РУКОВОДЯЩИЙ ДОКУМЕНТ

Методические указания

Концентрация несимметричного диметилгидразина в пробах поверхностной, грунтовой, питьевой воды и почвы

Методика выполнения измерений методом хроматомасс-спектрометрии.

РД 52.18.579-97

Предисловие

1 РАЗРАБОТАН Научно- производственным объединением Тайфун" (НПО "Тайфун")

2 РАЗРАБОТЧИКИ Д.П.Самсонов, Г.В.Борновалова, .И.Вальтер, А.Ф.Ковалев. В.А.Красковская, А.М.Шкляева.

3 УТВЕРЖДЕН Росгидрометом от

4 СВИДЕТЕЛЬСТВО ОБ АТТЕСТАЦИИ N 11-95 от 29.11.95 выдано НПО "Тайфун"

5 ЗАРЕГИСТРИРОВАН ЦКБ ГМП за N

OT

6 ВВЕДЕН ВПЕРВЫЕ

Настоящий руководящий документ не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения НПО "Тайфун" Росгидромета

Содержание

1	Область применения	I
2	Нормативные ссылки	I
3	Средства измерений, вспомогательные устройства, материалы, реактивы	2
4	Нормы погрешности измерений	3
5	Метод измерений	4
6	Требования безопасности	4
7	Требования к квалификации операторов	4
8	Условия измерений	5
9	Подготовка к выполнению измерений	5
10	Выполнение измерений	6
11	Обработка результатов измерений	7
12	Оформление результатов измерений	8
13	Контроль погрешности МВИ	8
При	пожение А. Методика приготовления аттестованных смесей, применяемых для	
-	определения концентрации несимметричного диметилгидразина в	
	пробах поверхностной, грунтовой, питьевой воды и почвы	10
При	ложение Б. Форма рабочего журнала при проведении измерений концентрации	
-	несимметричного диметилгидразина	14
При	пожение В. Библиография	15

РУКОВОДЯЩИЙ ДОКУМЕНТ

Методические указания.

Концентрация несимметричного диметилгидразина в пробах поверхностной грунтовой, питьевой воды и почвы. Методика выполнения измерений методом хромато-масс-спектрометрии.

Дата введения

1 Область применения

Настоящая методика выполнения измерений (МВИ) устанавливает методику определения концентраций несимметричного диметилгидразина (НДМГ) в пробах воды и почвы.

В основе реализации разработанной МВИ лежит перевод НДМГ в анализируемую форму реакцией с п-интробензальдегидом, выделение анализируемого продукта из реакционной смеси методом капиллярной газо-жидкостной хроматографии, количественное и качественное определение методом масс-спектрометрии. Идентификацию анализируемого гидразона проводят по полному масс-спектру. Вводимый для контроля прохождения процесса внутренний стандарт - анилин (АС - К)- реагирует с п-интробензальдегидом, давая соответствующий интробензилиден. Определению не мещает присутствие других аминов.

МВИ предназначена для использования в лабораториях Росгидромета, выполняющих измерения в области мониторинга загрязнения окружающей среды.

2 Нормативные ссылки

В настоящих методических указаниях использованы ссылки на следующие нормативные документы:

ГОСТ 12.1.007-76 ССБТ Вредные вещества. Классификация и общие требования безопасности

ГОСТ 17.0.0.02-79 Охрана природы. Метрологическое обеспечение контроля загрязненности атмосферы, поверхностных вод и почвы. Основные положения

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков

ГОСТ 17.4.3.03-85 Охрана природы. Почвы. Общие требования к методам определения загрязняющих веществ

ГОСТ 1770-74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Технические условия

ГОСТ 2053-77 Натрий сульфид. Технические условия

ГОСТ 3118-77 Кислота соляная. Технические условия

ГОСТ 3652-69 Кислота лимонная моногидрат и безводная. Технические условия

ГОСТ 4166-76 Натрий сернокислый. Технические условия

ГОСТ 4201-79 Натрий углекислый кислый. Технические условия

ГОСТ 4204-77 Кислота серная. Технические условия

ГОСТ 4220-75 Калий двухромовокислый. Технические условия

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ 6995-77 Метанол-яд. Технические условия

ГОСТ 9293-74 Азот газообразный и жидкий. Технические условия

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 24104-88 Весы лабораторные общего назначения и образцовые. Общие технические условия

ГОСТ 25336-82Е Посуда и оборудование лабораторные, стеклянные. Типы, основные параметры и размеры

ГОСТ 25828-83 Гептан нормальный эталонный. Технические условия

ГОСТ 29227-91 Посуда лабораторная, стеклянная. Пипетки градуированные. Часть 1. Общие требования

ГОСТ 20010-93 Перчатки резиновые технические. Технические условия

3. Средства измерений, вспомогательные устройства, материалы, реактивы

При выполнении измерений применяют следующие средства измерений, вспомогательные устройства, материалы и реактивы:

- хромато-масс-спектрометр низкого разрешения SATURN 4D, фирмы VARIAN,
 США, или аналогичный по техническим параметрам прибор.
- рН-метр, фирма RADEKLIS (Венгрия);
- аппарат для встряхивания проб, фирма MAKROVIBRO;
- ротационный испаритель, фирма KUTESZ (Венгрия);
- весы аналитические лабораторные ВЛР-200 г ГОСТ 24104;
- весы дабораторные ВЛКТ-500 г ГОСТ 24104;
- шкаф сушильный 2В-151;
- холодильник бытовой;
- термостат, фирма UNITRA;
- колбы мерные исполнения 4, вместимостью 10, 50 см³ ГОСТ 1770;
- колбы плоскодонные конические исполнения 4, вместимостью 1000 см³, 500, 250, 100 см³ ГОСТ 25336:
- колбы круглодонные для упаривания исполнения 4, вместимостью 500 см3, 100 см3 ГОСТ 25336;
- воронки делительные вместимостью 500 см³, 250 см³ ГОСТ-25336;

- воронки стеклянные конические ГОСТ 25336;
- пробирки градуированные с притертыми пробками исполнения 2 вместимостью 5 см³ ГОСТ 1770;
- флаконы micro-Vial 2 см³;
- автоматические пипетки на 5-1000 мкл (вместимостью см³), фирма HTL (Венгрия);
- стаканы мерные вместимостью 100, 500, 800 см³ ГОСТ 25336
- палочки стеклянные 1 = 250 мм;
- микрошприцы МШ-10, фирма Hamilton Sir.;
- N,N-диметилгидразин, х.ч. (98%), фирма Aldrich,USA;
- анилин, х.ч. (99.5%), фирма Aldrich, USA;
- вода дистиллированная ГОСТ 6709;
- н-гептан, х.ч. ГОСТ 25828;
- гелий марки А ТУ 51-940;
- азот ос.ч. ГОСТ 9293;
- калий двухромовокислый, х.ч. ГОСТ 4220;
- кислота серная, х.ч. ГОСТ 4204;
- кислота соляная, х.ч. ГОСТ 3118;
- кислота лимонная, ос.ч ТУ 6-09-584;
- натрий гидрокарбонат, х.ч. ГОСТ 4201;
- пипетки ГОСТ 29227;
- натрий едкий, х.ч. фирма СНЕМАРОL;
- натрий сернокислый безводный, ч ГОСТ 4166;
- натрий сульфид, ч. ГОСТ 2053;
- п-нитробензальдегид, ч. ТУ 6-09-4517;
- метанол, х.ч. ГОСТ 6995;
- перчатки резиновые технические ГОСТ 20010.

4 Нормы погрешности измерений

4.1 В соответствии с ГОСТ 17.0.0.02 минимальная концентрация НДМГ в воде, измеряемая с помощью настоящей МВИ, должно быть не менее, чем в два раза ниже ПДК, что составляет 10 мкг/ дм³.

Согласно ГОСТ 17.4.3.03 МВИ должна обеспечивать измерение концентрации НДМГ в почве на порядок ниже ПДК (санитарно-гигиенического), что составляет 10 мкг/кг.

ПДК НДМГ для воды - 20 мкг/см³ [1], приложение В.

ПДК НДМГ для почвы - 100 мжг/кг [1].

Воспроизводимость МВИ для почвы не должна превышать 30%.

4.2 При соблюдении всех регламентируемых МВИ условий проведения измерений, МВИ обеспечивает определение концентрации НДМГ в воде и почве в диапазоне от 0.2 до 5000 мкг/дм³ (вода), мкг/кг (почва), с погрешностью, не превышающей значений, приведенных в таблице 1

Таблипа 1

	Диапазон из- мерений,	Значение составляю	Погрешность МВИ,	
Наименование	мкг/дм ³ (вода) мкг/кг	случайной	неисключенной систематической	при
	(почва)	Воспроизводимость σ (Δ)	(правильность)	P = 0,95,
		0 (Δ)	Δ_{c}	∆ _m , %, не более
НДМГ	от 0,2 до 5000	12,0	9,0	25,0

5 Метод измерений

Измерение концентрации НДМГ в воде и почве производят методом перевода НДМГ в анализируемую форму, полученную реакцией НДМГ с пара-нитробензальдегидом с последующим выделением анализируемого продукта из реакционной смеси методом капиллярной газо-жидкостной хроматографии. Качественное и количественное определение концентрации НДМГ проводят методом масс-спектрометрии. Идентификацию анализируемого продукта проводят по характеристическим пикам ионов в масс-спектре. Данная методика позволяет проводить измерение концентрации НДМГ в присутствии природных аминов . Минимальное значение показателя загрязненности (предел обнаружения) НДМГ составляет 0,2 мкг/дм³ (для воды), 0,2 мкг/кг (для почвы).

6 Требования безопасности

- 6.1 При выполнении измерений концентрации НДМГ в пробах воды и почвы следует соблюдать правила безопасности труда при работе с токсичными химическими и сильнодействующими ядовитыми веществами (СДЯВ), едкими веществами, огнеопасными и легковоспламеняющимися жидкостями, а также приборами, оборудованными сжатыми газами, изложенными в [2].
- 6.2. Помещение, в котором проводятся измерения, должно быть оборудовано приточновытяжной вентилящией.

7. Требования к квалификации операторов

К проведению анализа допускаются опытные квалифицированные химики-аналитики, ныеющие опыт работы на хромато-масс спектрометре. Подготовительные операции должны выполняться химиком-аналитиком, владеющим техникой проведения экстракции, очистки растворителей и имеющим опыт химико-аналитической работы.

8. Условия измерений

- 8.1. При выполнении измерений соблюдают условия в соответствии с требованиями ГОСТ 22261:
 - температура окружающего воздуха, °С20+10
 - относительная влажность окружающего воздуха, %30-80

 - напряжение питающей сети переменного (50 Гц) тока,В...220+10
- 8.2. Анализ проб воды и почвы выполняют на хромато-масс-спектрометре Saturn 4D фирмы Varian, или ином, имеющем аналогичные технические параметры.

9. Подготовка к выполнению измерений

- 9.1. При подготовке к измерению концентрации НДМГ проводят следующие работы:
- а) очистка реактивов:
- 1) очистку н-гептана проводят перегонкой в стеклянной посуде. Очищенный н-гептан используют для приготовления экстрактов из проб воды и почвы;
 - 2) очистку метанола проводят перегонкой в стеклянной посуде;
- 3) натрий сернокислый безводный марки ос.ч. в очистке не нуждается, реактив марки х.ч. прокаливают в муфельной печи 4 ч при температуре 350-400 °C, охлаждают в эксикаторе, хранят в стеклянной банке с уплотненной пробкой в течение 1 месяца;
 - б) подготовка посуды

Химическую посуду замачивают в растворе гидрокарбоната натрия на 6-7 ч, затем промывают водопроводной водой, моют хромовой смесью, ополаскивают водопроводной водой, а затем дистиллированной водой и сущат при температуре 100-120 °C в сущильном шкафу;

- в) приготовление растворов:
- 1) приготовление 3 %-ного раствора п-нитробензальдегида: в мерную колбу вместимостью 100 см³ вносят 2,4 г п-нитробензальдегида, растворяют в небольшом количестве метанола. После растворения доводят объем до метки метанолом;
- 2) для приготовления исходного раствора НДМГ в мерную колбу вместимостью 50 см³ вводят дозатором или пипеткой 0,1 мл НДМГ и доводят до метки водным раствором соляной кислоты с рН 2. Полученный раствор имеет концентрацию НДМГ 2 мг/см³;
- 3) для приготовления исходного раствора анилина в мерную колбу вместимостью 50 см³ вводят дозатором или пипеткой 0,1 мл анилина и доводят объем до метки метанолом. Получен ный раствор имеет концентрацию анилина 2 мг/см³;
- 4) для приготовления цитратного буферного раствора рН 5,5 в мерную колбу вместимостью 1000 см^3 вносят 21 г лимонной кислоты, 200 см^3 0,1 н раствора едкого натрия и доводят объем до метки дистиллированной водой. К 76,5 см³ полученного раствора добавляют $23,5 \text{ см}^3$ 0,1 н раствора едкого натрия;

- 5) растворы аттестованных смесей (АС) НДМГ и анилина (АС-К) необходимых концентраций готовят в соответствии с приложением А для проведения оперативного контроля измерений концентрации НДМГ в воде и почве;
 - г) отбор проб к анализу:
- отбор проб воды проводят в соответствии с ГОСТ 17.1.5.05. Объем пробы 1 дм³
 На период до проведения анализа пробы воды подкисляются до рН 2 соляной кислотой,
 что обеспечивает устойчивость НДМГ в течение 10 сут;
 - 2) отбор проб почвы проводят в соответствии с [3]; масса пробы 0.2 кг
 - д) экстракция НДМГ из воды осуществляется следующим образом:
- пробу воды, подготовленную по пункту объемом 0.1 дм³ отфильтровывают через бумажный складчатый фильтр, доводят рН пробы до 5,5 цитратным буферным раствором;
- 2) к полученному раствору добавляют 5 см³ 3 %-ного раствора п-нитробензальдегида в метаноле, 50 мкг анилина и 50 см³ метанола;
- 3) полученную смесь выдерживают в термостате при температуре 40 °C в течение 30 мин;
- 4) затем смесь охлаждают до комнатной температуры, переносят в делительную воронку на 500 см³ и экстрагируют 10 мин 50 см³ н-гептана. Экстракт отделяют и водный слой повторно экстрагируют 5 мин 20 см³ н-гептана. Экстракты объединяют;
- 5) объединенный гептановый экстракт фильтруют через слой безводного сульфата натрия в грушевидную колбу вместимостью 100 см³, ополаскивают колбу 10 см³ н-гептана, промывную жидкость фильтруют в ту же колбу:
- 6) экстракт упаривают на роторном испарителе до 3-4 см³, количественно переносят во флакон micro-Vial и концентрируют током азота до объема 0.2 см³;
 - е) экстракцию НДМГ из почвы осуществляют следующим образом:
 - 1) пробу почвы весом 100 г переносят в круглодонную колбу объемом 500 см³;
- 2) к пробе добавляют 20 г хлористого натрия, 20 г сульфата натрия или магния, 100-150 см³ дистиллированной воды в зависимости от влажности почвы, гидроокись натрия до рН не ниже 8, 50 мкг анилина и проводят отгонку с паром, собирая 100 см³ дистиллята;
 - 3) измеряют рН дистиллята и доводят цитратным буферным раствором до рН 5,5;
- 4) к полученному раствору добавляют 5 см³ 3%-ного раствора п-нитробензальдегида в метаноле, 50 см³ метанола;
 - 5) далее проводят все операции как и при экстракции НДМГ из воды.

10. Выполнение измерений

10.1 Условия проведения анализа.

Хроматографическое выделение дериватов НДМГ и внутреннего стандарта проводят на кварцевой капиллярной колонке DB-5MS, длиной 30 м, диаметр 0.25 мм, толщина пленки фазы 0.25 мкм, или аналогичной при следующих условиях:

- начальная температура 60 °C;
- скорость подъема температуры 20 °С/мин.;
- конечная температура 260 °C

- инжектор типа Split/Splitless, режим Splitless
- температура инжектора 260 °C
- газ носитель гелий, 1.5 см³/мин
- инжектируемый объем 0.001см³

Масс-спектр записывают в диапазоне м/е равном 80-250 а.е.м.

10.2 Проверка работы хромато-масс-спектрометра.

Работу прибора проверяют на контрольной смеси АС-4 и АС-К, приготовление которых описано в приложении А (пункты А.4.2, А.4.2.1,

А.4.2.3), вводя в инжектор хроматографа микрошприцем 0,001 см³ гептанового экстракта - производных НДМГ и анилина, приготовленных с использованием дистиллированной воды. Записывают масс-хроматограмму, детектируя ионы 193 а.е.м. для производного НДМГ и 226 а.е.м. для производного анилина. Количественно концентрацию НДМГ расчитывают по соотношению площадей пиков соответствущих производным НДМГ и анилина.

10.3 Получение масс-хроматограмм проб воды и почвы, подготовленных по 9.1 [пункты д) и е)], осуществляется следующим образом: проводят масс-спектрометрический внализ реальных проб воды и почвы, площади пиков, соответствующих производным НДМГ и анилина записывают в рабочий журнал, оформленный в соответствии с приложением Б.

11 Обработка результатов измерений

Расчет концентрации НДМГ в пробе проводят по формуле

где

С_і - концентрация НДМГ в пробе воды, мкг/дм³;

 S_i - площадь пика НДМГ на хроматограмме пробы;

Q_{ст.}- количество прибавленного АС-К, мкг;

S_{ст.}- площадь пика внутреннего стандарта АС-К;

V - объем пробы воды, дм³;

 K_{fi} - калибровочный коэффициент.

Коэффициент K_f рассчитывают как тангенс угла наклона графика, построенного в координатах (C_i , S_i ,) для результатов анализа контрольных растворов с известным содержанием НДМГ и внутреннего стандарта, по формуле:

$$K_{fi} = \frac{S_i \cdot Q_{cr.}}{C_i \cdot S_{cr.} \cdot V}$$
 (2)

где

К_б - калибровочный коэффициент.,

Сі. концентрация калибровочного раствора, мкг/дм3

S_i - площадь пика НДМГ для калибровочного раствора с концентрацией С_i

Q_{ст.}- количество прибавленного АС-К, мкг;

S_{ст.}- площадь пика внутреннего стандарта АС-К;

V - объем раствора, дм³;

12. Оформление результатов измерений

- 12.1 Результаты измерений концентрации НДМГ в пробах воды и почвы, а также в аттестованных смесях, используемых для оперативного контроля, заносят в рабочий журнал по форме таблицы приложения Б.
- 12.2 Форма представления результатов измерений должна соответствовать [4]. Результат измерения представляют в форме

$$A \pm \Delta$$
 при P=0,95; (3)

где А - результат измерения;

- ∆- погрешность измерения;
- Р доверительная вероятность.

13 Контроль погрешности МВИ

- 13.1 Оперативный контроль воспроизводимости
- 13.1.1. Оперативный контроль воспроизводимости определения концентрации НДМГ проводят с использованием рабочих проб НДМГ.
- 13.1.2 Оперативный контроль воспроизводимости проводят методом сравнения расхождения (D_{ϵ}) двух результатов измерений (первичного X_1 и повторного X_2) одной и той же пробы, полученных в различных условиях, характеризующих применение МВИ в лаборатории с нормативом оперативного контроля воспроизводимости D.

Результаты измерений приводят в рабочем журнале - приложение Б.

13.1.3 Воспроизводимость контрольных измерений признают удовлетворительной, если

$$D_{\kappa} = |\overline{X_1} \cdot \overline{X_2}| \le D, \tag{4}$$

где D_к - результат контрольной процедуры;

 $\overline{X}_1, \overline{X}_2$ - результаты измерений пробы;

- Норматив оперативного контроля воспроизводимости
- 13.1.4 Если соотношение D_{κ} , $\leq D$ не выполняется, то выясняют причины, приводящие к неудовлетворительным результатам контроля.
 - 13.2 Оперативный контроль погрешности МВИ
- 13.2.1 Оперативный контроль погрешности МВИ проводят с применением АС, приготовленных по приложению А.
- 13.2.2 Оперативный контроль погрешности МВИ проводят методом сравнения результата контрольной процедуры K_{κ} , равного разности между результатом контрольного измерения AC X_{AC} и его аттестованным значением C_{AC} с нормативом оперативного контроля погрешности МВИ.

Результаты измерений приводят в рабочем журнале - приложение Б.

13.2.3 Погрешность МВИ при контрольном измерении \overline{X} $_{AC}$ признают удовлетворительной, если

$$K_{\kappa} = \left| \overline{X}_{AC} \cdot C_{AC} \right| \le K.$$
 (5)

где К - результат контрольной процедуры;

К - норматив погрешности МВИ.

13.2.4 Если соотношение $K_\kappa \le K$ не выполняется, то выясняют причины, приводящие κ неудовлетворительным результатам контроля концентрации НДМГ.

Значения нормативов оперативного контроля погрешности МВИ при P=0.95 приведены в таблице 2

Таблица 2

Наименование определяемого	Диапазон измерений, мкг/дм ³ (вода),	Значение норматива оперативного контроля по грешности МВИ %,			
вещества	мкг/кг (почва)	Воспроизводимость D	Погрешность МВИ К		
Несимметричный диметилгидразин	от 0,2 до 5000	33,0	25,0		

Приложение А

(обязательное)

Методика приготовления аттестованных смесей, применяемых для определения концентрации несимметричного диметилгидразина в пробах поверхностной, грунтовой, питьевой воды и почвы.

А.1 Общие положения

А.1.1 Методика приготовления аттестованных смесей (АС), применяемых для определения концентрации НДМГ в пробах поверхностной, грунтовой, питьевой воды (далее воды) и почвы устанавливает требования для приготовления АС, применяемых при оценивании характеристик погрешности измерений, выполняемых по МВИ и предназначена для использования в лабораториях Росгидромета, выполняющих измерения в области мониторинга загрязнения окружающей среды.

Методика разработана в соответствии с [5] и [6].

А.1.2 АС НДМГ представляют собой растворы НДМГ в дистиллированной воде.

AC анилина (AC-K) представляет собой раствор анилина в метиловом спирте.

А.2 Нормы погрешности измерений

А.2.1 Методика обеспечивает приготовление АС НДМГ и АС-К с погрешностями, указанными в таблице А.1, установленными при доверительной вероятности Р = 0,95.

Таблица А.1 - Пе	еречень АС НДМГ	`и АС-К и их мет	рологические ха	рактеристики
------------------	-----------------	------------------	-----------------	--------------

Вещество	Обозна- чение АС	Концентрация АС НДМГ и АС-К С, мкг/дм ³	Значение погрешности АС-НДМГ и АС-К Δ_{AC} ,мкг/дм ³
ндмг	AC-1	5000,0	134,0
НДМГ	AC-2	2000,0	57,0
НДМГ	AC-3	400,0	13,0
ндмг	AC-4	100,0	5,0
ндмг	AC-5	10,0	0.6
НДМГ	AC-6	1.0	0,1
анилин	AC-K	400.0	12.0

А.3 Средства измерения, вспомогательные устройства, реактивы, материалы представлены в разделе 3 МВИ.

А.4 Приготовление исходных растворов

- А.4.1 Приготовление исходных растворов НДМГ и анилина
- А.4.1.1 В химическом стакане взвещивают на аналитических весах 102000 мкг НДМГ, переносят в мерную колбу с притертой пробкой вместимостью 50 см³, добавляют для подкисления 1 см³ 2н НСІ и доводят объем дистиллированной водой до метки, хорощо перемещива-

ют. Получают раствор с концентрацией НДМГ 2000 мкг/см³. Раствор хранят в холодильнике при t= 4 °C. Срок годности раствора 3 мес.

Числовые значения величин для приготовления исходного раствора НДМГ приведены в таблипе А.2.

А.4.1.2 В химическом стакане взвешивают на аналитических весах 100500 мкг анилина, переносят в мерную колбу с притертой пробкой вместимостью 50 см³ и доводят объем до метки метиловым спиртом, хорошо перемешивают. Получают раствор с концентрацией анилина 2000 мкг/см³. Раствор хранят в холодильнике, срок годности раствора 3 мес.

Числовые значения величин для приготовления исходного раствора анилина приведены в таблице А.2.

Таблипа А.2

Вещество	C _{hcx} , mkt/cm ³	m, мкг	Δ m, мкг	μ, %	Δμ, %	V _E _S	ΔV _E , cm ³	ΔC _{ncx} , mkg/cm ³
ндмг	2000	102000	100	98,0	2,0	50	0,2	41,0
Анилин	2000	100500	100	99,5	0,5	50	0,2	12,0

Примечание - Пояснения буквенных обозначений в таблице А.2 приведены в формуле (А.1).

А.4.2 Приготовление растворов АС- НДМГ и АС-К произвольной концентрации на основе исходных растворов

А.4.2.1 Приготовление на основе исходного раствора растворов АС НДМГ (АС-1, АС-2, АС-3, АС-4) проводят по следующей схеме: в мерную колбу объемом 100 см³ виосят 50 см³ дистиллированной воды, а затем с помощью пипеток вносят исходный раствор НДМГ, приготовленный по А.4.1.1. После этого объем раствора в колбе доводят до метки дистиллированной водой.

Числовые значения величин для приготовления растворов АС НДМГ приведены в таблипе А.3.

А.4.2.2 Приготовление раствора АС-5 НДМГ

В мерную колбу объемом 100 см³ вносят пипеткой 10 см³ АС-4, приготовленную по А.4.2.1, и доводят объем раствора в колбе до метки дистиллированной водой. Числовые значения величин для приготовления АС-5 приведены в таблице А.3.

А.4.2.3 Приготовление раствора АС-6 НДМГ

В мерную колбу объемом 100 см³ вносят пипеткой 10 см³ АС-5, приготовленную по А.4.2.1, и доводят объем раствора в колбе до метки дистиллированной водой. Числовые значения величин для приготовления АС-6 приведены в таблице А.3.

А.4.2.3 Приготовление АС-К контрольного раствора анилина

В мерную колбу вместимостью 100 см³ вносят 50 см³ дистиллированной воды, затем пипеткой вносят 0,02 см³ раствора анилина, приготовленного по A.4.1.2. Объем раствора доводят до метки на колбе дистиллированной водой. Числовые значения величин для приготовления раствора АС-К приведены в таблице А.3.

- А.4.2.4 Получают АС НДМГ и АС-К с концентрациями, указанными в таблице А.3.
- А.4.2.5 Приготовленные АС НДМГ и АС-К не подлежат хранению.
- А.4.2.6 Числовые значения величин, используемых при приготовлении и оценивании погрешности АС НДМГ и АС-К приведены в таблице А.3.

Обозна- чения АС НДМГ и АС-К		при	Значения в приготовлени АС	Полученные значения					
		C _{hcx} , mkr/cm³	ΔC _{mck} , mkr/cm ³	Vк, см ³	ΔVκ, cm³	Vп, см³	ΔVп, см³	С _{АС} , мкг/дм³	ΔС _{АС} мкг/дм ³
AC	1	2000,0	41,0	100,0	0,2	0,25	0,004	5000.0	134.0
AC	2	2000,0	41,0	100,0	0,2	0,10	0,002	2000.0	57.0
AC	3	2000.0	41,0	100,0	0,2	0,02	0.005	400.0	13.0
AC	4	2000,0	41,0	100,0	0,2	0,005	0,0002	100.0	5.0
AC	5	0,1	0,005	100,0	0,2	10,0	0,0025	10.0	0.6
AC	6	0.01	0.0006	100,0	0,2	10.0	0,0025	1.0	0.1
AC	K	2000.0	12.0	100.0	0.2	0.02	0.005	400.0	12.0

Примечание - Пояснения буквенных обозначений в таблице А.3 приведены в формуле (А.2).

А. 5 Алгоритм расчета характеристик погрешности установления концентраций АС НДМГ и АС-К

А.5.1 Оценивание характеристик погрешности приготовления исходных растворов НДМГ и анилина проводят по формуле

$$\Delta C_{\text{MCX}} = C_{\text{MCX}} \cdot \sqrt{(\Delta m/m)^2 + (\Delta \mu/\mu)^2 + (\Delta V_{\text{K}}/V_{\text{K}})^2}, \quad (A.1)$$

где $\Delta C_{\text{исх}}$ - погрешность приготовления исходного раствора, мкг/см³;

 $C_{\text{мсх}}$ - концентрация исходного раствора НДМГ или анилина, приготовленного по A.4.1, мкг/см³;

навеска исходного реактива, мкг;

∆т - погрешность взвешивания, мкг;

 μ - массовая доля основного вещества в реактиве, %;

∆ µ - массовая доля примесей в реактиве, %;

 V_{κ} - объем колбы, в которой готовится раствор, см³;

 ΔV_{\star} - отклонение объема колбы от номинала, см³

Числовые значения величин, входящих в формулу (A.1), и полученные значения погрешности приготовления исходных растворов НДМГ и анилина приведены в таблице A.2.

А.5.2 Оценивание характеристик погрешности при приготовлении растворов НДМГ и анилина (АС-1, АС-2, АС-3, АС-4, АС-5, АС-6, АС-К) проводят по формуле

$$\Delta C_{AC} = C_{AC} \cdot \sqrt{(\Delta V_p / V_n)^2 + (\Delta p / C_p)^2 + (\Delta V_k / V_k)^2}, \tag{A.2}$$

 Γ де ΔC_{AC} - погрешность приготовления AC НДМГ и AC-K, мкг/см³;

 C_{AC} - концентрация, полученная по A.4.2 из соответствующих исходных растворов НДМГ или анилина, мкг/см³;

V_п - объем раствора, отбираемый пипеткой, см³;

 ΔV_n - отклонение объема пипетки от номинала, см³;

 Δ_p . погрешность приготовления исходного раствора, на основе которого готовится новый раствор (для AC-6 на основе AC-5), мкг/см³;

 C_p - концентрация исходного раствора, на основе которого готовится новый раствор (для AC-6 на основе AC-5), мкг/см³;

 V_{κ} - объем колбы, в которой готовят AC, см³;

 ΔV_{ν} - отклонение объема колбы от номинала, см³

Числовые значения величин, входящих в формулу (A.2), и полученные значения погрешности приготовления растворов АС-НДМГ и АС-К анилина приведены в таблице А.3.

А. 6 Требования безопасности

- А.6.1 По степени воздействия на организм несимметричный диметилгидразин относится к 1-му классу опасности.
 - А.6.2 Безопасность труда должна соответствовать [1].

А. 7 Требования к маркировке и хранению АС

- А.7.1 АС-1 НДМГ, АС-2 НДМГ, АС-3 НДМГ, АС-4 НДМГ, АС-5 НДМГ, АС-6 НДМГ и АС-К готовятся непосредственно перед определением.
- А.7.2 Маркировка колб с АС обязательна, при этом указывается номер и концентрация АС НДМГ и АС-К согласно таблице А.3, дата приготовления.

А. 8 Требования к квалификации исполнителя

А.8.1 Аттестованные смеси может готовить инженер или лаборант со средним специальным образованием, имеющий навыки работы в химической лаборатории.

Приложение Б (обязательное)

Форма рабочего журнала при проведении измерений концентрации несимметричного диметилгидразина.

Таблица Б.1 - Результаты определений концентрации НДМГ в пробах воды и почвы, а также в АС НДМГ и АС-К для оперативного контроля погрешности измерений

Дата (число, месяц), опера-	значе- ние нд (шифо)	щадь _{Qет.} - пика количе- НДМГ ство	S _{icт.} - пло- щадь пика V - объ- внут- реннего бы во-	К _б калиб- ровоч- ный	Сі. концен-	Результаты оперативного контроля погрешности МВИ			
тор, номер анализа	зируе- мой пробы	мато- грамме пробы	ленного АС-К, мкг;	стан- дарта АС-К;	ды, дм ³ ;	козффи- циент.	трация	Вос- произ- води- мость D _к	погреш- ность К _к
1	2	3 -	4	5	6	7	8	9	10

Приложение В (справочное)

Библиография

- [1] Токсические вещества ракетных топлив. Справочник для врачей, инженеров и химиков.- М.; Минздрав, 1990
- Г 3] РД 52.18.156-88 МУ Охрана природы. Почвы. Методы отбора представительных проб почвы, характеризующих пространственное загрязнение сельскохозяйственного угодья остаточными количествами пестицидов
- [4] МИ 1317-86. МУ. ГСИ. Результаты и характеристики погрешности измерений. Формы представления. Способы использования при испытаниях образцов продукции и контроля параметров
- [5] МИ 2334-95 Рекомендация ГСОЕИ. Смеси аттестованные. Порядок разработки, аттестации и применения
- [6] Методические материалы органа по аккредитации аналитических лабораторий (центров), созданного на базе УНИИМ "Разработка и аттестация методик количественного химического анализа", г.Екатеринбург, 1994

РД 52.18.579-97

УДК 504.4.064:543 (083.13)

Ключевые слова: несимметричный диметилгидразин, метод хромато-масс-спектрометрии, пробы воды, пробы почвы.

52.18.579-97