4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение концентраций химических соединений в атмосферном воздухе и воздухе рабочей зоны

Сборник методических указапий по методам контроля МУК 4.1.3036—12; 4.1.3038—12; 4.1.3039—12

Издание официальное

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение концентраций химических соединений в атмосферном воздухе и воздухе рабочей зоны

Сборник методических указаний по методам контроля МУК 4.1.3036—12; 4.1.3038—12; 4.1.3039—12

ББК 51.21 И37

ИЗ7 Измерение концентраций химических соединений в атмосферном воздухе и воздухе рабочей зоны: Сборник методических указаний по методам контроля.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2013.—56 с.

ISBN 978--5--7508--1176--2

ББК 51.21

Редактор Н. В. Кожока Технический редактор Е. В. Ломанова

Подписано в печать 07.02.13

Формат 60х88/16

Тираж 200 экз.

Печ. л. 3,5 Заказ 10

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека 127994, Москва, Вадковский пер., д. 18, стр. 5, 7

Оригинал-макет подготовлен к печати и тиражирован отделом издательского обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское ш, 19а Отделение реализации, тел./факс 952-50-89

© Роспотребнадзор, 2013
© Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2013

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение массовых концентраций 1, 2-дихлоргексафторциклобутана (хладона 316) в воздухе рабочей зоны газохроматографическим методом

Мстодические указания МУК 4.1.3036—12

- 1. Разработаны ФБУН «Научно-исследовательский институт гигиены, профпатологии и экологии человека» Федерального медикобиологического агентства России (Т. А. Кузнецова, Е. Ю. Карманов, Г. В. Пшеничная, В. С. Хрусталева).
- 2. Утверждены Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации Г. Г. Онищенко 30 августа 2012 г.
 - 3. Введены в действие с момента утверждения.
 - 4. Введены впервые.

УТВЕРЖДАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека. Главный государственный санитарный врач Российской Федерации

Г. Г. Онищенко

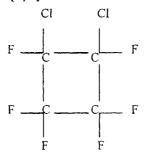
30 августа 2012 г.

Дата введения: с момента утверждения

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение массовых концентраций 1, 2-дихлоргексафторциклобутана (хладона 316) в воздухе рабочей зоны газохроматографическим методом

Методические указания МУК 4.1.3036—12


Свидетельство о метрологической аттестации от 10.10.2008 N_{2} 242/79—08.

Настоящие методические указания устанавливают количественный газохроматографический анализ воздуха рабочей зоны на содержание хладона 316 в диапазоне массовых концентраций от 1 500 мг/м³ до 15 000 мг/м³.

Название действующего вещества по ИСО: хладон 316.

Название действующего вещества по ИЮПАК: 1,2-дихлоргексафторциклобутан, регистрационный номер по CAS 356-18-3.

Структурная формула:

Эмпирическая формула: C₄F₆Cl₂.

Молекулярная масса: 233.0.

Хладон 316 – бесцветная жидкость. Температура кипения – 59,4—59,8 °C, температура замерзания – минус 24 °C, плотность при 16 °C 1662 кг/м³; агрегатное состояние в воздухе: пары.

Хладон 316 является веществом с преимущественно выраженным наркотическим действием. Класс опасности — четвертый.

1. Метрологические характеристики

Настоящая методика количественного химического анализа (КХА) хладона 316 обеспечивает выполнение измерений хладона 316 с метрологическими характеристиками, значения которых не превышают представленных в табл. 1 (при доверительной вероятности P = 0.95).

Результаты метрологической аттестации методики количественного химического анализа

Таблица 1

Диапазон измерений мас- совой концентрации хла- дона 316 в воздухе рабочей зоны, мг/м ³	Показатель повторяемости (СКО результатов измерений в условиях повторяемости), σ , %	Показатель точности (границы относительной суммарной погрешности), δ , $\%$, при $P \approx 0.95$
$(1,5-15) \times 10^3$	8	± 20

2. Метод измерений

Измерение массовой концентрации хладона 316 в воздухе рабочей зоны выполняют газохроматографическим методом с применением пламенно-ионизационного детектора.

Отбор проб воздуха проводится без концентрирования в медицинские шприцы.

Нижний предел измерения содержания хладона 316 в хроматографируемом объеме пробы 1,5 мкг.

Нижний предел измерения массовой концентрации хладона 316 в воздухе рабочей зоны $1\,500\,\mathrm{mr/m^3}$ при анализе $1\,\mathrm{cm^3}$ воздуха.

Определению не мешают: гексафторэтан (хладон 116); декафторбутан (хладон 31-10); хладон 227 с.а.

3. Средства измерений, вспомогательные устройства, материалы, реактивы

При выполнении измерений применяют следующие средства измерений, вспомогательные устройства, материалы и реактивы.

3.1. Средства измерений

Газовый хроматограф «Trace GC Ultra» или аналогичный, оснащенный пламенно-ионизационным детектором (ПИД) с чувствительностью по пропану не менее 1.0×10^{-8} мг/см³ ГОС реестр № 18232-04 Шприны вместимостью 0.1 и 1.0 см³ (фирма Фирма Супелко номера по каталогу: 24535, 20740-U Hamilton) Шприцы медицинские, многоразовые, цельностеклянные вместимостью 20; 100; 200 см³ ГОСТ 22967—90 Барометр-анероид М-67 TV 2504-1797---75 Термометр ТЛ-31-А, предел измерений 0-100 °C ΓΟCT 29224---91 Бутыли вместимостью 1 дм3 TV 6-09-5472 Цилиндры вместимостью 3—100 см³ и $1 - 1.000 \text{ cm}^3$ ΓΟCT 1770---74

Примечание. Допускается использование средств измерения иных производителей с аналогичными или лучшими характеристиками.

3.2. Реактивы

Хладон 316, содержание основного вещества	
не менее 98,0 %	ТУ 2412-145-05807960-2006
Азот газообразный, осч	ΓΟCT 92 93 —74
Водород	ΓΟCT 3022—80
Воздух сжатый, класс загрязненности 1, в	
баллонах с редукторами	ГОСТ 17433—80

Примечание. Допускается использование реактивов иных производителей с аналогичной или более высокой квалификацией.

3.3. Вспомогательные средства измерений, устройства и материалы

Капиллярная колонка Supel – Q^{TM} PLOT –	Фирма Супелко номера
$(3 \text{ m} \cdot 0.32 \text{ mm} - 0.25 \mu\text{m})$	по каталогу: 24242
Трубки стеклянные	ГОСТ 8446—74
Пластины из фторопласта – 4	ГОСТ 1 00 0780
Пробки резиновые	ТУ 38105 1835—88

Примечание. Допускается использование вспомогательных средств измерений и устройств иных производителей, технические характеристики которых не уступают указанным, а также материалов, обеспечивающих нормативы точности при проведении измерений.

4. Требования безопасности

- 4.1. При работе с реактивами соблюдают требования безопасности, установленные для работы с токсичными, едкими и легковоспламеняющимися веществами по ГОСТ 12.1.005—88.
- 4.2. При выполнении измерений с использованием газового хроматографа соблюдают правила электробезопасности в соответствии с ГОСТ 12.1.019—2009 и инструкцией по эксплуатации прибора.
- 4.3. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004—91 и иметь средства пожаротушения по ГОСТ 12.4.009—83.
- 4.4. Помещение должно быть оборудовано приточно-вытяжной вентиляцией.
- 4.5. При работе с газами, находящимися в баллонах под давлением до 15 МПа (150 kgf/cм²), соблюдают правила безопасности по ГОСТ 12.2.085—2002, а также ПБ-03-576-03. Запрещается открывать вентиль баллона, не установив на нем понижающий редуктор.
- 4.6. Необходимо проводить обучение работающих безопасности труда по ГОСТ 12.0.004—90.

5. Требования к квалификации операторов

К выполнению измерений и обработке полученных результатов допускаются специалисты с высшим или средним специальным образованием, имеющие опыт работы в химической лаборатории, владеющие техникой хроматографического анализа, освоившие метод анализа в процессе тренировки и уложившиеся в нормативы оперативного контроля при выполнении процедур контроля погрешности анализа.

6. Условия измерений

Приготовление градуировочных смесей и подготовку проб к анализу проводят в следующих условиях: при температуре воздуха $(20\pm5)\,^{\circ}$ С, атмосферном давлении 84—106 кПа и относительной влажности воздуха не более 80 %.

Измерения на газовом хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

7. Подготовка к выполнению измерений

7.1. Подготовка хроматографической колонки

Хроматографическую колонку готовят по инструкции, прилагаемой к хроматографу. Колонку помещают в термостат хроматографа и, не присоединяя к детектору, кондиционируют в течение 24 ч в потоке газаносителя (азота), повышая температуру от 50 до 180 °C со скоростью 5 °С/мин. После этого колонку присоединяют к детектору и продолжают кондиционировать до стабилизации нулевой линии при максимальной чувствительности прибора.

7.2. Подготовка прибора

Подготовку газового хроматографа проводят в соответствии с руководством по его эксплуатации.

7.3. Подготовка бутылей

Все бутыли, применяемые для приготовления образцов для градунровки (с номинальной вместимостью 10 и 1 дм3) нумеруют, принимая меры для сохранения номеров на время их использования. В каждую бутыль помещают 15-20 пластинок из фторопласта размером 15 × 15 × 3 мм, заполняют дистиллированной водой до верхнего края гордовины и закрывают резиновой пробкой, вытесняя излишки воды. Вместимость бутыли (V, дм³) принимают равной объему находящейся в ней воды. Объем воды определяют с помощью мерного цилиндра. Определение объема проводят с погрешностью не более 2 %. Подготовленные бутыли сущат, закрывают резиновыми пробками, обернутыми фольгой, с отверстиями, в которые вставлены стеклянные трубки. Концы трубок должны быть опущены в бутыли на 5 мм ниже пробок. Верхние концы стеклянных трубок закрывают резиновыми трубками с зажимами. Перед приготовлением градуировочных смесей бутыли предварительно тренируют, т. е. 3-5 раз готовят в них паровоздушную смесь с наименьшей концентрацией, продувая бутыль азотом между приготовлениями. Таким образом достигается уменьшение влияния сорбционных эффектов на внутренней поверхности бутыли.

Аналогичной подготовке подвергают все бутыли, применяемые для приготовления образцов для градуировки.

7.4. Приготовление стандартной газовоздушной смеси

Для приготовления стандартной газовоздушной смеси № 1 хладона 316 с массовой концентрацией $100\,000\,\mathrm{Mr/m^3}$ хроматографическим шприцем отбирают $0.06\,\mathrm{cm^3}$ жидкого хладона 316. Быстро вводят в от-

градуированную, вакуумированную бутыль с номинальной вместимостью 1 дм³, прокалывая иглой заглушку на бутыли. Уравнивают давление воздуха внутри бутыли с внешним. Полученную смесь выдерживают 15—20 мин, перемещивая при помощи помещенных в бутыль фторопластовых пластинок.

Массовую концентрацию хладона 316 в смесях C (мг/м³) рассчитывают по формуле:

$$C = \frac{d \times V_{x_1} \times 10^9}{V_{\bar{u}vm}}$$
, где

d-1,66 г/см³, плотность хладона 316 при16 °C и давлении 101,3 кПа; V_{x_3} – объем хладона 316, введенный в бутыль, см³;

 $V_{\text{бут}}$ – вместимость бутыли, см³;

 10^9 – козффициент пересчета на мг/м³.

Стандартную газовоздушную смесь № 1 хладона 316 с массовой концентрацией 100 000 мг/м³ используют в день приготовления.

7.5. Приготовление градуировочных газовоздушных смесей хладона 316

Газовоздушные смеси готовят в вакуумированных бутылях с номинальной вместимостью 1 дм³. Готовят 5 смесей в соответствии с табл. 2.

Медицинским шприцем со стеклянным штоком, прокалывая резиновую заглушку на бутыли и прокачивая 9—10 раз полный объем шприца, отбирают рассчитанное количество стандартной газовоздушной смеси N = 1 и вводят в бутыль вместимостью 1 дм^3 .

В вакуумированные бутыли, вместимостью 1 дм³, вводят 15, 30, 60, 100 и 150 см³ газовоздушной смеси № 1, концентрации хладона 316 в бутылях составляют 1 500, 3 000, 6 000, 10 000,15 000 мг/м³.

Таблица 2 Смеси для установления градуировочной характеристики при определении хладона 316

№ смеси	Объем газовоз~ душной смеси хладона 316 № 1, см ³	Объем воздуха, см ³	Содержание хладона 316 в хроматографируемом объеме, мкг	Концентрация хладо- на 316 в хроматогра- фируемом объеме, мг/м ³
1	0	1 000	0	0
2	15	985	1,5	1 500
3	30	970	3.0	3 000
4	60	940	6,0	6 000
5	100	900	10,0	10 000
6	150	850	15,0	15 000

7.6. Установление градуировочной характеристики

Градуировочную характеристику, выражающую зависимость величины хроматографического сигнала от массовой концентрации анализируемого вещества в хроматографируемом объеме пробы, устанавливают по методу абсолютной калибровки по пяти градуировочным смесям и холостой пробе в серии не менее пяти измерений для каждой из газовоздушной смеси, в соответствии с табл. 2.

Градуировку проводят в день приготовления градуировочных смесей. Для этого 1 см³ полученной градуировочной смеси с помощью газового шприца вводят в испаритель хроматографа через самоуплотняющуюся мембрану. При выполнении градуировки и при анализе пробы в испаритель хроматографа вводят одинаковый объем пробы

Условия хроматографирования градуировочных смесей и анализа проб.

Начальная температура колонки: 60 °C.

Выдержка: 1 мин.

Скорость нагрева: 15 °С/мин.

Конечная температура колонки: 160 °C.

Температура испарителя: 180 °C. Температура детектора: 200 °C.

Скорость потока газа-носителя (азот): 1 см³/мин.

Скорость потока водорода: 35 см³/мин. Скорость потока воздуха: 350 см³/мин; Время удерживания: 6,48—6,50 мин.

Отношение высоты пика хладона к шуму должно быть не менее 10:1.

Объем вводимой пробы: 1 см³.

7.7. Обработка хроматограмм

7.7.1. Определяют площади пиков S_{ij} .

Вычисляют среднее значение площади пика \overline{S}_i для каждой градунровочной смеси по формуле:

$$\overline{S}_i = \frac{\sum_{j=1}^n S_{ij}}{n}$$
, где

 S_{η} — измеренное значение площади пика определяемого компонента: n — число измерений в градуировочной смеси.

Проверяют приемлемость выходных сигналов хроматографа (площадей пиков) для каждой градуировочной смеси. Выходные сигналы считают приемлемыми при выполнения условия:

$$\frac{S_{ij}^{max} - S_{ij}^{min}}{\overline{S}} \times 100 \le g_1$$
, где

 S_{η}^{max} , S_{η}^{min} , \overline{S} — максимальное, минимальное и среднее значения площади пика хладона на хроматограмме при 5 вводах i-й градуировочной смеси, ед. пл.;

- g_I норматив приемлемости выходных сигналов (для пяти вводов градуировочной смеси), приведенный в табл. 3.
- 7.7.2. На основании результатов измерений строят градуировочную зависимость площади хроматографического пика i-й газовоздушной смеси (\overline{S}_i , условные единицы) от концентрации хладона 316 (мг/м³) в хроматографируемом объеме.
- 7.7.3. Вычисляют значения градуировочных коэффициентов K, (нг/ед. пл) для трех газовоздушных смесей в начале, середине и конце диапазона измерений по формуле:

$$K_i = \frac{C_i \cdot V}{\overline{S}_i}$$
, где

 C_i — массовая концентрация хладона 316 в i-й газовоздушной смеси, мг/м³;

V — объём i-й газовоздушной смеси, введенный в хроматограф, приведенный к стандартным условиям, см³;

 \overline{S}_i — среднее значение площади пика хладона из 5 измерений.

Вычисляют среднее значение градуировочного коэффициента по формуле:

$$K = \frac{\sum K_i}{m}$$
, где

m – количество приготовленных градуировочных смесей в диапазоне измерения.

7.7.4. Проверяют приемлемость градуировочной характеристики. Качество градуировки считается удовлетворительным при выполнении условия:

$$\frac{K_i^{max} - K_i^{min}}{K} \times 100 \le g_2$$
, где

 K_i^{max} , K_i^{min} , K — максимальное, минимальное и среднее значения для трех градуировочных смесей, нг/ед. пл.;

 g_2 — норматив приемлемости градуировочной характеристики (для трех градуировочных смесей), приведенный в табл. 3.

7.8. Контроль стабильности градуировочной характеристики

Контроль проводится не реже одного раза в квартал, а также при смене колонки, после ремонта и поверки прибора. Частота контроля может быть увеличена при большой интенсивности работы прибора. Для контроля стабильности готовят 2 градуировочные смеси (начало и конец диапазона) по п. 9.5 и выполняют измерения по п. 9.6.

Градуировочную характеристику считают стабильной, если для каждой из приготовленных смесей выполняется следующее условие:

$$\frac{K_{\rm g}-K}{K}$$
× 100 \leq λ , где

K — ранее установленное значение градуировочного коэффициента, нг/ед. пл;

 K_g — вновь вычисленное значение градуировочного коэффициента, иг/ед, пл;

 λ — норматив контроля градуировочной характеристики, приведенный в табл. 3.

При отрицательных результатах контроля необходимо провести переградуировку прибора.

Таблица 3 Нормативы контроля погрешности результатов измерений

Размах гра-Модуль относи-Размах выходных Размах выхолных дуировочных тельного отклонесигналов хроматосигналов хроматографа при 5 паралкоэффициенния градуировочнографа при 3 паралтов, отнесенго коэффициента от лельных вводах газолельных вводах градуировочной ный к среднеустановленного при вой пробы, отнесенму арифметиградуировке значеный к среднему смеси, отнесенный к среднему арифмсческому, ния, отнесенный к арифметическому, g_2 , % P = 0.95 g_1 , % (P = 0.95)этому значению. тическому, g_1 , % (P = 0.95) 1.% 10 12 13 15

8. Отбор проб воздуха

Отбор проб воздуха следует проводить в соответствии с требованиями ГОСТ 12.1.005—88. Для определения массовой концентрации

хладона 316 воздух отбирают в медицинские шприцы со стеклянным штоком, вместимостью 100 см³, предварительно «промыв» путем десятикратного воздухообмена. По окончании отбора шприцы закрывают стеклянными заглушками. Пробы сохраняются не более 6 ч. При отборе проб фиксируется температура воздуха и атмосферное давление.

9. Выполнение измерений

Для выполнения измерений хроматограф выводят на режим, указанный в п. 7.6.

Шприцы с отобранной пробой выдерживают в лабораторном помещении не менее 30 мин, затем отбирают необходимый объем (1 см³) пробы воздуха с помощью хроматографического шприца и вводят в испаритель хроматографа через самоуплотняющуюся мембрану. Ввод осуществляют 3 раза.

На полученных хроматограммах измеряют площади пика хладона 316.

10. Обработка результатов измерений

10.1. Вычисление результатов измерения

Массовую концентрацию хладона 316 в пробах воздуха, C (мг/м 3), вычисляют по формуле:

$$C_n = \frac{K \cdot S_n}{V}$$
, где

K – градуировочный коэффициент, нг/ед. пл.;

 S_n – усредненное значение площади пика хладона 316, ед. пл.;

V — объем пробы, введенный в испаритель хроматографа и приведенный к стандартным условиям, см³ (прилож. 1).

10.2. Проверка приемлемости выходных сигналов хроматографа

При каждом измерении проводят проверку приемлемости выходных сигналов хроматографа. Результат контроля признают удовлетворительным при выполнении условия:

$$\frac{S_j^{max} - S_j^{min}}{S} \times 100 \le g_j$$
, где

 S_i^{max} , S_i^{min} , S — максимальное, минимальное и среднее значения площади пика хладона на хроматограмме при 3 вводах пробы, ед. пл.;

 g_I — норматив приемлемости выходных сигналов (для трех вводов пробы), приведенный в табл. 3.

10.3. Округление результатов измерений

Результаты измерения округляют и записывают с точностью до единип.

11. Оформление результатов измерений

Результат анализа в документах, предусматривающих его использование представляют в виде:

$$(C \pm U)$$
мг/м³, $P = 0.95$, где

C – значение результатов измерения массовой концентрации хладона 316 в воздухе, мг/м³;

U – расширенная неопределенность измерений (при коэффициенте охвата k=2), мг/м³

$$U = 0.01 \times \delta \times C$$
.

 δ – показатель точности, приведенный в табл. 1, %.

В случае, если полученный результат измерений ниже нижней (выше верхней) границы диапазона измерений, производят следующую запись в журнале: «Массовая концентрация хладона 316 в воздухе менее 1 500 мг/м³ (более 15 000 мг/м³)».

12. Контроль результатов измерений

12.1. Контроль прецизионности

12.1.1. Контроль повторяемости

Контроль повторяемости проводят при выполнении каждого анализа реальных проб на основе контроля СКО результатов измерений в условиях повторяемости (табл. 1).

12.1.2. Контроль погрешности методики с использованием образиов для контроля

Для приготовления образца для контроля 30—100 см³ стандартной газовоздушной смеси № 1 хладона 316 с массовой концентрацией 100 000 мг/м³ вводят в бутыль вместимостью 1 дм³. Массовая концентрация хладона 316 в образцах для контроля составляет (3 000—10 000) мг/м³.

Измерения проводят в соответствии с п. 9 настоящей методики, обработку результатов измерений проводят по пп. 10.1—10.3.

Контроль погрешности осуществляют путем сравнения результата отдельно взятой контрольной процедуры K_{κ} с нормативом контроль δ по табл. 1. Результат контрольной процедуры K_{κ} , мг/м³, рассчитывают по формуле:

$$K_{\kappa} = X - C$$
, где

C – аттестованное значение массовой концентрации хладона 316, мг/м 3 ;

X – результат измерений массовой концентрации хладона 316, мг/м 3 .

Результат контрольной процедуры признают удовлетворительным при выполнении условия:

$$|K_{\kappa}| \leq 0.01 \cdot \delta \cdot \times C$$

При невыполнении условия контрольную процедуру повторяют. При повторном невыполнении условия выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

13. Нормы затрат времени на анализ

Для проведения серии анализов (без учета времени на градуировку) требуется 1 ч 40 мин.

Библиографические данные

- 1. ГОСТ 12.1.005—88 «Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны».
- 2. ГОСТ Р 12.1.019—2009 «Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты».
- 3. ГОСТ 12.1.004—91 «Межгосударственный стандарт. Система стандартов безопасности труда. Пожарная безопасность».
- 4. ГОСТ 12.4.009—83 «Система стандартов безопасности труда. Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание».
- 5. ГОСТ 12.2.085—2002 «Сосуды, работающие под давлением. Клапаны предохранительные. Требования безопасности»,
- 6. ПБ-03-576—03 «Правила устройства и безопасной эксплуатации сосудов, работающих под давлением».