервал и вне его;

в) интервального (доверительного) оценивания параметров и величин, указанных в подпунктах а и б;

г) проверки гипотез об этих же величинах.

Все приводимые процедуры используют ограниченный ряд статистических независимых наблюдений, полученных в производстве, в лабораторных условиях, при контроле, измерении, оценке и т. п.

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Статистические методы

ПРАВИЛА ОПРЕДЕЛЕНИЯ И МЕТОДЫ РАСЧЕТА СТАТИСТИЧЕСКИХ ХАРАКТЕРИСТИК ПО ВЫБОРОЧНЫМ ДАННЫМ

Часть 1. Нормальное распределение

Statistical methods. Determination rules and methods for calculation of statistical characteristics based on sample data. Part 1. Normal distribution

Дата введения 1997-07-01

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Стандарт устанавливает методы, применяемые для:

- оценки математического ожидания и дисперсии генеральной совокупности;

- проверки гипотез относительно значений этих параметров;

- оценки вероятности попадания (доли распределения) случайной величины в заданный интервал.

Примечание - Вероятность попадания случайной величины в интервал равна доле распределения случайном величины в этом интервале. В большинстве практических задач физический смысл имеет понятие «доля распределения случайной величины в интервале», которое далее используют в данном стандарте.

Методы, изложенные в настоящем стандарте, применимы в том случае, если выполнены следующие условия:

- элементы выборки получены путем независимых повторений эксперимента. В случае конечной генеральной совокупности объем должен составлять не более 10 % объема генеральной совокупности;

- наблюдаемые переменные распределены по нормальному закону. Однако, если распределение вероятностей не сильно отличается от нормального, то описанные в стандарте методы остаются применимыми для большинства практических приложений. В этом случае объем выборки должен быть не менее 10, причем достоверность получаемых статистических выводов возрастает при увеличении объемов выборок.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использована ссылка на ГОСТ 15895-77 Статистические методы управления качеством продукции. Термины и определения

3 ОПРЕДЕЛЕНИЯ

В настоящем стандарте применяют термины по ГОСТ 15895, а также приведенные ниже:

Точечное оценивание параметра - получение оценки параметра в виде одного численного значения.

Интервальное (доверительное) оценивание параметра - получение оценки параметра в виде доверительного интервала.

Доверительный интервал - интервал, границы которого являются функциями от выборочных данных и который накрывает истинное значение оцениваемого параметра с вероятностью не менее (1 - a), где (1 - a) - доверительная вероятность.

Примечание - Доверительный интервал может быть двусторонним или односторонним.

Нулевая гипотеза - предположение о распределении генеральной совокупности, которое проверяется по статистическим данным. В частности, в данном стандарте рассматривают предположения о значениях параметров распределения.

4 ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

m - математическое ожидание нормального закона распределения (среднее значение генеральной совокупности);

Примечание - Далее по тексту - среднее значение.

m0 - известное значение параметра m;

m1, m2 - математические ожидания для двух различных генеральных совокупностей;

- точечная оценка параметра m; = .

mв, mн - верхняя и нижняя доверительные границы параметра m;

(m1 - m2)Ù - точечная оценка разности значений параметров m1 и m2;

s - стандартное (среднее квадратическое) отклонение нормально распределенной случайной величины;

D - дисперсия генеральной совокупности, D = s2;

D0 - известное значение дисперсии генеральной совокупности, D0 = s20;

s0 - конкретное численное значение параметра s;

s01, s02 - известные значения параметров s1 и s2 для двух генеральных совокупностей;

- точечная оценка параметра s, = S;

sв, sн - верхняя и нижняя доверительные границы параметра s;

- точечная оценка дисперсии;

х - выборочное значение наблюдаемой случайной величины;

х1 - выборочное значение случайной величины из первой генеральной совокупности;

х2 - то же, из второй генеральной совокупности;

n, n1, n2 - объемы выборок;

- средние арифметические значения (выборочные средние);

- выборочное стандартное (среднее квадратическое) отклонение;

S1, S2 - то же, для двух выборок соответственно;

a - риск первого рода (вероятность отвергнуть гипотезу, когда она верна);

(1 - a) - доверительная вероятность, где a, 0 < a < 1, - уровень значимости при проверке гипотез;

v - число степеней свободы;

u1-a, u1-a/2 - квантили стандартного нормального закона распределения уровней 1 - a и 1 - a/2 соответственно;

t1-a(v), t1-a/2(v) - квантили распределения Стьюдента с v степенями свободы уровней 1-a и 1 - a/2 соответственно;

F1-a(v1, v2) - квантиль распределения Фишера уровня 1 - a с v1 и v2 степенями свободы;

c21-a(v), c21-a/2(v), c2a/2(v) - квантили c2-распределения c v степенями свободы уровней 1 - a, 1 - a/2 и a/2 соответственно;

L, М - нижняя и верхняя границы заданного интервала;

р - доля распределения (вероятность попадания) случайной величины в заданном интервале [L, М];

q - доля распределения (вероятность попадания) случайной величины вне интервала [L, М], причем q + р = 1;

- точечные оценки р и q;

pн, qн - нижние односторонние доверительные границы для р и q;

pв, qв - верхние односторонние доверительные границы для р и q;

С - случайное событие, например: попадание случайной величины в заданный интервал;

Prob {С} - вероятность случайного события С;

Sх - сумма выборочных значений х.

5 ОБЩИЕ ТРЕБОВАНИЯ

5.1 Настоящий стандарт содержит описание типовых статистических задач и процедур, при помощи которых они решаются. Представленные задачи могут быть разбиты на три класса:

- точечное и интервальное оценивание среднего значения генеральной совокупности;

- точечное и интервальное оценивание дисперсии генеральной совокупности;

- точечное и интервальное оценивание доли распределения (вероятности попадания) случайной величины в заданном интервале и вне его.

5.2 Для решения каждой из перечисленных задач по 5.1 приведены процедуры их решения (разделы 6, 7, 8), включающие в себя:

1) исходные и статистические данные;

2) определение стандартных табличных данных, которые необходимы для проведения вычислений (приложения А, Б, В, Г), а также проведения вычислений параметров и коэффициентов по приведенным формулам;

3) результаты, полученные в итоге проведенных вычислений.

5.3 Для задач каждого класса приведены примеры их применения на практике (в производстве, медицине, химии). Спектр возможных применений этих задач не ограничивается приведенными в разделах 6, 7, 8 примерами.

5.4 Во всех приведенных задачах предполагается, что исходные статистические данные подчиняются нормальному закону распределения. В тех случаях, когда изначально в этом нет достаточной уверенности, должны быть проведены предварительные исследования соответствия исходных данных нормальному закону.

5.5 Процедуры решения перечисленных в 5.2 задач представлены в таблицах, соответствующих этим задачам (разделы 6, 7, 8).

Для удобства пользования таблицами разделов 6, 7, 8 задачи соответствующих разделов перечислены в обобщенных таблицах 5.1, 5.2, 5.3, 5.4.

Таблица 5.1 - Номера таблиц для решения задач по оценке среднего значения (раздел 6)

Задача оценки среднего значения

Номер таблицы

D известна

D неизвестна

Оценка

6.1

6.2

Сравнение среднего значения с заданной величиной

6.3

6.4

Сравнение двух средних

6.5

6.6

Оценка разности двух средних

6.7

6.8

Таблица 5.2 - Номера таблиц для решения задач по оценке дисперсии (раздел 7)

Задача оценки дисперсии

Номер таблицы

Оценка дисперсии

7.1

Сравнение дисперсии или стандартного отклонения с заданной величиной

7.2

Сравнение двух дисперсий или двух стандартных отклонений

7.3

Таблица 5.3 - Номера таблиц для решения задач по точечной оценке доли распределения случайной величины в заданном интервале (раздел 8)

Номер таблицы

D известна

D неизвестна

8.2

8.3

Таблица 5.4 - Номера таблиц для решения задач по интервальной оценке доли распределения случайной величины при неизвестной дисперсии в заданном интервале

Заданные границы интервала

Искомая величина

Номер таблицы

L

pн, qв

8.4

М

pн, qв

8.5

L, М

pн, qв

8.6

L

pв, qн

8.7

М

pв, qн

8.8

L, М

pв, qн

8.9

5.6 Процедуры интервального оценивания доли распределения случайной величины в заданном интервале, изложенные в разделе 8 настоящего стандарта, являются простыми для применения, но не самыми эффективными. Более эффективными являются процедуры с использованием таблиц нецентрального распределения Стьюдента или таблиц толерантных множителей, которые не приводятся в настоящем стандарте.

6 ТОЧЕЧНОЕ И ИНТЕРВАЛЬНОЕ ОЦЕНИВАНИЕ МАТЕМАТИЧЕСКОГО ОЖИДАНИЯ ГЕНЕРАЛЬНОЙ СОВОКУПНОСТИ

6.1 Алгоритм точечного и интервального оценивания среднего значения при известной дисперсии приведен в таблице 6.1.

Таблица 6.1 - Оценка среднего значения при известной дисперсии

Статистические и исходные данные

Табличные данные и вычисления

1 Объем выборки:

n =

1 Квантиль стандартного нормального закона распределения уровня (1 - a):

u1-a =

2 Сумма значений наблюдаемых величин:

Sx =

2 Квантиль стандартного нормального закона распределения уровня (1 - a/2):

u1-a/2 =

3 Известное значение дисперсии:

s20

3 Вычисляем:

4 Выбранная доверительная вероятность:

1 - a

4 Вычисляем:


5 Вычисляем:

Результаты:

1 Точечная оценка параметра m:

= =

2 Двусторонний симметричный доверительный интервал для m:

- К2s0 £ m £ + К2s0

3 Односторонние доверительные интервалы для m:

m £ + К1s0 или

m ³ - К1s0

Примечание - Квантили стандартного нормального закона распределения определяют по таблице А.1 приложения А

Примеры

1 Определение настроенности станка-автомата при механической обработке (например, токарного, шлифовального). Точность станка, определяемая разбросом получаемых размеров деталей без изменения настройки, считается известной, а центр настройки m требуется определить. Возможны оценки в виде точечного значения или в виде интервала, который с известной степенью доверия (доверительной вероятностью) включает неизвестное значение m. Интервал может быть:

- двусторонним, если необходима уверенность с заданной доверительной вероятностью в каких пределах может лежать m;

- односторонним с верхней границей, если необходима уверенность, что m не выше какого-то значения:

- односторонним с нижней границей, если необходима уверенность, что m не ниже какого-то значения.

2 Оценка настройки автоматического оборудования для розлива жидкости в тару. Условие и возможные типы оценок - как в примере 1.

3 Многие другие технологические процессы с известной или оцененной заранее точностью (т. е. известным параметром s20), в которых выходной контролируемый параметр имеет равновозможные отклонения в большую и меньшую стороны от центра настройки m. Условие и возможные типы оценок - как в примере 1.

6.2 Алгоритм точечного и интервального оценивания среднего значения при неизвестной дисперсии приведен в таблице 6.2.

Таблица 6.2 - Оценка среднего значения при неизвестной дисперсии

Статистические и исходные данные

Табличные данные и вычисления

1 Объем выборки:

n =

1 Квантиль распределения Стьюдента уровня (1 - a) с v степенями свободы:

t1-a(v) =

2 Сумма значений наблюдаемых величин:

Sx =

2 Квантиль распределения Стьюдента уровня (1 - a/2) с v степенями свободы:

t1-a/2(v) =

3 Сумма квадратов значений наблюдаемых величин:

Sx2 =

3 Вычисляем:

4 Степени свободы:

v = n – 1 =

4 Вычисляем:

5 Выбранная доверительная вероятность:

1 - a

5 Вычисляем:


6 Вычисляем:


7 Вычисляем:

Результаты: 1 Точечная оценка параметра m:

= =

2 Точечная оценка параметра D:

= S2

3 Двусторонний симметричный доверительный интервал для параметра m:

- l2S £ m £ + l2S

4 Односторонние доверительные интервалы для параметра m:

m £ + l1S или (1)

m ³ - l1S (2)

Примечание - Квантили распределения Стьюдента определяют по таблице Б.1 приложения Б

Пример - Примеры те же, что и в 6.1, но точность, определяемая разбросом контролируемых значений, заранее неизвестна.

6.3 Алгоритм решения задачи сравнения неизвестного среднего значения с заданным значением m0 при известной дисперсии приведен в таблице 6.3.

Таблица 6.3 - Сравнение среднего значения с заданным значением m0 при известной дисперсии

Статистические и исходные данные

Табличные данные и вычисления

1 Объем выборки:

n =

1 Квантиль стандартного нормального закона распределения уровня (1 - a):

u1-a =

2 Сумма значений наблюдаемых величин:

Sx =

2 Квантиль стандартного нормального закона распределения уровня (1 - a/2):

u1-a/2 =

3 Заданное значение:

m0 =

3 Вычисляем:

4 Известное значение дисперсии генеральной совокупности:

s20 =

или стандартного отклонения:

s0 =


5 Выбранный уровень значимости:

a =


Результаты:

Сравнение выборочного среднего значения с заданным значением m0:

1 В двустороннем случае:

Предположение равенства выборочного среднего и заданного значений (нулевая гипотеза) отклоняется, если:

1 В одностороннем случае:

а) Предположение о том, что выборочное среднее не меньше чем m0 (нулевая гипотеза) отклоняется, если:

б) Предположение о том, что выборочное среднее не больше чем m0 (нулевая гипотеза) отклоняется, если:

Примечание - Квантили стандартного нормального закона распределения определяют по таблице А.1 приложения А.1

Пример - Проверка правильности настройки технологического процесса на середину поля допуска или на заданное оптимальное значение. Точность технологического процесса предполагается известной или заранее оцененной, т. е. значение s20 известно.

Возможные технологические процессы: механическая обработка, расфасовка и другие, где равновозможны отклонения контролируемого параметра в большую и меньшую сторону от центра настройки.

6.4 Алгоритм решения задачи сравнения неизвестного среднего значения с заданным значением m0 при неизвестной дисперсии приведен в таблице 6.4.

Таблица 6.4 - Сравнение среднего значения с заданным значением m0 при неизвестной дисперсии

Статистические и исходные данные

Табличные данные и вычисления

1 Объем выборки:

n =

1 Квантиль распределения Стьюдента уровня (1 - a) с v степенями свободы:

t1-a(v) =

2 Сумма значений наблюдаемых величин:

Sx =

2 Квантиль распределения Стьюдента уровня (1 - a/2) с v степенями свободы:

t1-a/2(v) =

3 Сумма квадратов значений наблюдаемых величин:

Sx2 =

3 Вычисляем:

4 Заданное значение:

m0 =

4 Вычисляем:

5 Степени свободы:

v = n - 1

5 Вычисляем:

6 Выбранный уровень значимости:

a =


Результаты:

Сравнение выборочного среднего значения с заданным значением m0:

1 В двустороннем случае:

Предположение равенства выборочного среднего и заданного значений (нулевая гипотеза) отклоняется, если:

1 В одностороннем случае:

а) Предположение о том, что выборочное среднее не меньше чем m0 (нулевая гипотеза) отклоняется, если:

б) Предположение о том, что выборочное среднее не больше чем m0 (нулевая гипотеза) отклоняется, если:

Примечание - Квантили распределения Стьюдента определяют по таблице Б.1 приложения Б

Примеры

1 То же, что и в примере 6.3, но точность технологического процесса заранее неизвестна.

2 Контрольные проверки в розничной торговле и сфере обслуживания.

Например, у пяти человек, купивших по 1 кг сливочного масла, проводят повторное взвешивание товара на контрольных, более точных весах. При этом должен быть получен ответ на вопрос:

являются ли отклонения от точного веса случайными или имеется систематическое обвешивание покупателей.

То же - при отпуске бензина и масел на автозаправочных станциях, то же - при продаже тканей в магазинах и т. п.

6.5 Алгоритм решения задачи сравнения двух неизвестных средних значений при известных дисперсиях приведен в таблице 6.5.

Таблица 6.5 - Сравнение двух средних значений при известных дисперсиях

Статистические и исходные данные

Табличные данные и вычисления


Первая выборка

Вторая выборка

1 Квантиль стандартного нормального закона распределения уровня (1 - a):

u1-a =

1 Объем выборки:

n1 =

n2 =

2 Квантиль стандартного нормального закона распределения уровня (1 - a/2):

u1-a/2 =

2 Суммы значений наблюдаемых величин:

Sx1 =

Sx2 =

3 Вычисляем:

;