МИНИСТЕРСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ СССР ГЛАВНИИПРОЕКТ

ВСЕСОЮЗНЫЙ ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ГИДРОТЕХНИКИ имени Б. Е. ВЕДЕНЕЕВА

РЕКОМЕНДАЦИИ

ПО АЭРОДИНАМИЧЕСКОМУ РАСЧЕТУ ВАКУУМНЫХ систем пневмозолоудаления

<u>П 60-77</u> Внииг

Ленинград 1977

МИНИСТЕРСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ СССР ГЛАВНИИПРОЕКТ

ВСЕСОЮЗНЫЙ ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ГИДРОТЕХНИКИ имени Б. Е. ВЕДЕНЕЕВА

РЕКОМЕНДАЦИИ

ПО АЭРОДИНАМИЧЕСКОМУ РАСЧЕТУ ВАКУУМНЫХ СИСТЕМ ПНЕВМОЗОЛОУДАЛЕНИЯ

П 60-77 ВНИИГ

Ленинград 1977 В настоящих «Рекомендациях» изложена методика аэродинамического расчета устойчивых, энергетически наивыгоднейших режимов работы вакуумных систем пневмозолоудаления.

Данная работа является первым этапом к составлению нормативного документа, регламентирующего выбор устойчивого и экономически наивыгоднейшего режима работы системы в целом.

«Рекомендации по аэродинамическому расчету вакуумных систем пневмозолоудаления» составил инж. В. Я. Сизых по результатам экспериментальных исследований, выполненных в 1970—1975 гг. сотрудниками сектора пневмотранспорта гидравлической лаборатории Сибирского филиала ВНИИГа им. Б. Е. Веденеева.

В «Рекомендациях» использованы материалы по физикомеханическим свойствам золы (приложение 2), представленные сектором намывных сооружений Комплексной лаборатории грунтовых сооружений ВНИИГа им. Б. Е. Веденеева (составил ст. научн. сотр., к. т. н. В. Г. Пантелеев), материалы по выбору осадительного оборудования и определению величин местных сопротивлений по данным «Уралэнергочермет» (табл. 2) и данным справочника «Пневмотранспортные установких. М., «Машиностроение», 1969, Воробьев А. А. и др. (табл. 3—5, рис. 7).

Рекомендации предназначаются для работников проектных организаций и службы эксплуатации тепловых электростанций.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящие «Рекомендации» распространяются на аэродинамические расчеты, связанные с выбором режимов вакуумного пневматического транспорта золовых материалов, получаемых на ТЭЦ и ТЭС в результате сгорания угля в топках паровых котлов.

1.2. Приведенный ниже метод аэродинамического расчета относится к золовым материалам с крупностью частиц 0,01—0,2 мм, транспортируемых способом всасывания на расстояние до 200 м по трубопроводам с внутренними диаметрами от 0,06 м до 0,2 м.

Примечание. Увеличение диаметра пневмозолопровода до 0,25—0,3 м возможно при условии разработки нормалей на соответствующее по объему осадительное оборудование.

1.3. «Рекомендации» определяют величины потерь давления в незаиленных пневмопроводах из стальных цельнотянутых гладких труб в зависимости от следующих факторов: внутреннего диаметра труб, скорости воздушного потока, загрузки потока взвесью и физико-механических характеристик транспортируемого золового материала.

1.4. Принятые терминология, обозначения и определения:

пневмозолопровод—трубопровод, по которому транспортируется механическая смесь воздуха и золы;

воздуховод — трубопровод, по которому отсасывается очищенный в осадительных устройствах воздух;

вакуум-насос, эжектор, вентилятор — агрегаты (воздуходувные машины, механизмы) для транспортирования золовоздушной смеси по пневмозолопроводам от исходного до конечного пункта методом всасывания;

Внесены Всесоюзным ордена Трудового Красного	Утв ИМ
Знамени научно- исследовательским институтом	ОТ
гидротехники имени Б. Е. Веденеева	с

1
Ľ
1

Срок введения IV квартал 1977 г. объемный и массовый расходы воздуха Q_w , м³/с и G_w , кг/с — количество кубических метров и килограммов воздуха, протекающих в одну секунду через поперечное сечение трубы;

объемный и массовый расходы золы Q_s , м³/с и G_s , кг/с — количество кубических метров золы в плотном теле и килограммов золы, проходящих в одну секунду через поперечное сечение F трубы;

загрузка потока воздуха золой т

$$m = G_s : G_w, \tag{1}$$

плотность воздуха ρ_w , кг/м³ — масса единицы объема движущегося воздуха;

плотность золы ρ_s, кг/м³ — масса единицы объема золы в плотном теле, величина которой колеблется в пределах 2000— 3500 кг/м³;

скорость потока воздуха U_w , м/с — средняя по поперечному сечению трубы скорость воздуха. Для вакуумных систем с относительно низкими объемными концентрациями с достаточным для практических расчетов приближением

$$U_{w} = \frac{Q_{w}}{F},$$
 (2)

где F — площадь сечения трубопровода.

скорость витания частиц золы W_0 , м/с — скорость восходящего, «безграничного» по поперечному сечению потока воздуха, взвешивающего одиночные частицы золы;

критическая скорость $U_{\rm kp}$, м/с — наименьшая скорость транспортирующего потока воздуха, при которой на дне трубы начинает образовываться неподвижный слой выпавших из толщи потока частиц золы;

мощность N, Вт — потребная мощность на преодоление всех сопротивлений в системе при отсасывании определенного объема золовоздушной смеси.

2. ОПРЕДЕЛЕНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ Свойств золы

2.1. Определение физико-механических свойств золы производится по общепринятой методике.

В случае невоэможности получения этих данных для ориентировочных расчетов можно воспользоваться методом аналогов (приложение 2).

2.2. Средневзвешенная крупность частиц транспортируемой золы *d*₀ определяется по формуле

$$d_0 = \frac{\Sigma d_i P_i}{100},\tag{3}$$

где d_i — среднеарифметическая крупность *i*-ой стандартной фракции; P_i — процентное содержание *i*-й фракции по весу в составе пробы золы.

2.3. Скорость витания частиц транспортируемого материала определяется по графику (рис. 1), выражающему следующую зависимость:

$$\frac{W_0}{V g d_0} = 8e^{2,4\Delta \cdot 10^{-4}},$$
 (4)

где $\Delta = \rho_s / \rho_w$; W_0 — скорость витания частиц; g — ускорение силы тяжести, принимаемое равным 9,81 м/с².

Рис. 1. График зависимости скорости витания от соотношения удельных плотностей золы и воздуха.

3. РАСЧЕТ ПОТЕРЬ ДАВЛЕНИЯ И ПОТРЕБНОЙ МОЩНОСТИ В СИСТЕМАХ ВАКУУМНОГО ПНЕВМОТРАНСПОРТА ЗОЛЫ

3.1. При расчете потерь давления в системах вакуумного пневмотранспорта золы считаются заданными следующие величины:

а) физико-механические свойства транспортируемой золы: плотность ρ_s , гранулометрический состав и температура t_s °C;

б) массовый расход G_s транспортируемой золы;

в) трасса пневмозолопроводов-воздуховодов.

Искомыми величинами являются:

а) объемный Q_w и массовый G_w расходы воздуха;

- б) критическая скорость U_{кр} потока воздуха;
- в) диаметр D трубопровода (пневмозолопровода);
- г) суммарные потери давления $\Sigma \Delta P$ в системе;

д) мощность N, потребная для покрытия суммарных потерь давления в пневмотранспортной системе.

Рис. 2. Опытные функции для определения критических скоростей по формуле (5).

3.2. Все расчеты выполняются по осредненным характеристикам золового материала (плотность, гранулометрический состав, скорость витания) для условий «стандартного» воздуха.

Примечания: 1. «Стандартным», нормальным состоянием воздуха для промышленных измерений, согласно ГОСТ 2930—62*, называется состояние, при котором температура воздуха $T_{\rm H}$ =20°С, плотность $\rho_{\rm wH}$ =1,205 кг/м³ и давление равно атмосферному.

2. Обработка опытных материалов и вывод эмпирических формул производились при условии получения зависимости опытных величин от скорости воздуха U_{wh} , приведенного к нормальному состоянию согласно ГОСТ 2930—62*, что для вакуумного пневмотранспорта с относительно незначительными изменениями ρ_w (как показывает сходимость расчетных и опытных величин) вполне допускается.

3.3. Расчет проводится для различных вариантов G_w и D и имеет целью определение энергетически наивыгоднейшей комбинации этих величин при заданном G_s , обеспечивающей устойчивую работу системы,

3.4. Критическая скорость вакуумного пневмотранспорта золы вычисляется по эмпирической формуле

$$U_{\rm Kp} = \Phi \sqrt{gD} - \Psi W_0 m^{-1/2}, \qquad (5)$$

где Ф и Ч – опытные функции, определяемые по графику (рис. 2).

3.5. Расчетная скорость U_w вакуумного пневмотранспорта принимается из соображений надежности эксплуатации системы несколько выше $U_{\rm kp}$, на основании практики эксплуатации можно принять $U_w = 1,15 U_{\rm kp}$.

Примечание. В целях упрощения расчетов связь между диаметрами D пневмозолопроводов в рекомендуемых п. 1.2 пределах и оптимальными величинами G_w , обеспечивающими скорости $U_w = 1,15U\kappa p$, представлена графически (рис. 3).

3.6. По графику (рис. 3) принимается для расчета несколько величин G_w , соответствующих диаметрам пневмозолопроводов в диапазоне от 0,06 до 0,20 м. Для заданной производительности G_s и принятых величин G_w определяются загрузки m по формуле (1).

Примечание. Практика эксплуатации вакуумных систем иневмозолоудаления показала, что устойчивая работа их обеспечивается, среди прочих факторов, загрузкой $m \leq 6$. Если $m_{\text{мин}} > 6$, то следует принимать *n* параллельных ниток пневмозолопроводов с производительностью $G_s: n$ в каждой или увеличивать диаметры при условии примечания п. 1.2.

3.7. Дальнейший расчет проводится для вариантов, удовлетворяющих условням примечания п. 3.6. Результаты расчета сводятся^в табл. 1.

7	аблица	1
		_

T	
) 11	12

Примечание. Для построения в дальнейшем по материалам табл. 1 различных кривых, следует принимать для расчета не менее пяти-шести вариантов G_w —D.

3.8. По принятым к расчету G_w и вычисленным величинам загрузок *m* из графика (рис. 3) определяются диаметры пневмозолопроводов. Зависимость между величинами *D* и G_w изображается графически (рис. 4) в виде $D = f(G_w)$.

3.9. По вычисленным величинам G_w (табл. 1, графа 2) вычисляются объемные расходы Q_w :

$$Q_{\boldsymbol{w}} = \frac{G_{\boldsymbol{w}}}{\rho_{\boldsymbol{w}}},\tag{6}$$

и по формуле (2) — скорости U_w (табл. 1, графы 4 и 5).

Рис. 3. Зависимость диаметра пневмозолопровода от массового расхода воздуха.

Рис. 4. Зависимость диаметра пневмозолопровода от массового расхода воздуха.

3.10. Потери давления Δp_w потока воздуха без золы на единицу длины трубопровода вычисляются по формуле:

$$\Delta p_{w} = \lambda_{w} \frac{1}{D} \frac{\rho_{w} U_{w}^{2}}{2} K_{0}, \qquad (7)$$

где λ_w — коэффициент гидравлического сопротивления прения чистого воздуха; для гладких стальных труб λ_w вычисляется по формуле

$$\lambda_{w} = \left[\frac{0.55}{\lg \, \mathrm{Re} - 0.903}\right]^{2},\tag{8}$$

причем

$$Re = \frac{U_{w}D}{\gamma},$$
 (9)

- где v коэффициент кинематической вязкости, для «стандартного» воздуха $v = 15,7 \cdot 10^{-6} \text{ m}^2/\text{c};$
 - К₀ температурный поправочный множитель, который определяется по графику (рис. 5).

Рис. 5. Поправочный множитель K₀ в формуле (7) на температуру смеси.

Примечание. Температурный поправочный множитель определен экспериментально в диапазоне температур от —30°С до +25°С. Результаты опытов графически экстраполированы до температуры +170°С. Сравнение опытных результатов с расчетными по формуле

$$K_0 = \frac{\Delta P_w t}{\Delta P_{w20}} = \frac{(1+0,00012t)(273+t)}{293,7}^*$$

дает величину отклонения в пределах 13%.

3.11. Температура смеси воздуха и горячей золы рассчитывается по формуле

$$t_{\rm CM} = \frac{C_w t_w + mC_s t_s}{C_w + mC_s}, \ \ ^{\circ}{\rm C},$$
(10)

где $C_w = 1,006 \frac{\kappa \Delta w}{\kappa \Gamma \times °C}$ — удельная теплоемкость воздуха; $C_s = 0,754 \frac{\kappa \Delta w}{\kappa \Gamma \times °C}$ — удельная теплоемкость золы; $t_w °C$ — температура поступающего в пневмозолопровод воздуха; $t_s °C$ — температура поступающей в пневмозолопровод золы.

3.12. Потери давления Δp потока смеси золы и воздуха на единицу длины трубопровода вычисляют по эмпирической формуле:

$$\Delta p = \Delta p_w + \Delta p_s, \tag{11}$$

где
$$\Delta p_s = 0.3 \frac{d_0}{D} \frac{\rho U_{w^2}}{D} \frac{U_{w^2}}{(200 W_0 - U_w)^2} (1 + m^{3/2})^2;$$
 (12)

 Δp_w и λ_w — определяются согласно п. 3.10; $(1+m^{3/2})$ — для каждого *m* можно определять по графику (рис. 6).

3.13. Потери давления при подъеме $\Delta P_{\text{под}}$ материала на высоту Δz в наклоненных к горизонту и вертикальных участках пневмозолопровода вычисляются по формуле

$$\Delta P_{\mathrm{nog}} = \pm \Delta z m \rho_{w} g, \qquad (13)$$

где $\pm \Delta z$ — разность геодезических отметок оси трубопровода в месте забора материала и высшей точки системы; знак плюс (+) принямается при направлении потока вверх, знак минус (—) при направлении потока вниз.

Рис. 6. Вспомогательный график для расчета опытной корректирующей функции по формуле (12).

* Лобаев Б. Н. Расчет воздуховодов, Госстройиздат УССР, 1959.

3.14. Для каждого расчетного варианта по диаметру пневмозолопровода *D* выбираются тип и размеры осадителей-разгрузителей (табл. 2). Потери давления, эквивалентные их сопротивлению, определяются по формуле

$$\Delta P_{\text{ocal}} = 3600 \, K Q_w^2 \rho_w g, \tag{14}$$

где К — коэффициент, учитывающий конструкцию осадителей-разгрузителей. Для центробежных разгрузителей (циклонов) К принимается

для центрооежных разгрузителей (циклонов) х принимается по графику (рис. 7).

Рис. 7. Коэффициент К для расчета потерь давления циклонов по формуле (14).

Для широко применяемых осадительных камер конструкции «Уралэнергочермет» $K = 0.35 \div 0.4$.

3.15. Для самовстряхивающихся матерчатых фильтров потери давления определяются по формуле

$$\Delta P_{\Phi} = B \left(3600 q_{w} \right)^{b} \rho_{w} g, \tag{15}$$

где В — коэффициент, равный 0,13—0,15; q_w — объемный расход воздуха в м³/с на 1 м² ткани рукавов; b — показатель, принимаемый равным 1,2—1,3. **3.16.** Потери давления $\Delta P_{\rm M,c}$ в местных сопротивлениях определяются по общей формуле *

$$\Delta P_{\rm M,c} = \Sigma \xi \, \frac{\rho_{w} U_{w}^2}{2},\tag{16}$$

где § -- коэффициент сопротивления, принимаемый по табл. 3, 4, 5.

3.17. Для удобства расчета потери давления в местных сопротивлениях принято выражать, как потери давления на трение Δp в воображаемой трубе длиной $L_{\text{экв.}}^*$:

$$L_{\mathsf{ЭKB}} = \frac{\Delta P_{\mathsf{M}^{-}\mathsf{C}}}{\Delta p}.$$
 (17)

3.18. Приведенные длины пневмозолопровода L_{пр.} и воздуховода (L_w) пр определяются по формулам

$$L_{\rm np} = L + L_{\rm SKB};\tag{18}$$

$$(L_w)_{np} = L_w + (L_w)_{\mathfrak{SKB}}.$$
 (19)

3.19. Суммарные потери давления $\Sigma \Delta P$ в вакуумной пневмотранспортной системе определяются по формуле:

$$\Sigma \Delta P = \Delta p_{w} (L_{w})_{np} + \Delta p L_{np} + \Delta P_{nog} + \Sigma \Delta P_{ocag} + \Sigma \Delta P_{\phi}.$$
(20)

3.20. Мощность *N*, расходуемая на преодоление всех сопрогивлений в системе, выраженных суммарными потерями давления, вычисляется по формуле

$$N = \Sigma \Delta P \cdot Q_w. \tag{21}$$

3.21. По материалам табл. 1 строится совмещенный график функций N, $\Sigma \Delta P = f(G_w)$, который определяет весь диапазон величин N, $\Sigma \Delta P$, G_w , D и m, обеспечивающих для заданной производительности устойчивые, энергетически наивыгоднейшие и практически осуществимые режимы вакуумного пневмотранспорта золы.

3.22. Выбор рабочего режима осуществляется методом совмещения на графике расходно-напорных характеристик системы и энергетического агрегата. Точки пересечения кривых определяют возможные рабочие режимы системы с данным энергетическим агрегатом, причем точка, относящаяся к $N_{\rm MBH}$, определяет энергетически наиболее выгодный параметр $N - \Delta P - G_w - D - m$. При проектировании новых систем пневмозолоудаления следует выполнить эту операцию для различных энергетических агрегатов и из всех $N_{\rm MHH}$ выбрать экстремум.

3.23. При окончательном выборе режима транспортирования для принятого согласно п. 3.22 энергетического агрегата следует предусмотреть (с учетом на износ и сопротивление выхлопа) за-

^{*} Для отводов типа конструкций «Уралэнергочермет» эквивалентные длины приведены на рис. 8, 9.

Рис. 8. Величины местных сопротивлений для аэродинамического расчета пневмотранспортных систем

а-колено 90°, l_{np} -12 и 20 м соответственно для типа / и типа //; б-колено 30°, l_{np} =2÷5 м; в-колено 45°, l_{np} =6 м; г-колено 60°, l_{np} =8÷10 м; ∂ -тройник с коленом 30°, l_{np} -12÷15 м; е-т ойник с коленом 60°, l_{np} =16÷20 м; ж-тройник, l_{np} =8÷10 м; з-переключатель. l_{np} =8 м.

Рис. 9. Величины местных сопротивлений для аэродинамического расчета пневмотранспортных систем

а-насадка, l_{np} =30÷40 м; б-насадка, l_{np} =15÷20 м; в-пробковый кран, l_{np} =0,0 м; г-обратный клапан, l_{np} =8÷10 м; д-колено-коробка, l_{np} -40 м. пас по производительности и напору (вакууму) в пределах 10— 15% в сравнении с паспортными характеристиками эжектора (рис. 10) или вакуум-насоса (рис. 11).

Примечание. При водокольцевых вакуумных насосах типа РМК, потребляемая мощность которых практически не зависит от их режима работы, выбор режима транспортирования следует производить по минимальному расходу G_w в целях сокращения металлоемкости проектируемой системы в целом.

рис. 10. Расходно-напорные характеристики эжекторов конструкции "Уралэнергочермет".

Рис. 11. Расходно-напорные характеристики вакуум-насосов.

Таблица 2

Выбор оборудования в зависимости от диаметра пневмозолопровода в вакуумных системах (данные "Уралэнергочермет")

Писисто		_	Цикл		
диаметр пневмозоло- провода Д _{вн} , мм	Диаметр насадка, мм	Диаметр осадительной камеры, Мм	Диаметры циклонов, включенных последователь- но, мм	Количество	Диаметр воздуховода, мм
до 100 125 150 175 200 250	100 100 125 150 175 200	2000 2000 2600 2600 2600/3500 3200	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1/1 1/1 1/1 1/1 1/1 2/2	125 150 175 200 250 300

Таблица З

Величины коэффициентов сопротивлений § при диффузорном и конфузорном изменении потока воздуха в зависимости от отношения площадей выходного и входного сечений

Наименование вида	Угол расшире-	Отношение F/f				
изменения потока воздуха	сужения в градусах	1,25	1,5	1,75		
Диффузорное	10 20 30	0,01 0,03 0,05	0,02 0,05 0,11	0,03 0,07 0,15		
Конфузорное	45		0,10			

Таблица 4

Величины коэффициентов местного сопротивления 5 для внезапного сужения и расширения потоков

Внезапное сужение	Отношение площадей выходного и входного сечений <i>F</i> /f	0,25	0,5	0,75	1,0
	Коэффициент 🗧	0,27	0,18	0,06	0
Внезапное расши рение	Отношение площадей входного и выходного сечений <i>f</i> / <i>F</i>	0,25	0,5	0,75	1,0
	Коэффициент ξ	0,57	0,25	0,07	0

Наименование изгиба	Форма изгиба	Угол изги- ба а, град	Ę
Колено	Изгиб трубы	90 120 135 150	1,10 0,55 0,25 0,20
Утка*	Сопряжение двух ко- лен, изогнутых в про- тивоположные стороны	30 45 60 90	0,12 0,17 0,20 0,16
Обход*	Сопряжение двух уток для обхода колон- ны и пр.	30 45 60 90	0,24 0,33 0,40 0,53

Величины коэффициентов местных сопротивлений в зависимости от угла изгиба трубопровода

* Величины коэффициентов указаны при отношении радиуса изгиба оси трубы к диаметру трубопровода, равном 1,5.

Таблица б

Сортамент труб по ГОСТ 632-64* и 8732-70. Материал—сталь 14ХГС по ГОСТ 5058—65**

Наружный	Толщина	Внутренний
днаметр трубы,	стенки,	диаметр
мм	мм	трубы, мм
73 83 89 102 114 121 133 146 159 168 180 194 245 273 310 325	$\begin{array}{c} 6-10\\ 6-10\\ 6-10\\ 6-10\\ 6-11\\ 7-12\\ 7-12\\ 7-12\\ 7-12\\ 7-12\\ 7-12\\ 7-14\\ 7-14\\ 7-14\\ 7-14\\ 7-14\\ 7-14\\ \end{array}$	$\begin{array}{c} 61-53\\ 71-63\\ 77-69\\ 90-82\\ 102-94\\ 109-99\\ 119-111\\ 132-122\\ 145-135\\ 154-144\\ 166-156\\ 180-170\\ 231-217\\ 252-245\\ 256-272\\ 297\\ \end{array}$

3.24. Выбор диаметра пневмозолопровода для принятого режима транспортирования согласно п. 3.23 с соответствующим G_w производится по графику (рис. 4). Согласно сортаменту труб (табл. 6) по окончательно выбранному внутреннему диаметру пневмозолопровода уточняются рабочие параметры G_w , N, $\Sigma \Delta P$, m (пример расчета, рис. 14) и делается проверочный расчет по определению оптимальной транспортной скорости, удовлетворяющей условию п. 3.5 U = 1,15U_{кр}.

Приложение 1

Пример расчета

Дано: а) массовый расход золы $G_s = 1,8$ кг/с;

б) гранулометрический состав золы (табл. 7);

в) плотность золы (масса единицы объема материала) ρ_s = = 3100 кг/м³;

Таблица 7

Гранулометрический состав золы

	Содержание фракции, %; крупность d _i , мм								
Материал	3-2	2-1	1-0,5	0,5 0,25	0,25- -0,125	0,125	0,068- 0,02	0,02- 0,01	<0,01
Зола	0,2	0,4	0,4	1,4	33,6	28,0	17,9	1,9	16,2

г) температура золы $t_s = 110^{\circ}$ С;

д) трасса пневмозолопровода (рис. 12): горизонтальный участок 110 м; вертикальный участок 15,5 м; число отводов под углом 90° — 6 шг.; в качестве предварительной компоновки для

Рис. 12. Схема вакуумной пневмотранспортной установки 1-сборный бункер золоуловителей когла ТЭС; 2-регулируемая насадка; 3-горизонтальные участки пневмозолопровода; 4-вертикальные участки пневмозолопровода; 5-золоотделитель (осалительная камера); 6, 7-циклоны (пылеотделитель); 8-воздуховод; 9-воздуходувный механизм; 10-разгрузочный сборный бункер (силос).

улавливания золы принимаем осадительную камеру и два последовательно соединенных циклона конструкции «Уралэнергочермет»; е) трасса всасывающего воздуховода: общая длина 29,4 м; диаметр трубопровода 0,2 м; число отводов под углом 90° — 2 шт.

 На основании данных о грансоставе по формуле (3) определяем средневзвешенную крупность для всей совокупности частиц:

 $\begin{aligned} &d_0 = [(3+2) \cdot 0.2 + (2+1) \cdot 0.4 + (1+0.5) \cdot 0.4 + (0.5+0.25) \cdot 1.4 + \\ &+ (0.25+0.125) \cdot 33.6 + (0.125+0.068) \cdot 28.0 + (0.068+0.02) \cdot 17.9 + \\ &+ (0.02+0.01) \cdot 1.9 + 0.01 \cdot 16.2] \cdot 0.5 \cdot 10^{-5} = 0.118 \cdot 10^{-3} \text{ M}. \end{aligned}$

2) По графику (рис. 1) определяем средневзвешенную скорость витания. Получаем W₀=0,5 м/с.

3) Приведенную длину пневмозолопровода и воздуховода рассчитываем согласно пп. 3.17 и 3.18:

$$L_{\rm mp} = L_{\rm Hacagka} + \Sigma L_{\rm rop} + \Sigma L_{\rm Bep} + \Sigma L_{90} =$$

= 37 + 110 + 15,5 + 12 · 6 = 234,5 m;
 $(L_w)_{\rm mp} = 29,4 + 4 \cdot 2 = 37,4$ M.

4) По графику (рис. 3), согласно п. 3.6, задаемся величинами G_w : 0,2; 0,3; 0,4; 0,5; 0,58 (кг/с).

5) Загрузки т вычисляем по формуле (1):

 $m_1 = \frac{1,8}{0,2} = 9; \quad m_2 = \frac{1,8}{0,3} = 6; \quad m_5 = \frac{1,8}{0,4} = 4.5; \quad m_4 = \frac{1,8}{0,5} = 3.6 \quad m_5 = \frac{1,8}{0,58} = 3.1.$

Полученные величины загрузок удовлетворяют условию примечания п. 3.6, кроме первой (m=9).

Для соблюдения условия примечания п. 3.6 проводим вторичное вычисление загрузок уже в пределах $G_w = 0.32 \div 0.58$ (кг/с):

$$m_5 = \frac{1,8}{0,32} = 5,6;$$
 $m_1 = \frac{1,8}{0,39} = 4,6;$ $m_2 = \frac{1,8}{0,45} = 4;$
 $m_5 = \frac{1,8}{0,53} = 3,4;$ $m_4 = \frac{1,8}{0,53} = 3,1.$

6) Для выбранных G_w по графику (рис. 3) определяем величины D: 0,108; 0,13; 0,15; 0,18; 0,20 м.

По принятым к расчету вариантам $G_w - D$ согласно п. 3.8 строим график (рис. 13).

7) По формуле $Q_w = G_w / \rho_w$ вычисляется величина объемного расхода воздуха:

$$Q_{w_1} = \frac{0.39}{1,205} = 0.324 \text{ m}^3/\text{c}.$$

Аналогично рассчитывается Q_w и для остальных вариантов. Скорость воздуха в пневмозолопроводе вычисляем по формуле (2)

$$U_{w_1} = \frac{0.324}{3.14 \cdot 0.065^2} = 24.4 \text{ m/c.}$$

8) Для расчета потерь давления в пневмозолопроводе по формуле (11) предварительно вычисляем $t_{\rm CM}$, λ_w и Δp_s в пневмозолопроводе по формулам (10), (8), (12):

$$t_{\rm CM_1} = \frac{1,006 \cdot 20 + 4,6 \cdot 0,754 \cdot 110}{1,006 + 4,6 \cdot 0,754} = 89,8 \,^{\circ}\text{C}.$$

Отсюда K₀₁=1,44 (по рис. 5).

$$\lambda_{w_1} = \left(\frac{0.55}{\lg \frac{0.13 \cdot 24.4}{15.7 \cdot 10^{-6}} - 0.903}\right)^2 = \left(\frac{0.55}{4.401}\right)^2 = 0.0156;$$

Рис. 13. Зависимость диаметра пневмозолопровода от расхода воздуха.

$$\begin{split} \Delta p_{s_1} &= \frac{-0.3 \cdot 0.000118 \cdot 24.4^{4} \cdot 1.205 (1+4.6^{3/2})^2}{0.13^2 (200 \cdot 0.5 - 24.4)^2} = 18.5 \frac{\Pi a}{M};\\ \Delta p_{w_1} &= \frac{-0.0156 \cdot 1.205 \cdot 24.4^2}{2 \cdot 0.13} \ 1.44 = 62 \frac{\Pi a}{M}.\\ \Delta p_1 &= 62 \frac{\Pi a}{M} + 18.5 \frac{\Pi a}{M} = 80.5 \frac{\Pi a}{M}. \end{split}$$

9) Потери давления на подъем вычисляются по формуле (13) $\Delta P_{nog} = 15.5 \cdot 4.6 \cdot 1.205 \cdot 9.81 = 842.8 \ \Pi a.$

10) Согласно принятой компоновке по табл. 2 выбираем для каждого расчетного варианта размеры осадителей-разгрузителей, исходя из диаметров пневмозолопроводов. Для D=0,130 м диаметр осадительной камеры 2600 мм, диаметры циклонов 630 и 530 мм. Потери давления рассчитываем по формуле (14), прини-

мая коэффициент K=0,4 (п. 3.14), а для циклонов по графику (рис. 7) соответственно 0,075 и 0,148:

 $\Delta P_{\text{ocag}} = 3600 \cdot 0.4 \cdot 0.324^2 \cdot 1.205 \cdot 9.81 = 1787 \ \Pi a;$

 $\Delta P_{\text{ЦИКА},1} = 3600 \cdot 0.324^2 \cdot 1.205 \cdot 9.81 \ (0.075 + 0.148) = 996 \ \Pi a.$

11) Для определения потерь давления воздуха в воздуховоде по формуле (7) сначала находим неизвестные величины U_{w} и λ_{w} по формулам (2), (8).

$$U_{w_1} = \frac{0,324}{3,14 \cdot 0,1^2} = 10,3 \text{ m/c};$$

$$\lambda_{w_1} = \left(\frac{0,55}{\frac{10,3 \cdot 0,2}{15,7 \cdot 10^{-6}} - 0,903}\right)^2 = 0,0170.$$

Потери давления в воздуховоде на единицу длины трубопровода составляют:

$$\Delta p_{w_1} = 0,0170 \ \frac{1,205 \cdot 10,3^2}{0,2 \cdot 2} = 5.4 \frac{\Pi a}{M}.$$

12) Суммарные потери давления в системе вычисляем по формуле (20)

 $\Sigma \Delta P_1 = 5,4 \cdot 37,4 + 80,5 \cdot 234,5 + 843 + 1787 + 996 = 22705 \ \Pi a.$

13) Требуемую мощность находим по формуле (21)

$$N_1 = 22705 \cdot 0,324 = 7356$$
 Bt.

14) Результаты расчета сведены в табл. 8, по данным которой и по параметрам вакуумного оборудования (рис. 10 и 11), согласно п. 3.21 строим совмещенный график (рис. 14) в координатах N, ΣΔP-Gw. Из графика видно, что для заданной производительности энергетически наивыгоднейшие режимы работы рассчитываемой системы обеспечиваются вакуум-насосом РМК-4. Точки пересечения кривых расходно-налорных характеристик РМК-4 и системы определяют два оптимальных расхода Gw' и Gw", где Gw" соответствует минимальной потребной мощности. Однако, учитывая, что потребляемая водокольцевыми насосами типа РМК-4 мощность практически не зависит от режима их работы, то в целях повышения КПД принятого насоса и сокращения металлоемкости пневмозолопровода окончательный выбор режима согласно п. 3.22 проводим по минимальному расходу Gw'. Учитывая запас по производительности ~10% Gw' и по потерям давления $\sim 15\% \Sigma \Delta P'$, принимаем режим, соответствующий расходу $G_w = 0.385$ кг/с.

По G_w (рис. 13) определяем наиболее близкий диаметр пневмозолопровода по сортаменту труб (табл. 6) D=0,130 мм (труба 146×9 мм), которому (рис. 13) соответствует расход $G_w = = 0,39$ кг/с и (рис. 14) N=7400 Вт и $\Sigma\Delta P=2,3\cdot 10^4$ Па.

Рис. 14. График для выбора энергетического оборудования, обеспечивающего устойчивые оптимальные режимы транспортирования.

Таблица 将

D		m	Qw	Uw	ΔP_w	ΔΡ	$\Delta P_{\text{под}}$	∆Росад	Δ <i>Ρ</i> _ц	ΣΔΡ	N
0,13	0,39	4,6	0,324	24,4	202	18877	843	1787	996	22705	7356
0,15	0,45	4,0	0,373	21,1	263	10459	733	2368	1320	15143	5648
0,18	0,53	3,4	0,440	17,3	353	5393	623	3295	692	10356	4557
0,20	0,58	3,1	0,481	15,3	415	3714	568	3938	689	9324	4485
0,108	0,32	5,6	0,266	29,0	142	49836	1026	1204	1475	53683	41280

Для принятого диаметра пневмозолопровода делаем проверочный расчет по определению оптимальной и критической скорости по формулам (2) и (5):

$$U_{w_1} = \frac{0.39 \cdot 4}{1.205 \cdot 3.14 (0.130)^2} = 24.4 \text{ m/c},$$
$$U_{\kappa p_1} = 20 \sqrt{9.81 \cdot 0.130} - 7 \cdot 0.5 \cdot 4.6^{-1/2} = 20.9 \text{ m/c}.$$

Условие п. 3.5 $U_w \approx 1,15 U_{\rm KD}$ выполнено.

Приложение 2

ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ЗОЛЫ НА ТЭС

1. Гранулометрический состав

Общие положения

Зола — продукт сгорания топлива, который выносится дымовыми газами из топки котла и улавливается золоуловителями.

Гранулометрический состав золы данного твердого топлива зависит от следующих факторов:

1) конструкции топок котлоагрегатов;

2) эксплуатационных условий работы котлоагрегата (различие паровых нагрузок, равномерность и температура горения топлива в камере сжигания, сжигание топлива совместно с мазутом и пр.);

3) системы пылеприготовления и подачи угольной пыли для сжигания (типа, производительности, эксплуатационного состояния и количества одновременно работающих пылеугольных мельниц; наличия и исправности сепаратора, температуры сушильното агента);

4) типа мельниц (барабанно-шаровые, молотковые и мелющие вентиляторы) и их эксплуатационного состояния (износ бил и корпуса в молотковых, изменение массы загруженных шаров в барабанно-шаровых мельницах и т. д.). Исследования на ТЭС показали, что при измельчении топлива барабанно-шаровыми мельницами зола в целом является более тонкой, чем зола при измельчении топлива молотковыми мельницами и мелющими вентиляторами;

5) эксплуатационного состояния аппаратов золоулавливания (износ циклонных элементов и жалюзийных решеток в батарейных циклонах и жалюзийных уловителях, неисправности механизмов встряхивания или попадание мазута на электроды в электрофильтрах). Гранулометрический состав золы зависит также от режима эксплуатации электрофильтров.

Гранулометрический состав золы, улавливаемой золоуловителями, отличается от состава золы, получаемой при горении топлива в котлоагрегатах. Экспериментально было установлено, что зола, выносимая в атмосферу, на 60—70% состоит из частиц менее 0,005 мм, тогда как зола, улавливаемая золоуловителями, значительно крупнее.

Золоулавливающие устройства в зависимости от состава золы, поступающей в каналы ГЗУ, можно условно разделить на две группы:

1) мокрые золоуловители, вертикальные или однопольные горизонтальные электрофильтры, инерционные (механические) золоуловители, имеющие по ходу очистки дымовых газов один золоулавливающий аппарат;

2) двухступенчатые или комбинированные золоуловители (инерционные золоуловители — первая ступень, предвилюченные в электрофильтры — вторая ступень), многопольные горизонтальные электрофильтры и инерционные золоуловители, имеющие по ходу очистки дымовых газов несколько аппаратов.

Основное отличие указанных устройств следующее: для уловителей первой группы зола, поступающая в смывные каналы ГЗУ, характеризуется средним составом; для золоуловителей второй группы — зола каждого аппарата не отражает среднего состава всего материала, а распределена в выпусках по крупности (фракционному составу) — наиболее крупные частицы золы, как правило, улавливаются на первых аппаратах, наиболее мелкие — на последующих.

Выбор гранулометрического состава золы при проектировании пневмотранспорта

При проектировании пневмотранспорта могут иметь место два случая:

данные по составу золы конкретной ТЭС приводятся на рис. 15, 16, 17; данные по составу золы на рис. 15, 16, 17 не приводятся.

В первом случае* по табл. 9 определяем порядковый номер ТЭС и в зависимости от конструкции пылеугольных мельниц и

^{*} Данные по гранулометрическому составу золы на ТЭС при расчетах могут быть также взяты из «Справочного материала по золе и шлаку Теплоэлектростанций СССР» ВТИ им. Ф. Э. Дзержинского, арх. № 9801 (Инд. ТЛ— 647), 1974.

17-котлоагрегат "Гарбе"; 17а-котлоагрегат "Стерлинг" Примечания: 1. Номера кривых гранулометрического состава соответствуют порядковым номерам ТЭС табл. 9. 2. В подрисуночную подпись вынесены номера кривых состава золы, отобранной на тех ТЭС, где имелось несколько типов оборудования.

Рис. 16. Кривые гранулометрического состава золы золоуловителей (группа 1)

а-угольные топлива, измельчались барабанно-шаровыми мельницами; б-то же, молотковыми мельницами; в-то же, мелющими вентиляторами;
с-сланцы; д-торф; 28-батарейный циклон; 28а-мокрый золоуловитель конструкции ОРГРЭС; 286-мокрый золоуловитель с трубой Вентури;
16-центробежный скруббер; 16а-батарейный циклон; 23-котлоагрегат ЦКТИ; 23а-котлоагрегат "Букау"; 32-батарейный циклон; 32а-мокрый прутковый золоуловитель; 33-котлоагрегат "Дукла"; 33а-котлоагрегат БКЗ; 36-котлоагрегат ТП; 36а-котлоагрегат БКЗ; 36-котлоагрегат ТП;
40-мокрый золоуловитель с трубой Вентури (рис. в); 40а-реттиховские угли; 406-подгородненские и партизанские угли; 40в-реттиховские и подгородненские угли; 41-котлоагрегат ТП; 36а-котлоагрегат ТП; 50; 44а-котлоагрегат ТП:36; 45-котлоагрегат БКЗ: 50-котлоагрегат БКЗ-160 (см. примечание к рис. 15).

А, Б-инерционные золоуловители; I, II, III, IV-поля электрофильтров; 10-котлоагрегат ТП; 10а-котлоагрегат БКЗ (см. примечание к рис. 15).

Общие сведения о ТЭС (см. рис. 15, 16, 17)

№ пп.	Род топлива	Наименование ТЭС	Тип котлоагрегата	Тип мельницы	Способ золоу- лавливания	Конструкция золоуловителей
1		Алексинская ТЭЦ	ПК ТП	БШМ ММ	Сухое	БЦ ОК+БЦ
2		Новомосковская ГРЭС	Шихау ЛМЗ БКЗ	БШМ ММ	Сухое	БЦ ЖУ+БЦ ОК+4пГЭ
3	Подмосковный уголь	Черепетская ГРЭС (І очередь)	тп	БШМ	Сухое	-
4		Щекинская ГРЭС	СП ПК	MM	Сухое	ІпЭ БЦ+3пГЭ
5		Дорогобужская ГРЭС	пк	ММ	Сухое	БЦ
6	Львовско-Волынский уголь	Бурштынская ГРЭС	тп	БШМ	Сухое	БЦ
7	Ангренский уголь	Ангренская ГРЭС	ТП БКЗ	ММ	Сухое	БЦ БЦ+3пГЭ ЦН+3пГЭ
8		ТЭЦ Ижорского за- вода	"Бабкок Вилькокс"	Мельницы "Фуллера"	Сухое	БЦ+1пЭ
9	Донецкий уголь	Ладыжинская ГРЭС	ТП	БШМ	Сухое	ФК +3пГЭ
10		Новочеркасская ГРЭС	тпп	БШМ	Сухое	ФК+4пГЭ

11		Ленинградская ТЭЦ-14	тп	БШМ	Сухое	3пГЭ
12	Кузнецкий уголь	Ленинградская ТЭЦ-17	ТП БКЗ	ММ Сухо БШМ		ЖУ+4пГЭ
13		Новосибирская ТЭЦ-З (I—III очередь)	тп	БШМ	Сухое	БЦ
14	Назаровский уголь	Новосибирская ТЭЦ-3, (IV очередь)	БКЗ	ММ	Сухое	4пГЭ
15		Ленинградская ТЭЦ-15	ТП	ММ	Мокрое и сухое	БЦ+ЦС
16		Кировская ГРЭС (Ленинградская обл.)	пк	ММ	Мокрое и сухое	БЦ+ЦС
17	Торф	Шатурская ГРЭС	"Гарбе" "Стерлинг"	Нет ММ	Сухое	ок+ок+жу
18		Рижская ТЭЦ	ΤП		Cyxoe	ЦС
19		Смолевичская ГРЭС	"Штейн- мюллер"		Сухое	жу
20	Гдовский сланец	ТЭЦ г. Сланцы	БКЗ	MM	Cyxoe	БЦ
21		Эстонская ГРЭС	ТП	ММ	Сухое	КС+БЦ+П+ +4пГЭ
22		ТЭЦ Кохтла-Ярве	БКЗ	ММ	Сухое	ОК+БЦ
23	Эстонский сланец	ТЭЦ Ахтме	ЦКТИ "Букау БКЗ"	мм	Сухое	БЦ ОК+БЦ
24		Прибалтийская ГРЭС	ТП	ММ	Cyxoe	БЦ+4nГЭ

Продолжение таблицы 9

. 61

№ пп.	Род топлива	Наименование ТЭС	Тип котлоагрегата	Тип мельницы	Способ золоу- лавливания	Конструкция золоуловителей
25		Ермаковская ГРЭС	ПК	MM	Сухое	4πΓЭ
26	Экибастузский уголь	Троицкая ГРЭС	ПК-14 ПК-39	ММ БШМ	Мокрое и сухое	ЦС КК+ФК+ +БЦ+3пГЭ
27	Челябинский уголь	ТЭЦ Челябинского металлургического за- завода	ТП	БШМ	Сухое	БЦ
28	Kennennin groub	Южно-Уральская ГРЭС	пк	MM	ММ Сухое и мокрое 1	
29	Ташкумырский (более 50%) и др. киргизские угли	Ферганская ТЭЦ	ТП БКЗ	ММ	Сухое	БЦ
30	Кизил-кия (более 80%) и др. кир- гизские угли	Кувасайская ГРЭС	цкти	И БШМ Сухое ММ		ОК+БЦ БЦ
31		Воркутинская ТЭЦ-1	"Комбашен" БКЗ	MM	Сухое	ОК+БЦ БЦ
32	Воркутинский уголь	Воркутинская ТЭЦ-2	ТП БКЗ	бШМ	Сухое Мокрое	БЦ МЗ
3 3	Печорский	Интинская ТЭЦ	"Дукла" БКЗ	мм	Сухое	БЦ
34	Карагандинский уголь (Куу-Че- кинского разреза)	Алма-Атинская ГРЭС	БКЗ	бШМ	Мокрое сухое	МЗ с ТВ ОК+3пГЭ
35	Карагандинский уголь (Куу-Че- кинского разреза)	Джезказганская ТЭЦ	"Бабкок- Вилькокс" ТП	Сухое мокрое	ОК+БЦ ЦС	

36	Райчихинский (75%) и харанор- ский (25%) угли	Хабаровская ТЭЦ-1	ТП БКЗ-160 БКЗ-210	MM	Мокрое или сухое Мокрое	МЗили БЦ МЗсТВ
37	Реттиховский, харанорский и пав- ловский угли	Владивостокская ТЭЦ-2	БКЗ	MB	Сухое	ФК+3пГЭ
38	Липовецкий, реттиховский, ур- гальский, артемовский и др. дальне- восточные угли	Артемовская ГРЭС	"Комбашен" "Бабкок- Вилькокс" БКЗ	БШМ М В БШМ	Сухое Мокрое Мокрое	ОК+БЦ ЦС МЗ с ТВ
39	Быковский (60%), синегорский (20%) и др. угли Сахалинского ме- сторождения	Южно-Сахалинская ТЭЦ-2	ЭЧМ УПИ	MM MB	Сухое+ мокрое Сухое	ОК+МЗ с ТВ БЦ
40	Реттиховский уголь		БКЗ	БШМ, M B	Мокрое	БЦ или
	Подгородненский и партизанский	Партизанская ГРЭС	ТΠ	БШМ		MOCID
	угли Подгородненский и реттиховский угли		ΤП	ышм	Мокрое	мзств
41	Райчихинский уголь	Райчихинская ГРЭС	ЦКТИ БКЗ	ММ	Сухое Мокрое	БЦ МЗ с ТВ
42	Тростник овый то рф	Опытное сжигание		мВ		
43	Фрезерный торф	Ярославская ТЭЦ-1	пк	MM	Мокрое Сухое	МЗ с ТВ БЦГ+БЦО
44	Аркагалинский уголь	Аркагалинская ГРЭС	ТП-150 ТП-38	БШМ	Сухое Мокрое	БЦ ЦС
45	Ургальский уголь	Магаданская ТЭЦ	БКЗ-50 БКЗ-160	БШМ	Сухое Мокрое	БЦ МЗ с ТВ

Примечание. БШМ и ММ — барабанно-шаровые и молотковые мельницы; МВ — мелющий вентилятор; ФК — форт-камеры; ОК — осадительная камера; КС — камера Соболева; П — предполье; КК — конвективная камера; БЦ — батарейный циклон; ЦН — циклон НИИОГАЗ; 1, 2, 3, 4п — количество полей вертикального (В) или горизонтального (Г) электрофильтра; ЖУ — жалюзийный золоуловитель; знак + — последовательное включение одного золоулавливающего аппарата в другой; МЗ — мокрый золоуловитель (прутковый, конструкции ОРГРЭС); МЗ с ТВ — мокрый золоуловитель с трубой Вентури; БЦГ и БЦО — батарейный циклон, соответственно, загрязненного и очищенного газа.

золоулавливающих устройств на рис. 15, 16, 17 находим искомые кривые транулометрического состава золы. Например, для Шекинской ГРЭС (порядковый номер ГРЭС согласно табл. 9, № 4) для котлоагрегата СП, оборудованного молотковыми мельницами и однопольными электрофильтрами, т. е. золоуловителями первой группы, кривая гранулометрического состава золы приводится на рис. 16, б, кривая 4.

Во втором случае гранулометрический состав золы принимается согласно табл. 10 в зависимости от рода твердого топлива,

							Таб.	1ица 10
	П	оцент	ное со золы	одерж (<i>P</i> , <i>d</i>	ание ((^{, мм})	фракц	หตี	
Пылеугольные мельницы и золоуловители	10,5	0,5-0,25	0,25-0,1	0,1-0,05	0,05-0,02	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$d_0 = \frac{\Sigma d_i P}{100}$	
1-я группа зо	олоз	улон	вите	елеі	Ì			
Угольные топлива: барабанно-шаровые мельницы молотковые мельницы среднеходовые валковые мельницы мелющие вентиляторы Сланцы (молотковые мельницы) Торф (молотковые мельницы)		4 4 5 8 2 5	9 12 9 15 12 27	21 25 20 22 25 32	39 39 56 31 38 19	22 15 10 18 16 8	5 5 6 7 4	0,064 0,071 0,071 0,087 0,063 0,136
2-я группа зо	лоу	лов	вите	лей	I			
Инерционные золоуловители: (последовательность включения) первый аппарат	7	7 3	24 10	31 24	31 35		8	0,155 0,063
Инерционные золоуловители: (первая ступень) осадительные камеры батарейные циклоны Электрофильтры:		7 7	23 9	36 18	34 44	22		0,105 0,074
(вторая ступень) первое поле второе поле третье поле четвертое поле		5 4 1 1	16 11 3 3	19 15 11 11	60 32 39 39	28 31 31		0,082 0,062 0,037 0,037

32

конструкции золоулавливающих устройств и пылеугольных мельниц. Отметим, что табл. 10 получена на основании осредненных данных по составу золы, приводимых на рис. 15, 16, 17.

2. Агрегатная плотность

В расчетах используются две физические величины — плотность и агрегатная плотность частиц золы.

Плотность — физическая величина, равная пределу отношений массы материала $P_{\rm M}$, слагающего частицу, к его объему V при неограниченном уменьшении (растирании) этой частицы

$$\rho = \lim_{\Delta V \to 0} \frac{\Delta P_{\rm M}}{\Delta V} \frac{dP_{\rm M}}{dV}.$$

Агрегатная плотность — отношение массы частицы $P_{\mathbf{u}}$ к ее объему V

$$\rho_{\mathbf{a}} = \frac{P_{\mathbf{q}}}{V}.$$

Величины плотности и агрегатной плотности будут равны только тогда, когда частицы не имеют замкнутых пор. Примером таких материалов служит песок, гравий и пр.

Эти физические величины для пористых частиц связаны между собой следующей зависимостью

$$\rho_{\rm a}=\rho\,(1-n_{\rm a}),$$

где n_a — относительная величина объема замкнутых пор в долях единицы объема частицы.

Исследованиями золы различных твердых топлив установлено, что объем замкнутых пор частиц в среднем не превышает 4— 5%. Это обстоятельство указывает на то, что для золы, в отличие от шлака, arperatная плотность и плотность приблизительно равны

$\rho_a \simeq \rho$.

Частицы золы и шлака, как одного, так и разных твердых топлив имеют неодинаковый химический состав и, как следствие этого, неодинаковую агрегатную плотность. Поэтому харажтеристикой массы, необходимой при расчете гидротранспорта золы, является средняя агрегатная плотность. Средняя агрегатная плотность пробы, состоящей из совокупности неоднородных частиц, — физическая величина, равная отношению массы всех частиц золы естественной крупности в пробе $\Sigma P_{\rm u}$ к их объему ΣV .

$$\bar{\rho}_{a} = \frac{\Sigma P_{\mathbf{q}}}{\Sigma V}.$$

Исследованиями не было обнаружено изменение средней агрегатной плотности золы, поступающей из золоуловителей второй группы по ходу очистки дымовых газов (табл. 11).

3

Значение	ρa	золы	твердых	топлив	для	комбинированных
	•	- 30	олоулови	телей (г/см ³)

	Комбинированные золоуловители											
		Электрофильтры										
Наименование ТЭС род топлива	Инерционные	1-е поле	2-е поле	3-е поле	4-е поле							
Ангренская ГРЭС (ангрен- ский уголь)	2,78* 2,39**	2,50 2,47	2,5 6 2,43	2,59 2,46								
бастузский уголь)	2,06	2,18	2,06	2,13	2,17							
Новосибирская 1ЭЦ-31V оч. (назаровский уголь)	3,06	3,16	3,14	3,17	3,21							
(кузнецкий уголь)	-	2,18	2,18	2,12	2,12							
Алма-Атинская ГРЭС (карагандинский уголь) Норомосковская ГРЭС	2,05	2,07	2,05	2,14								
(подмосковный уголь)	2,83	2,42	2,33	-	2,38							
Эстонская ГРЭС (эстон- ский сланец).	3,12	2,97	2,94	2,99	3,00							
ско-волынский уголь)		2 ,28	2,35	2,46	2,47							

* Котлоагрегат с твердым шлакоудалением. ** Котлоагрегат с жидким шлакоудалением.

При расчете пневмотранспорта среднюю агрегатную плотность золы следует брать согласно табл. 12.

Таблица 12

Род топлива										Средняя агрегатная плотность золы, г/см ³						
Уголь																
Назаровский															.	3,2-3,0
Подмосковный															.	2,8—2,35
Ангренский																2,6-2,45
Райчихинский .			÷												.	2,55-2,40
Понецкий		÷													.	2,45-2,3
Львовско-Волынский	ŧ.		÷	÷											.	2,45-2,3
Печорский		Ż	÷		Ĩ	ż	÷	÷				÷	÷	÷		2,40
Азейский, черемховс	кий	÷.	÷.	Ċ.			Ż							÷		2.4 - 2.3
Черновский, гусинос	зер	скл	สหั	Ċ	•	÷					Ż					2.4 - 2.3
Кизил-кияский и пр	ки	งกห	301	Кие	v	ил	ŗ		Ţ			Ţ	Ţ	Ż		2.4 - 2.25
Челябинский							•••	•	·		•	·	Ī	·		2.3 - 2.1
Ташкумырский и лг	. เก	101	หา	ски	16	vr.	ии	•	•	•		•	•	•		2.3 - 2.1
Типатультренни и др	б <u>у</u> п	ւթյ հու	/นนั		i.c	,		•	•	•	•	•	•	•	•	2.3
Богословский	oya	J.		•	•	•	•	•	•	·	•	•	•	·	•	$\bar{2}.\bar{3}$
Карагандинский	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•	2.2-2.05
	•	•	•	•	•	·	·	·	·	•	·	•	•	•	•	2.2

Род топлива	Средняя агрегатная плотность золы, г/см ³
Реттиховский, подгородненский, партизанский, артемовский и др. дальневосточные угли	2.2-2.12.22.15-2.102.152.15-1.952.142.132.0
Торф	
Тростниковый	3,4-3,25 3,1 2,8-2,35 2,6-2,4
Сланец	
Эстонский	3,12,9 2,8 2,75

Примечание 3

ТЕОРЕТИЧЕСКОЕ И ЭКСПЕРИМЕНТАЛЬНОЕ ОБОСНОВАНИЕ ПРЕДЛАГАЕМОГО МЕТОДА РАСЧЕТА

В настоящее время теоретические исследования по разработке физической модели двухфазных потоков в целом далеки от завершения, а применение существующих полуэмпирических расчетных зависимостей конкретно к пневмотранспорту золы, как показывает опыт эксплуатации систем пневмозолоудаления на ряде тепловых электростанций, недостаточно обеспечивает надежность и эффективность их работы.

Принципиальной новизной настоящей методики является вариантный расчет с окончательным выбором энергетически наивыгоднейшей комбинации величин D и G_w для заданной производительности.

Эксперименты по пневмотранспорту золы проведены на вакуумной пневмотранспортной установке (рис. 18) с трубами, внутренний диаметр которых 0,067; 0,094 и 0,155 м в диапазоне изменения параметров: загрузка $m=0,287\div3,25$; массовый расход воздуха $G_w=0,144\div0,446$ кг/с; массовый расход материала $G_s=0,128\div0,877$ кг/с; плотность золы $\rho_s=2870\div2950$ кг/м³. Опыты проводились с золой Красноярской ТЭЦ-1, средневзвешенная крупность которой менялась в опытах от 0,044 · 10⁻³ м до 0,07× ×10⁻³ м.

1-пневмозолопровод; 2-разгрузочный бункер; 3-шнековый питатель; 4-редуктор; 5-осадительная камера; 6-циклоны; 7-, мокрый фильтр; 8-диафрагма; 9-задвижка; 10-воздухопровод; 11-точки отбора давления; 12-прибор для измерения скорости потока; 13-вакуум-насос.

Техника проведения опытов отработана и подробно изложена в отчетах сектора пневмотранспорта за 1973—1974 гг.

Для сравнительного анализа опытных результатов обработка и определение расчетных зависимостей проводились с параметрами воздуха, приведенного к нормальному состоянию.

Всего было осуществлено 177 режимов пропуска золосмеси; из них после предварительной оценки результатов к обработке принято 143 опыта.

Рис. 19. Результаты экспериментов по определению удельных потерь давления для трубы D=0,094 м.

Целью экспериментов являлось определение эмпирических зависимостей для расчета удельных гидравлических потерь давления, критических скоростей потока, скорости витания золового материала и скорости частиц золы.

В основу эмпирических формул положен обычный в гидропневмотранспорте инженерный метод, состоящий в суммировании потерь напора, обусловленных наличием взвеси, с потерями напора потока воздуха без взвеси в данной трубе при том же расходе.

Удельные гидравлические потери давления определялись по перепаду статических давлений, которые фиксировались фотографированием пьезометрического щита после установления заданного режима. Эксперименты состояли в определении удельных гидравлических потерь давления и представлении их в виде изоконсистентных кривых для весовых загрузок m = 1,1; 1,8; 2,3;3,0 (рис. 19). По результатам анализа опытов по пневмотранспорту золы была получена зависимость для определения дополнительных гидравлических потерь напора:

$$\frac{1}{\rho_w} \left| \frac{dP}{dx} \right| - \frac{1}{\rho_w} \left| \frac{dP}{dx} \right| = 0.014 \frac{d_0}{D} \frac{U_{w^2}}{gD} \frac{U_{w^2}}{(U_w - U_s)^2} (1 + m^{3/2})^2.$$

Сравнение опытных и расчетных величин удельных потерь давления. Рис. 20.

Данная зависимость дает до 15% погрешности (рис. 20).

Критические режимы фиксировались в прозрачных вставках, установленных по пневмозолопроводу, по началу образования неподвижного слоя выпавших из толщи потока частиц золы. Графоаналитический анализ опытных результатов позволил аппроксимировать значения критической скорости линейной функцией вида:

$$U_{\rm KD} = \Phi \sqrt{gD} - \Psi W_0 m^{-1/2},$$

где Φ и Ψ — опытные корректирующие функции, определяемые по графику (рис. 21).

Данная формула дает приемлемую сходимость результатов расчета с опытными данными (рис. 22).

Рис. 22. Сравнение опытных и расчетных значений критических скоростей.

Измерение скоростей свободного падения частиц производилось на специально созданной установке (рис. 23) при давлениях в трубе 1 · 10⁵—0,4 · 10⁵ Па. Моменты прохождения фронта частиц фиксировались по осциллограмме в виде резких пиков (рис. 24). Отметчик времени осциллографа настроен на интервал времени 0,02 с. По определению скорости витания золы получена следующая зависимость:

$$\frac{W_0}{V g d_0} = 8e^{2,4 \cdot 10^{-4} \frac{P_s}{\rho_w}}.$$

Рис. 23. Схема установки для определения скорости витания частиц золового материала

1-стеклянная труба; 2-фокусирующее устройство; 3-лампы подсветки; 4-манометр; 5-вакуум-насос; 6-вентиль; 7-фотоэлемент; 8-блок питания; 9-осциллограф; 10-пульт дистанционного управления; 11-сбрасывающее устройство; 12-термометр; 13-гигрометр.

Рис. 24. Осциллограмма прохождения частиц через фокусы подсветки фотоэлементов.

Для измерения скорости нотока золосмеси использовался маятниковый прибор (рис. 25), в котором отклонение маятника под воздействием динамической силы потока компенсировалось уси-

Рис. 25. Схема прибора по измерению осредненных скоростей частиц материала

I-маятник с управляющими грузами; 2-пневмопровод; 3-тарировочный вес; 4-тензодатчик 2ПКП-30-20ГБ; 5-тензоусилительная станция УТ4-1; 6-магазин сопротивлений Р 314; 7-конденсатор; 8-потенциометр ЭПП-09 M_3 ; 9-привод выверки "0" (K_0 =1,275).

лием плоской стальной пружины с наклеенным тензодатчиком типа 2ПКП-30-20ГБ, включенным в измерительную цепь по мостовой схеме. Возникшие при этом деформации интегрально характеризуют динамику потока. Решая уравнение количества движения, для скорости золы получили зависимость (рис. 26):

$$\overline{U}_s = 1.2 \, \overline{U}_w - 40,$$

где $\overline{U}_s = \frac{U_s}{W_0}; \quad \overline{U}_w = \frac{U_w}{W_0}.$

Рис. 26. График зависимости $\overline{U}_s = f(\overline{U}_w)$.

СОДЕРЖАНИЕ

1.	Общие п	юложе	ния	•		٠	•	•		•	•		•	•	•	•	•	3
2.	Определ	ение фи	изико)-ме	хан	иче	скиз	к св	юйс	тв з	золь	ι.	•	•		•	•	4
3.	Расчет п	ютерь р	цавл	ения	ни	пот	греб	ной	мо	щно	ости	вс	исте	эмах	ва	куу	M-	-
	ного пне	евмотра	нспо	рта	30	лы	•	•	•	•	•	•	•	·	•	•	•	Э
П	рилож	ения				•							•					18

РЕКОМЕНДАЦИИ ПО АЭРОДИНАМИЧЕСКОМУ РАСЧЕТУ ВАКУУМНЫХ СИСТЕМ ПНЕВМОЗОЛОУДАЛЕНИЯ

П 60-77 ВНИИГ

Редактор Л. Г. Сетко Научный редактор М. А. Дементьев Технический редактор Т. М. Бовичева Сдано в набор 25/V 1977 г. Подписано к печати 26/IX 1977 г. М-44027. Формат 60×90/16. Бумага типографская № 2. Печ. л. 2,625. Уч.-изд. л. 2,3. Тираж 800. Зак. 382. Цена 35 коп.

Типография Всесоюзного ордена Трудового Красного Знамени научно-исследовательского института гидротехники имени Б. Е. Веденеева. 195220, Ленинград, Гжатская ул., 21.