САМОРЕГУЛИРУЕМАЯ ОРГАНИЗАЦИЯ НЕКОММЕРЧЕСКОЕ ПАРТНЕРСТВО «ОБЪЕДИНЕНИЕ ОРГАНИЗАЦИЙ ВЫПОЛНЯЮЩИХ АРХИТЕКТУРНОСТРОИТЕЛЬНОЕ ПРОЕКТИРОВАНИЕ ОБЪЕКТОВ АТОМНОЙ ОТРАСЛИ «СОЮЗАТОМПРОЕКТ»

Утвержден

решением общего собрания членов СРО НП «СОЮЗАТОМПРОЕКТ» протокол № 8 от 14 февраля 2013 года

СТАНДАРТ ОРГАНИЗАЦИИ

Детали и элементы трубопроводов групп В и С атомных станций из сталей перлитного класса на давление до 2,2 МПа (22 кгс/см²)

ДЕТАЛИ ТРУБОПРОВОДОВ БЕСШОВНЫЕ ПРИВАРНЫЕ ИЗ УГЛЕРОДИСТОЙ И НИЗКОЛЕГИРОВАННОЙ СТАЛИ

Параметры применения

СТО СРО-П 60542948 00030-2013

Издание официальное

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ «О техническом регулировании», а правила применения стандартов организаций – ГОСТ Р 10.4-2004 «Стандартизация в Российской Федерации. Стандарты организаций. Общие положения»

Сведения о стандарте

1 РАЗРАБОТАН ЗАО «ИНСТИТУТ «СЕВЗАПЭНЕРГОМОНТАЖПРОЕКТ»

2 СОГЛАСОВАН с ОАО «Концерн Росэнергоатом», ОАО «Атомэнергопроект», ОАО «СПбАЭП», ОАО «НИАЭП», ЗАО «Энергомаш (Белгород)- БЗЭМ», ЗАО «Атомтрубопроводмонтаж»

3 ВНЕСЁН Советом СРО НП «СОЮЗАТОМПРОЕКТ»

4 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Протоколом общего собрания СРО НП «Союзатомпроект» № 8 от 14 февраля 2013 г.

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом перечне действующей нормативно-технической документации ЗАО «Институт «Севзапэнергомонтажпроект»

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения СРО НП «СОЮЗАТОМПРОЕКТ»

Распространение и техническое сопровождение стандарта осуществляет ЗАО «ИНСТИТУТ «СЕВЗАПЭНЕРГОМОНТАЖПРОЕКТ»

Содержание

10 Область применения	1
2 Нормативные ссылки	1
3 Термины, определения и обозначения	2
4 Параметры применения	2
5 Технические требования	10
6 Технические условия	10
Библиография	11

Введение

Настоящий стандарт создан с целью применения в составе комплекса (сборника) стандартов «Детали и элементы трубопроводов групп В и С атомных станций из сталей перлитного класса на давление до 2,2 МПа (22 кгс/см²)» при проектировании, изготовлении, монтаже и ремонте трубопроводов низкого давления атомных станций из сталей перлитного класса во исполнение Федерального закона от 27.12.2002 г. «О техническом регулировании».

Стандарт может применяться другими организациями в порядке и на условиях оговоренных ГОСТ Р 1.4-2004 (пункты 4.17 и 4.18).

СТАНДАРТ ОРГАНИЗАЦИИ

Детали и элементы трубопроводов групп В и С атомных станций из сталей перлитного класса на давление до 2,2 МПа (22 кгс/см²)

ДЕТАЛИ ТРУБОПРОВОДОВ БЕСШОВНЫЕ ПРИВАРНЫЕ ИЗ УГЛЕРОДИСТОЙ И НИЗКОЛЕГИРОВАННОЙ СТАЛИ

Параметры применения

1 Область применения

Настоящий стандарт распространяется на бесшовные приварные детали из углеродистой и низколегированной стали, изготовляемые по ГОСТ 17380, и устанавливает параметры и условия их применения для трубопроводов атомных станций (АС).

Стандарт устанавливает параметры применения крутоизогнутых отводов (колен) по ГОСТ 17375, тройников по ГОСТ 17376 и переходов по ГОСТ 17378 (далее – изделий) исполнения 2 для трубопроводов АС, транспортирующих рабочие среды с расчетной температурой не более 350 °C при рабочем давлении менее 2,2 МПа (22 кгс/см²). и отнесённых правилами устройства и безопасной эксплуатации оборудования и трубопроводов атомных энергетических установок – ПН АЭ Г-7-008 [1], утвержденными Госатомнадзором России, к группам В и С.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 17375–2001 Детали трубопроводов бесшовные приварные из углеродистой и низколегированной стали. Отводы крутоизогнутые типа 3D ($R \approx 1,5$ DN). Конструкция

ГОСТ 17376—2001 Детали трубопроводов бесшовные приварные из углеродистой и низколегированной стали. Тройники. Конструкция

ГОСТ 17378–2001 Детали трубопроводов бесшовные приварные из углеродистой и низколегированной стали. Переходы. Конструкция

ГОСТ 17380–2001 Детали трубопроводов приварные из углеродистой и низколегированной стали. Общие технические условия

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и классификаторов в информационной системе общего пользования— на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины, определения и обозначения

 $2.1~\mathrm{B}$ настоящем стандарте применены термины, определения и обозначения по ГОСТ 17380 и СТО СРО-П 60542948 00008 [2].

4 Параметры применения

- 4.1 Параметры применения тройников по ГОСТ 17376 приведены в таблицах 1 и 2.
- 4.2 Параметры применения крутоизогнутых отводов (колен) по ГОСТ 17375 и переходов по ГОСТ 17378 определяются по СТО СРО-П 60542948 00027 [3] и СТО СРО-П 60542948 00028 [4] для деталей аналогичных с ними размеров.

П р и м е ч а н и е – Параметры применения определены от внутреннего давления по нормам расчета ПН АЭ Г-7-002-86 [5], утвержденным Госатомэнергонадзором.

Таблица 1 – Номинальное давление для тройников из стали марки 20

Обозначение тройника	DN×DN1	PN
Переходные т	ройники	
П 25×3,0-20×3,0 ГОСТ 17376–2001	20×15	40*
П 25×2,0-20×2,0 ГОСТ 17376–2001	20^13	25
П 32×2,0-20×2,0 ГОСТ 17376–2001	25×15	16
П 32×3,0-20×3,0 ГОСТ 17376–2001	23^13	40*
П 32×2,0-25×2,0 ГОСТ 17376–2001	25×20	16
П 32×3,0-25×3,0 ГОСТ 17376–2001	23^20	40*

Обозначение тройника	DN×DN1	PN
П 38×2,0-20×2,0 ГОСТ 17376–2001	32×15	16
П 38×3,0-20×3,0 ГОСТ 17376–2001		40
П 38×2,0-25×2,0 ГОСТ 17376–2001	22×20	16
П 38×3,0-25×3,0 ГОСТ 17376–2001	32×20	40
П 38×2,0-32×2,0 ГОСТ 17376–2001	22×25	10
П 38×3,0-32×3,0 ГОСТ 17376–2001	32×25	40
Π 57×3,0-45×2,5 ΓΟCT 17376–2001	50×40	25
П 57×4,0-45×3,0 ГОСТ 17376–2001	50×40	40
П 76×3,5-45×2,5 ГОСТ 17376–2001	C5×40	25
П 76×6,0-45×4,0 ГОСТ 17376–2001	65×40	40
П 76×3,5-57×3,0 ГОСТ 17376–2001	65×50	25
П 76×6,0-57×5,0 ГОСТ 17376–2001	65×50	40
П 89×3,5-57×3,0 ГОСТ 17376–2001	90×50	16
П 89×6,0-57×4,0 ГОСТ 17376–2001	80×50	40
П 89×3,5-76×3,5 ГОСТ 17376–2001	90×65	16
П 89×6,0-76×6,0 ГОСТ 17376–2001	80×65	40
П 108×4,0-76×3,5 ГОСТ 17376–2001	100×65	16
П 108×6,0-76×5,0 ГОСТ 17376–2001	100×03	40
П 108×4,0-89×4,0 ГОСТ 17376–2001	100×80	16
П 108×6,0-89×6,0 ГОСТ 17376–2001	100^80	40
П 133×4,0-89×3,5 ГОСТ 17376–2001	125 × 80	16
П 133×6,0-89×5,0 ГОСТ 17376–2001	125×80	40
П 133×4,0-108×4,0 ГОСТ 17376–2001	125×100	16
П 133×6,0-108×5,0 ГОСТ 17376–2001	125×100	40
П 159×4,5-108×4,0 ГОСТ 17376–2001	150×100 25 40	10
П 159×6,0-108×5,0 ГОСТ 17376–2001		25
П 159×8,0-108×6,0 ГОСТ 17376–2001		40

Обозначение тройника	DN×DNI	PN
П 159×4,5-133×4,0 ГОСТ 17376–2001		10
П 159×6,0-133×5,0 ГОСТ 17376–2001	150×125	16
П 159×8,0-133×6,0 ГОСТ 17376–2001		40
П 219×6,0-133×5,0 ГОСТ 17376–2001	200×125	16
П 219×8,0-133×6,0 ГОСТ 17376–2001	200×125	40
П 219×6,0-159×6,0 ГОСТ 17376–2001		16
П 219×8,0-159×6,0 ГОСТ 17376–2001	200×150	25
П 219×10,0-159×8,0 ГОСТ 17376–2001	1	40
П 273×7,0-159×4,5 ГОСТ 17376–2001	250×150	16
П 273×10,0-159×6,0 ГОСТ 17376–2001	250×150	40
П 273×7,0-219×6,0 ГОСТ 17376–2001		10
П 273×10,0-219×8,0 ГОСТ 17376–2001	250×200	25
П 273×12,0-219×10,0 ГОСТ 17376–2001		40
П 325×8,0-219×6,0 ГОСТ 17376–2001		16
П 325×10,0-219×8,0 ГОСТ 17376–2001	300×200	25
П 325×12,0-219×10,0 ГОСТ 17376–2001		40
П 325×8,0-273×7,0 ГОСТ 17376–2001		16
П 325×10,0-273-10,0 ГОСТ 17376–2001	300×250	25
П 325×12,0-273-12,0 ГОСТ 17376–2001		40
П 377×10,0-273×7,0 ГОСТ 17376–2001		16
Π 377×12,0-273×10,0 ΓΟCT 17376–2001	350×250	25
П 377×16,0-273×12,0 ГОСТ 17376–2001		40
П 377×10,0-325×8,0 ГОСТ 17376–2001		16
П 377×12,0-325×10,0 ГОСТ 17376–2001	350×300	25
П 377×16,0-325×16,0 ГОСТ 17376–2001	40	40
П 426×10,0-325×8,0 ГОСТ 17376–2001	400×300	10
П 426×12,0-325×10,0 ГОСТ 17376–2001	400^300	16

Обозначение тройника	DN×DNI	PN
П 426×16,0-325×12,0 ГОСТ 17376–2001	400×300	40
П 426×10,0-377×10,0 ГОСТ 17376–2001	400250	10
П 426×12,0-377×12,0 ГОСТ 17376–2001	400×350	16
П 426×16,0-377×16,0 ГОСТ 17376–2001	400×350	40
Равнопроходны	е тройники	
П 20×2,0 ГОСТ 17376–2001	15×15	40*
П 25×2,0 ГОСТ 17376–2001	20×20	16
П 32×2,0 ГОСТ 17376–2001	25×25	10
П 32×3,0 ГОСТ 17376–2001	25×25	40*
П 38×2,0 ГОСТ 17376–2001	22,422	10
П 38×3,0 ГОСТ 17376–2001	32×32	40
П45×2,5 ГОСТ 17376–2001	40×40	16
П45×4,0 ГОСТ 17376–2001		40*
П 57×3,0 ГОСТ 17376–2001	50,450	25
П 57×4,0 ГОСТ 17376–2001	50×50	40
П 76×3,5 ГОСТ 17376–2001	CENCE	25
П 76×6,0 ГОСТ 17376–2001	65×65	40
П 89×3,5 ГОСТ 17376–2001	90×90	16
П 89×6,0 ГОСТ 17376–2001	80×80	40
П 108×4,0 ГОСТ 17376–2001	100×100	16
П 108×6,0 ГОСТ 17376–2001	100×100	40
П 133×4,0 ГОСТ 17376–2001	125×125	10
П 133×6,0 ГОСТ 17376–2001	125×125	40
П 159×4,5 ГОСТ 17376–2001		10
П 159×6,0 ГОСТ 17376–2001	150×150 16 40	16
П 159×8,0 ГОСТ 17376–2001		40
П 219×6,0 ГОСТ 17376–2001	200×200	16

Окончание таблицы 1

Обозначение тройника	DN×DNI	PN
П 219×10,0 ГОСТ 17376–2001	200×200	40
П 273×7,0 ГОСТ 17376–2001	250, 250	16
П 273×10,0 ГОСТ 17376–2001	250×250	40
П 325× 8,0 ГОСТ 17376–2001	300×300	10
П 325×10,0 ГОСТ 17376–2001	200,200	16
П 325×12,0 ГОСТ 17376–2001	300×300	40
П 377×10,0 ГОСТ 17376–2001		16
П 377×12,0 ГОСТ 17376–2001	350×350	25
П 377×16,0 ГОСТ 17376–2001	1	40
П 426×10,0 ГОСТ 17376–2001		10
П 426×12,0 ГОСТ 17376–2001	400×400	16
П 426×16,0 ГОСТ 17376–2001		40
* Cm. 5.2.1.		

Т а б л и ц а $\,2$ – Номинальное давление для тройников из стали марки $15\Gamma C$

Обозначение тройника	DN×DNI	PN
Переходные т	ройники	
П 25×2,0-20×2,0-15ГС ГОСТ 17376–2001	20×15	40
П 32×2,0-20×2,0-15ГС ГОСТ 17376–2001	25×15	25
П 32×3,0-20×3,0-15ГС ГОСТ 17376–2001	25×15	40*
П 32×2,0-25×2,0-15ГС ГОСТ 17376–2001	25×20	25
П 32×3,0-25×3,0-15ГС ГОСТ 17376–2001	23^20	40*
П 38×2,0-20×2,0-15ГС ГОСТ 17376–2001	32×15	16
П 38×3,0-20×3,0-15ГС ГОСТ 17376–2001] 32*13	40
П 38×2,0-25×2,0-15ГС ГОСТ 17376–2001	32×20	16
П 38×3,0-25×3,0-15ГС ГОСТ 17376–2001	32^20	40

Обозначение тройника	DN×DN1	PN
П 38×2,0-32×2,0-15ГС ГОСТ 17376–2001	22×25	16
П 38×3,0-32×3,0-15ГС ГОСТ 17376–2001	32×25 40	
Π 57×3,0-45×2,5-15ΓC ΓΟCT 17376–2001	50×40	40
П 76×3,5-45×2,5-15ГС ГОСТ 17376–2001	65×40	40
Π 76×3,5-57×3,0-15ΓC ΓΟCT 17376–2001	65×50	40
Π 89×3,5-57×3,0-15ΓC ΓΟCT 17376–2001	80×50	40
П 89×3,5-76×3,5-15ГС ГОСТ 17376–2001	80×65	40
П 108×4,0-76×3,5-15ГС ГОСТ 17376–2001	100×65	40
П 108×4,0-89×4,0-15ГС ГОСТ 17376–2001	100×80	40
П 133×4,0-89-3,5-15ГС ГОСТ 17376–2001	125,480	16
П 133×6,0-89×5,0-15ГС ГОСТ 17376–2001	125×80	40
П 133×4,0-108×4,0-15ГС ГОСТ 17376–2001	125 × 100	16
П 133×6,0-108×5,0-15ГС ГОСТ 17376–2001	125×100	40
П 159×4,5-108×4,0-15ГС ГОСТ 17376–2001	150v100	16
П 159×6,0-108×5,0-15ГС ГОСТ 17376–2001	150×100	40
П 159×4,5-133×4,0-15ГС ГОСТ 17376–2001	150×125	16
П 159×6,0-133×5,0-15ГС ГОСТ 17376–2001	150×125 40	
П 219×6,0-133×5,0-15ГС ГОСТ 17376–2001	200v125	25
П 219×8,0-133×6,0-15ГС ГОСТ 17376–2001	200×125	40
П 219×6,0-159×6,0-15ГС ГОСТ 17376–2001	200v150	25
П 219×8,0-159×6,0-15ГС ГОСТ 17376–2001	200×150 40	
П 273×7,0-159×4,5-15ГС ГОСТ 17376–2001	250×150	16
П 273×10,0-159×6,0-15ГС ГОСТ 17376–2001	250×150 40	
П 273×7,0-219×6,0-15ГС ГОСТ 17376–2001	250×200	16
П 273×10,0-219×8,0-15ГС ГОСТ 17376–2001	250×200 40	
П 325×8,0-219×6,0-15ГС ГОСТ 17376–2001	76–2001 16	
П 325×10,0-219×8,0-15ГС ГОСТ 17376–2001	300×200 25	

Обозначение тройника	DN×DN1	PN
П 325×10,0-219×8,0-15ГС ГОСТ 17376–2001	10,0-219×8,0-15ΓC ΓΟCT 17376–2001 300×200	
П 325×8,0-273×7,0-15ГС ГОСТ 17376–2001	200,250	16
П 325×10,0-273×10,0-15ГС ГОСТ 17376–2001	300×250	40
П 377×10,0-273×7,0-15ГС ГОСТ 17376–2001	350×350	16
П 377×12,0-273×10,0-15ГС ГОСТ 17376–2001	350×250	40
П 377×10,0-325×8,0-15ГС ГОСТ 17376–2001	250×200	16
П 377×12,0-325×10,0-15ГС ГОСТ 17376–2001	350×300	40
П 426×10,0-325×8,0-15ГС ГОСТ 17376–2001		16
П 426×12,0-325×10,0-15ГС ГОСТ 17376–2001	400×300	25
П 426×16,0-325×12,0-15ГС ГОСТ 17376–2001		40
П 426×10,0-377×10,0-15ГС ГОСТ 17376–2001		16
П 426×12,0-377×12,0-15ГС ГОСТ 17376–2001	400×350	25
П 426×16,0-377×16,0-15ГС ГОСТ 17376–2001		40
Равнопроходные тройники		
П 20×2,0-15ГС ГОСТ 17376–2001	15×15	40*
П 25×2,0-15ГС ГОСТ 17376–2001	20×20	25
П 25×3,0-15ГС ГОСТ 17376–2001	20×20	40*
П 32×2,0-15ГС ГОСТ 17376–2001	25×25	16
П 32×3,0-15ГС ГОСТ 17376–2001	23^23	40*
П 38×2,0 ГОСТ 17376–2001	22.22	
П 38×3,0 ГОСТ 17376–2001	32×32	40
П 45×2,5-15ГС ГОСТ 17376–2001	40×40	25
П 45×4,0-15ГС ГОСТ 17376–2001	40×40 40*	
П 57×3,0-15ГС ГОСТ 17376–2001	50×50	40
П 76×3,5-15ГС ГОСТ 17376–2001	65×65	40
П 89×3,5-15ГС ГОСТ 17376–2001		16
П 89×6,0-15ГС ГОСТ 17376–2001	80×80	40

Окончание таблицы 2

Обозначение тройника	DN×DN1	PN
П 108×4,0-15ГС ГОСТ 17376–2001	100×100	25
П 108×6,0-15ГС ГОСТ 17376–2001	100×100	40
П 133×4,0-15ГС ГОСТ 17376–2001	125×125	16
П 133×6,0-15ГС ГОСТ 17376–2001	123×123	40
П 159×4,5-15ГС ГОСТ 17376–2001	150×150	16
П 159×6,0-15ГС ГОСТ 17376–2001	130×130	40
П 219×6,0-15ГС ГОСТ 17376–2001	200×200	16
П 219×8,0-15ГС ГОСТ 17376–2001	200^200	40
П 273×7,0-15ГС ГОСТ 17376–2001	250×250	16
П 273×10,0-15ГС ГОСТ 17376–2001	230^230	40
П 325×8,0-15ГС ГОСТ 17376–2001		16
П 325×10,0-15ГС ГОСТ 17376–2001	300×300	25
П 325×12,0-15ГС ГОСТ 17376–2001		40
П 377×10,0-15ГС ГОСТ 17376–2001	350×350	16
П 377×12,0-15ГС ГОСТ 17376–2001	330^330	40
П 426×10,0-15ГС ГОСТ 17376–2001	400×400	16
П 426×16,0-15ГС ГОСТ 17376–2001	400/400	40
* См. 5.2.1.	•	

5 Технические требования

- 5.1 Материал изделий должен соответствовать требованиям СТО СРО-П 60542948 00009 [6].
- 5.2 Рабочие параметры по СТО СРО-П 60542948 00008 [2].
- 5.2.1 Параметры применения тройников, отмеченных в таблице знаком сноски, должны быть согласованы в порядке, предусмотренном ПН АЭ Г-7-002 [5] (пункт 4.1.8).
- 5.3 Тип разделки кромок изделий под сварку с трубопроводом должен соответствовать СТО СРО-П 60542948 00010 [7].
- 5.4 Объемы контроля овальности и утонения (утолщения) стенки отводов (колен) по ГОСТ 17375 должны соответствовать ПН АЭ Г-7-008 [1] (пункт 4.5.3).
- 5.5 Места сопряжений цилиндрических и конических участков переходов по ГОСТ 17378 шириной не менее 20 мм по обе стороны от линии сопряжения должны подвергаться капиллярному или магнитопорошковому контролю.
- 5.6 Применение тройников по ГОСТ 17376 с фактическим радиусом наружной поверхности в зоне сопряжения магистрали и ответвления в плоскости, проходящей через центры торцов r < 5 мм, не допускается.
 - 5.6.1 Фактический радиус r не должен превышать номинальный размер более чем в два раза. В противном случае, параметры применения тройников подлежат уточнению.
- 5.6.2 Тройники с радиусом r < 20 мм должны быть подвергнуты обязательной термической обработке. Допускается совмещение операций горячей высадки горловины и термической обработки.
- 5.6.2.1 В случае выполнения операции термической обработки наружную и внутреннюю поверхности горловины подвергнуть капиллярному или магнитопорошковому контролю в пределах зоны, определенной ПН АЭ Г-7-008 [1] (пункт 4.3.6). Контроль выполнять после механической обработки торцов под сварку с трубопроводом.
 - 5.7 Остальные технические требования по СТО СРО-П 60542948 00008 [2].

6 Технические условия

6.1 Технические условия по СТО СРО-П 60542948 00008 [2].

Библиография

[1] ПН АЭ Г-7-008-89	Правила устройства и безопасной эксплуатации оборудования и трубопроводов атомных энергетических установок
[2] CTO CPO-П 60542948 00008–2013	Детали и элементы трубопроводов групп В и С атомных станций из сталей перлитного класса на давление до 2,2МПа (22 кгс/см²). Технические условия
[3] CTO CPO-П 60542948 00027–2013	Детали и элементы трубопроводов групп В и С атомных станций из сталей перлитного класса на давление до 2,2 МПа (22 кгс/см²). Колена крутоизогнутые. Конструкция и размеры
[4] СТО СРО-П 60542948 00028–2013	Детали и элементы трубопроводов групп В и С атомных станций из сталей перлитного класса на давление до 2,2 МПа (22 кгс/см²). Переходы. Конструкция и размеры
[5] ПНАЭ Г-7-002-86	Нормы расчета на прочность оборудования и трубопроводов атомных энергетических установок
[6] СТО СРО-П 60542948 00009–2013	Детали и элементы трубопроводов групп В и С атомных станций из сталей перлитного класса на давление до 2,2 МПа (22 кгс/см²). Трубы и прокат. Сортамент
[7] CTO СРО-П 60542948 00010–2013	Детали и элементы трубопроводов групп В и С атомных станций из сталей перлитного класса на давление до 2,2 МПа (22 кгс/см²). Соединения сварные. Типы и размеры

OKC 23.040.01

27.120.01

Ключевые слова: Детали трубопроводов бесшовные приварные, параметры

60542948 00030-2013