РЕАКТИВЫ

КАЛИЙ ФТОРИСТЫЙ КИСЛЫЙ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

Издание официальное

межгосударственный стандар т

Реактивы

КАЛИЙ ФТОРИСТЫЙ КИСЛЫЙ

Технические условия

ΓΟCT 10067—80

Reagents. Potassium hydrogenfluoride. Specifications

ОКП 26 2113 1330 06

Дата введения 01.01.81

Настоящий стандарт распространяется на реактив — кислый фтористый калий, представляющий собой прозрачные кристаллы, легкорастворимые в воде, труднорастворимые в этиловом спирте; гигроскопичен.

Формула: КF-НF.

Молекулярная масса (по международным атомным массам 1971 г.) — 78,09.

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 1.1. Кислый фтористый калий должен быть изготовлен в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.
- 1.2. По химическим показателям кислый фтористый калий должен соответствовать требованиям и нормам, указанным в табл. 1.

Таблица 1

	Норма		
Наименование показателя	Чистый для анализа (ч.д.а.) ОКП 26 2113 1332 04	Чистый (ч.) ОКП 26 2113 1331 05	
1. Массовая доля кислого фтористого калия (КF·HF), %	00 101	09 102	
	99—101	98—102	
2. Массовая доля хлоридов (Cl), %, не более	0,005	0,01 0,02	
3. Массовая доля сульфатов (SO ₄), %, не более	0,01	,	
4. Массовая доля железа (Fe), %, не более	0,001	0,004	
5. Массовая доля кремния (Si), %, не более	0,01	0,02	
6. Массовая доля свинца, меди, марганца (Pb+Cu+Mn), %, не более	0,001	0,001	

(Измененная редакция, Изм. № 1).

Издание официальное

Перепечатка воспрещена

2. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 2.1. Кислый фтористый калий по степени воздействия на организм человека относится к веществам 2-го класса опасности по ГОСТ 12.1.007. Предельно допустимая концентрация его в воздухе рабочей зоны производственных помещений $0,2\,$ мг/м 3 . При увеличении концентрации кислый фтористый калий может вызывать как острые, так и хронические отравления с поражением жизненно важных органов и систем.
- 2.2. Определение предельно допустимой концентрации кислого фтористого калия в воздухе основано на поглощении фтористого водорода раствором ализаринкомплексоната лантана с последующим измерением оптической плотности образовавшегося тройного комплекса соединения синего цвета.
- 2.3. При работе с препаратом следует применять индивидуальные средства защиты в соответствии с типовыми отраслевыми нормами, а также соблюдать правила личной гигиены.

Не допускается попадание препарата внутрь организма и на кожу.

- 2.4. Помещения, в которых проводятся работы с препаратом, должны быть оборудованы общей приточно-вытяжной вентиляцией. Анализ препарата следует проводить в вытяжном шкафу лаборатории.
 - 2.5. Кислый фтористый калий не горюч и взрывобезопасен.

Раздел 2. (Измененная редакция, Изм. № 1).

3. ПРАВИЛА ПРИЕМКИ

- 3.1. Правила приемки по ГОСТ 3885.
- 3.2. Массовые доли сульфатов, железа, кремния, свинца, меди, марганца изготовитель определяет периодически в каждой 10-й партии.

(Введен дополнительно, Изм. № 1).

4. МЕТОДЫ АНАЛИЗА

4.1. Общие указания по проведению анализа — по ГОСТ 27025.

Для взвешивания используют лабораторные весы общего назначения по ГОСТ 24104 2-го класса точности с наибольшим пределом взвешивания 200 г и 4-го класса точности с наибольшим пределом взвешивания 500 г.

Допускается применение импортной аппаратуры и лабораторной посуды по классу точности и реактивов по качеству не ниже отечественных.

- 4.2. Пробы отбирают по ГОСТ 3885. Масса средней пробы должна быть не ниже 50 г.
- 4.1, 4.2. (Измененная редакция, Изм. № 1).
- 4.3. Определение массовой доли кислого фтористого калия

4.3.1. Реактивы растворы и посуда

Вода дистиллированная, не содержащая углекислоты; готовят по ГОСТ 4517.

Натрия гидроокись по ГОСТ 4328, раствор концентрации c (NaOH) = 0,5 моль/дм³ (0,5 н.); готовят по ГОСТ 25794.1.

Спирт этиловый ректификованный технический по ГОСТ 18300, высший сорт.

Фенолфталеин (индикатор), спиртовой раствор с массовой долей 1 %; готовят по ГОСТ 4919.1. Бюретка вместимостью 50 см³ с ценой деления 0,1 см³.

Цилиндр 1(3)—50 по ГОСТ 1770.

Чашка из платины № 118—5 по ГОСТ 6563.

4.3.2. Проведение анализа

Около $\hat{1},0000$ г препарата взвешивают в бюксе из фторопласта или бюксе из материала, стойкого к воздействию плавиковой кислоты, и переносят в чашку из платины, в полиэтиленовый или фторопластовый стакан вместимостью $200-250~{\rm cm}^3$, растворяют в $50~{\rm cm}^3$ воды, после этого добавляют $2-3~{\rm kannu}$ раствора фенолфталеина и титруют раствором гидроокиси натрия до появления устойчивой розовой окраски раствора.

4.3.3. Обработка результатов

Массовую долю кислого фтористого калия (Х) в процентах вычисляют по формуле

$$X = \frac{V \cdot 0,03905 \cdot 100}{m} \,,$$

где V — объем раствора гидроокиси натрия концентрации точно 0,5 моль/дм³, израсходованный на титрование, см³;

т — масса навески препарата, г;

0,03905 — масса кислого фтористого калия, соответствующая 1 см 3 раствора гидроокиси натрия концентрации точно 0,5 моль/дм 3 , г.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное 0,2 %.

Допускаемая абсолютная суммарная погрешность результата анализа $\pm 0.4~\%$ при доверительной вероятности P=0.95.

4.4. Определение массовой доли хлоридов проводят по ГОСТ 10671.7. Для этого 3,00 г препарата помещают в платиновую чашку и растворяют в 40 см³ раствора борной кислоты с массовой долей 3 % (ГОСТ 9656, х.ч.). Если раствор мутный, его фильтруют через тщательно промытый горячей водой обеззоленный фильтр «синяя лента» в мерную колбу вместимостью 100 см³, доводят объем раствора водой до метки и перемешивают (раствор A).

20 см³ полученного раствора (соответствуют 0,6 г препарата) помещают в коническую колбу вместимостью 100 см³, доводят объем водой до 40 или 30 см³ и далее определение проводят фототурбидиметрическим (в объеме 50 см³) или визуально-нефелометрическим (в объеме 40 см³) методом.

Измерение оптической плотности анализируемого раствора производят по отношению к контрольному раствору, содержащему в таком же объеме, кроме реактивов, предусмотренных ГОСТ 10671.7, 8 см³ раствора борной кислоты.

Препарат считают соответствующим требованиям настоящего стандарта, если масса хлоридов в анализируемом растворе не будет превышать:

для препарата чистый для анализа — 0,03 мг,

для препарата чистый — 0,06 мг.

При разногласиях в оценке массовой доли хлоридов анализ проводят фототурбидиметрическим методом.

4.5. Определение массовой доли сульфатов проводят по ГОСТ 10671.5. Для этого 10 см³ раствора А, приготовленного по п. 4.4 (соответствуют 0,3 г препарата), помещают в колориметрический стакан вместимостью 100 см³, доводят объем водой до 25 см³ и далее определение проводят фототурбидиметрическим или визуально-нефелометрическим (способ 1) методом.

Измерение оптической плотности анализируемого раствора производят по отношению к контрольному раствору, содержащему в таком же объеме, кроме реактивов, предусмотренных ГОСТ 10671.5, 4 см³ раствора борной кислоты.

Препарат считают соответствующим требованиям настоящего стандарта, если масса сульфатов в анализируемом растворе не будет превышать:

для препарата чистый для анализа — 0.03 мг,

для препарата чистый — 0,06 мг.

При разногласиях в оценке массовой доли сульфатов анализ проводят фототурбидиметрическим методом.

- 4.6. Определение массовой доли железа, кремния, свинца, меди и марганца
 - 4.6.1. Аппаратура, реактивы, растворы и посуда

Спектрограф кварцевый типа ИСП-28 или ИСП-30 с трехлинзовой системой освещения щели и трехступенчатым ослабителем.

Генератор дуги переменного тока типа ДГ-2.

Спектропроектор типа СПП-2 или ПС-18.

Микрофотометр типа МФ-4 или ИФО-451.

Допускается применение другой аппаратуры с аналогичными метрологическими характеристиками.

Прибор ИС для измельчения и перемешивания веществ с комплектом контейнеров и шариков из органического стекла диаметром 10 мм.

Весы торсионные типа ВТ с ценой деления 1 мг и наибольшим пределом взвешивания 500 мг. Секундомер.

Ступка и пестик из органического стекла.

Бюксы из фторопласта или полиэтилена.

Фотопластинки спектральные типа СП-1 чувствительностью 5—6 относительных единиц.

Угли графитированные для спектрального анализа, ос.ч. 7—3, диаметром 6 мм (электроды угольные); верхний электрод заточен на конус, нижний электрод — с кратером диаметром 4 мм и глубиной 4 мм.

Графит порошковый, ос.ч. 8—4, по ГОСТ 23463.

С. 4 ГОСТ 10067—80 Электронная версия

Железа (III) окись, ос.ч. 2-4.

Марганца (III) окись, ос.ч. 11—2.

Кремния (IV) окись, ос.ч. 12—4.

Меди (II) окись по ГОСТ 16539.

Свинца (II) окись.

Калий фтористый кислый по настоящему стандарту с минимальными массовыми долями определяемых примесей, которые определяют методом трех добавок в условиях настоящей методики при числе параллельных измерений, равном 9; найденные массовые доли примесей элементов учитывают при приготовлении образцов для построения градуировочного графика.

Аммоний хлористый по ГОСТ 3773.

Вода дистиллированная по ГОСТ 6709.

Гидрохинон (п-диоксибензол) по ГОСТ 19627.

Калий бромистый по ГОСТ 4160.

Метол (4-метиламинофенол сульфат) по ГОСТ 25664.

Натрий серноватистокислый 5-водный (натрия тиосульфат) по ГОСТ 27068.

Натрий углекислый по ГОСТ 83 или натрий углекислый 10-водный по ГОСТ 84.

Натрий сульфит 7-водный.

Спирт этиловый ректификованный технический по ГОСТ 18300, высший сорт.

Проявитель метолгидрохиноновый; готовят следующим образом:

раствор A—2 г метола, 10 г гидрохинона, 104 г 7-водного сульфита натрия растворяют в воде, доводят объем раствора водой до 1 дм 3 , перемешивают и, если раствор мутный, его фильтруют;

раствор 5-16 г углекислого натрия (или 40 г 10-водного углекислого натрия) и 2 г бромистого калия растворяют в воде, доводят объем раствора до 1 дм 3 , перемешивают и, если раствор мутный, его фильтруют; перед проявлением растворы A и B смешивают в равных объемах.

Фиксаж быстродействующий, готовят следующим образом: 500 г серноватистокислого натрия и 100 г хлористого аммония растворяют в воде, доводят объем раствора водой до 2 дм³, перемешивают и, если раствор мутный, его фильтруют.

4.3.1—4.6.1. (Измененная редакция, Изм. № 1).

4.6.2. Подготовка к анализу

4.6.2.1. Приготовление анализируемой пробы

Приблизительно 3 г препарата измельчают на приборе ИС в контейнере с пятью шариками в течение 15 мин. Затем 0,600 г измельченного препарата перемешивают с 2,400 г порошкового графита на приборе ИС в этом же контейнере в течение 5 мин.

4.6.2.2. Приготовление образцов для построения градуировочного графика

Головной образец с массовыми долями железа 1,2 %, свинца, меди, марганца по 0,6 % готовят перемешиванием 0,0515 г окиси железа (III), 0,0193 г окиси свинца (II), 0,0225 г окиси меди (II), 0,0257 г окиси марганца (III) и 2,881 г кислого фтористого калия.

Перемешивание осуществляют следующим образом: вначале в ступке в течение 15 мин перетирают окислы и около 1 г кислого фтористого калия, затем смесь и остальной кислый фтористый калий помещают в контейнер с пятью шариками и перемешивают на приборе ИС в течение 15 мин.

Промежуточный образец с массовыми долями железа 0,06 %, по 0,03 % свинца, меди, марганца и 0,6 % кремния готовят перемешиванием 0,2000 г головного образца, 0,0514 г окиси кремния (IV) и 3,749 г кислого фтористого калия; вначале перетирают в ступке в течение 15 мин навески головного образца, окиси кремния и около 1 г кислого фтористого калия, затем смесь и остальной кислый фтористый калий помещают в контейнер с пятью шариками и перемешивают на приборе ИС в течение 20 мин.

Образцы для построения градуировочного графика (I, II, III) готовят разбавлением промежуточного и последующего за ним образца кислым фтористым калием в соответствии с табл. 2.

Таблица 2

Номер образца	Массовая доля примесей в образце, %				e, %	Μαρος πορδουμαργότο οδποργό τ	Macca	Время
	Fe	Pb	Cu	Mn	Si	 Масса разбавляемого образца, г 	IKF HF. F	перемещи- вания, мин
I	0,006	0,003	0,003	0,003	0,06	0,600 г промежуточного образца	5,400	30
II	0,002	0,001	0,001	0,001	0,02	1,500 г образца I	3,000	20
III	0,0006	0,0003	0,0003	0,0003	0,006	0,4000 г образца I	3,600	20

Перемешивание осуществляется на приборе ИС в контейнере с пятью шариками.

Рабочие образцы I, II, III для построения градуировочных графиков готовят перемешиванием 0,600 г каждого из образцов I, II, III с 2,400 г порошкового графита. Перемешивание осуществляют на приборе ИС в контейнерах с пятью шариками в течение 5 мин.

При отсутствии прибора ИС образцы для построения градуировочного графика и анализируемой пробы готовят перемешиванием в ступке из расчета 30 мин на 1 г вещества для образцов головного, промежуточного и I, II, III, 5 мин на 1 г вещества для образцов I, II, III и анализируемой пробы.

Все образцы хранят в плотно закрытых бюксах.

4.6.3. Проведение анализа

Перед анализом электроды обжигают в дуге переменного тока при силе тока 14 A в течение 20 с и охлаждают. Все приспособления предварительно тщательно протирают ватным тампоном, смоченным в этиловом спирте.

Анализируемую пробу и рабочие образцы I, II, III помещают в кратеры электродов, набивая каждым по три электрода. Фотографируют в дуге переменного тока на одной фотопластинке при одинаковых условиях по три параллельных спектра анализируемой пробы и образцов. Щель спектрографа открывают до зажигания дуги.

Условия съемки:

сила тока, А	12
ширина щели спектрографа, мм	0,020
высота диафрагм на средней линзе конденсорной системы, мм	5,0
Экспозиция, с	60

4.6.4. Обработка спектрограмм и результатов

Фотопластинки со снятыми спектрами проявляют, промывают в воде, фиксируют в течение 5 мин, снова тщательно промывают в проточной воде и высушивают на воздухе. Затем проводят фотометрирование аналитических спектральных линий определяемых примесей и соседнего фона, пользуясь логарифмической шкалой.

Аналитические линии: Fe — 302,06 нм; Si — 288,16 нм; Pb — 283,31 нм; Cu — 324,75 нм; Mn — 279,48 нм.

Для каждой аналитической пары вычисляют разность почернений ΔS :

$$\Delta S = S_{n+\Phi} - S_{\Phi},$$

где $S_{n+\Phi}$ — почернение линии + фона;

 S_{Φ}^{-} — почернение фона.

По трем значениям разности почернений определяют среднее арифметическое значение Δ S' для каждого из образцов I, II, III и анализируемой пробы. По значениям Δ S'-образцов и значениям концентраций элементов в образцах строят градуировочный график для каждого элемента, откладывая по оси абсцисс логарифмы концентраций, а по оси ординат — соответствующие им средние арифметические значения разности почернений Δ S'.

Массовую долю каждой примеси в препарате находят по графику.

Препарат считают соответствующим требованиям настоящего стандарта, если массовые доли железа, кремния и суммарная массовая доля свинца, меди, марганца не будут превышать допустимых норм.

За результат анализа принимают среднее арифметическое результатов трех параллельных определений, относительное расхождение между наиболее отличающимися значениями которых не должно превышать допускаемое расхождение, равное 50 %.

Допускаемая относительная суммарная погрешность результата анализа $\pm 25~\%$ при доверительной вероятности P=0.95.

4.6.2.1—4.6.4. (Измененная редакция, Изм. № 1).

5. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

5.1. Препарат упаковывают и маркируют в соответствии с ГОСТ 3885.

Вид и тип тары: 2—9, 11—1. Группа фасовки: IV, V, VI, VII. (Измененная редакция, Изм. № 1).

С. 6 ГОСТ 10067—80 Электронная версия

5.2. Препарат перевозят всеми видами транспорта в соответствии с правилами перевозки грузов, действующими на данном виде транспорта.

5.3. Препарат хранят в упаковке изготовителя в крытых складских помещениях вдали от нагревательных приборов и кислот.

6. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 6.1. Изготовитель гарантирует соответствие кислого фтористого калия требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.
 - 6.2. Гарантийный срок хранения препарата 3 года со дня изготовления.
 - 6.1, 6.2. (Измененная редакция, Изм. № 1).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством химической промышленности СССР РАЗРАБОТЧИКИ
 - 3.М. Ривина, Г.И. Федотова, Л.В. Кидиярова
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 25.02.80 № 877
- 3. B3AMEH ΓΟCT 10067—75
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта	Обозначение НТД, на который дана ссылка	Номер пункта, подпункта
FOCT 12.1.007—76 FOCT 83—79 FOCT 84—76 FOCT 1770—74 FOCT 3773—72 FOCT 3885—73 FOCT 4160—74 FOCT 4328—77 FOCT 4517—87 FOCT 4919.1—77 FOCT 6563—75 FOCT 6709—72	2.1 4.6.1 4.6.1 4.3.1 4.6.1 3.1; 4.2; 5.1 4.6.1 4.3.1 4.3.1 4.3.1 4.3.1 4.6.1	FOCT 9656—75 FOCT 10671.5—74 FOCT 10671.7—74 FOCT 16539—79 FOCT 18300—87 FOCT 19627—74 FOCT 23463—79 FOCT 24104—88 FOCT 25664—83 FOCT 25794.1—83 FOCT 27025—86 FOCT 27068—86	4.4 4.5 4.4 4.6.1 4.3.1; 4.6.1 4.6.1 4.6.1 4.6.1 4.3.1 4.6.1 4.3.1 4.6.1

- 5. Ограничение срока действия снято по протоколу № 3—93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 5-6—93)
- 6. ПЕРЕИЗДАНИЕ (ноябрь 1998 г.) с Изменением № 1, утвержденным в мае 1988 г. (ИУС 8-88)

Редактор *Л.И. Нахимова*Технический редактор *О.Н. Власова*Корректор *В.И. Кануркина*Компьютерная верстка *Е.Н. Мартемьяновой*

Изд, лиц. № 021007 от 10.08.95. Сдано в набор 30.11.98. Подписано в печать 21.12.98. Усл. печ. л. 0,93. Уч.-изд. л. 0,73. Тираж 000 экз. C1605. Зак. 912.