МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT ISO 9167-1— 2015

РАПС

Определение содержания глюкозинолатов

Часть 1

Метод высокоэффективной жидкостной хроматографии

(ISO 9167-1:1992, IDT)

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 — 92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Открытым акционерным обществом Всероссийский научноисследовательский институт сертификации (ОАО ВНИИС) на основе собственного аутентичного перевода на русский язык международного стандарта, указанного в пункте 5
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 18 июня 2015 г. № 47)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации
Армения	AM	Минэкономики Республики Армения
Беларусь	BY	Госстандарт Республики Беларусь
Казахстан	KZ	Госстандарт Республики Казахстан
Киргизия	KG	Кыргызстандарт
Молдова	MD	Молдова-Стандарт
Россия	RU	Росстандарт

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 21 июля 2015 г. № 947-ст межгосударственный стандарт ГОСТ ISO 9167-1—2015 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2016 г.
- 5 Настоящий стандарт идентичен международному стандарту ISO 9167-1:1992 Rapeseed. Determination of glucosinolates content. Part 1: Method using high-performance liquid chromatography (Рапс. Определение содержания глюкозинолатов. Часть 1. Метод высокоэффективной жидкостной хроматографии), с учетом изменения ISO 9167-1:1992/Amd.1:2013.

Международный стандарт разработан подкомитетом SC 2 «Семена и плоды масличных культур и мука из жмыха льняного семени» Технического комитета по стандартизации ISO/TC 34 «Пищевые продукты» Международной организации по стандартизации (ISO).

Перевод с английского языка (en).

Официальный экземпляр международного стандарта, на основе которого подготовлен настоящий межгосударственный стандарт, и международных стандартов, на которые даны ссылки, имеются в Федеральном государственном фонде технических регламентов и стандартов.

Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам приведены в дополнительном приложении ДА.

Степень соответствия — идентичная (IDT).

Изменение к международному стандарту, принятое после его официальной публикации, внесено в текст настоящего стандарта и выделено двойной вертикальной линией на полях справа от соответствующего текста.

6 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

© Стандартинформ, 2016

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

РАПС Определение содержания глюкозинолатов Часть 1 Метод высокоэффективной жидкостной хроматографии

Rapeseed.
Determination of glucosinolates content.
Part 1.
Method using high-performance liquid chromatography

Дата введения — 2016—07—01

1 Область применения

Настоящий стандарт распространяется на рапс и устанавливает метод высокоэффективной жидкостной хроматографии для определения содержания глюкозинолатов.

П р и м е ч а н и е — Настоящий метод не позволяет определять глюкозинолаты, молекула глюкозы в которых замещена, однако содержание этих веществ в коммерчески доступном рапсе незначительное.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие нормативные документы. Для датированных ссылок применяют только указанное издание. Для недатированных ссылок применяют последнее издание приведенного документа (включая любые изменения).

ISO 664:1990*, Семена масличных культур — Разделение лабораторных образцов на пробы для испытаний (Oilseeds. Reduction of laboratory sample to test sample)

ISO 665:1977^{**}, Семена масличных культур — Определение влаги и летучих веществ (Oilseeds. Determination of moisture and volatile matter content)

ISO 3696:1987, Вода для лабораторного анализа — Технические требования и методы испытаний (Water for analytical laboratory use; Specification and test methods)

3 Сущность метода

Глюкозинолаты экстрагируют метанолом, затем проводят их очистку и ферментативную десульфатацию на ионообменных смолах. Содержание глюкозинолатов определяют методом обращенно-фазовой высокоэффективной жидкостной хроматографии (ВЭЖХ) с градиентным элюированием и ультрафиолетовым детектированием.

4 Реактивы

Применяют только реактивы признанной аналитической чистоты, если не указано иное, и воду, соответствующую классу 2 по ISO 3696.

- 4.1 Метанол, для ВЭЖХ, раствор в воде объемной доли 70 %.
- 4.2 Ацетат натрия, раствор молярной концентрации 0,02 моль/дм³, pH = 4,0.
- 4.3 Ацетат натрия, раствор молярной концентрации 0,2 моль/дм³.
- 4.4 Имидазола формиат, раствор молярной концентрации 6 моль/дм³.

Растворяют 204 г имидазола в 113 см³ муравьиной кислоты в мерной колбе с одной меткой вместимостью 500 см³. Доводят объем водой до метки.

4.5 Внутренний стандарт, используют синигрин моногидрат (моногидрат аллилглюкозинолата калия M_r = 415,49) (4.5.1) или, для семян рапса (культивированных или выросших самостоятельно), в которых содержится естественный синигрин, глюкотропаеолин (бензилглюкозинолат, калиевая соль, M_r = 447,52) (4.5.2).

^{*} Заменен на ISO 664:2008

^{**} Заменен на ISO 665:2000

FOCT ISO 9167-1-2015

Для семян рапса с низким содержанием глюкозинолата (менее 20 мкмоль/г) снижают концентрацию внутреннего стандарта (1—3 ммоль/дм³) в соответствии с 4.5.1 и 4.5.2.1.

4.5.1 Синигрин моногидрат

4.5.1.1 Синигрин моногидрат, раствор молярной концентрации 5 ммоль/дм³.

Растворяют 207,7 мг моногидрата аллилглюкозинолата калия в воде в мерной колбе вместимостью 100 см³. Доводят объем водой до метки.

Приготовленный раствор хранят в холодильнике при температуре приблизительно 4 °C не более одной недели или в морозильной камере, в термоустойчивой колбе, при температуре минус 18 °C в течение месяца.

4.5.1.2 Синигрин моногидрат, раствор концентрации 20 ммоль/дм³.

Растворяют 831,0 мг моногидрата аллилглюкозинолата калия в воде в мерной колбе вместимостью 100 см³. Доводят объем водой до метки.

Приготовленный раствор хранят в холодильнике при температуре 4 °C не более одной недели или в морозильной камере, в термоустойчивой колбе, при температуре минус 18 °C в течение месяца.

4.5.1.3 Контроль чистоты

Используют один или несколько из следующих трех тестов:

- ВЭЖХ анализ с использованием метода, установленного в настоящем стандарте;
- анализ неизмененного синигрина методом ион-парной ВЭЖХ;
- анализ десульфированного и силилированного синигрина методом газовой хроматографии.

В случае каждого испытания хроматограмма должна содержать только один основной пик, площадь которого должна составлять не менее 98 % от суммы площадей пиков всех компонентов.

Подтверждение отсутствия посторонних примесей проводят путем определения количества глюкозы, высвобожденной в результате гидролиза при участии мирозиназы (тиоглюкозид глюкогидролазы, КФ 3.2.3.1). Количество глюкозы определяют ферментативным методом. Использование коммерчески доступных тест-наборов облегчает определение. Учитывают все количество свободной глюкозы; определение проводят тем же способом, но без добавления мирозиназы. Измеренная молярная концентрация глюкозы должна составлять не менее 98 % молярной концентрации анализируемого раствора синигрина.

4.5.2 Глюкотропаеолин

П р и м е ч а н и е — Глюкотропаеолин сложно отделим от других естественных второстепенных глюкозинолатов.

4.5.2.1 Глюкотропаеолин, раствор молярной концентрации 5 ммоль/дм³

Растворяют 233,8 мг глюкотропаеолина в воде в мерной кобле вместимостью 100 см³. Доводят объем водой до метки.

4.5.2.2 Глюкотропаеолин, раствор молярной концентрации 20 ммоль/дм³

Растворяют 895,0 мг глюкотропаеолина в воде в мерной кобле вместимостью 100 см³. Доводят водой до метки.

4.5.2.3 Контроль чистоты

Проверяют чистоту глюкотропаеолина в соответствии с методикой, описанной в 4.5.1.3.

4.5.2.4 Коэффициент отклика

Проверяют, соответствует ли коэффициент отклика глюкотропаеолина по отношению к синигрину, указанному в 9.2.

4.6 Подвижные фазы

- 4.6.1 Элюент А: вода, очищенная путем пропускания через картридж с активированным углем (например, система Norganic Millipore¹⁾ или вода эквивалентной чистоты).
- 4.6.2 Элюент В: раствор ацетонитрила для ВЭЖХ в очищенной воде объемной доли 20 %. Концентрация может меняться в зависимости от используемой колонки.
 - 4.7 Ионообменная смола в соответствии с 4.7.1 или 4.7.2.
- **4.7.1 Суспензия DEAE** Sepharose CL-6B²⁾, имеющаяся в продаже и готовая к использованию, или аналогичный продукт.
 - 4.7.2 Суспензия DEAE Sephadex A25²), подготовленная следующим образом.

¹⁾ Norganic Millipore — система-пример коммерчески доступного продукта. Данная информация приведена для удобства пользования настоящим стандартом и не означает рекламу данного продукта.

²⁾ DEAE Sepharose и Sephadex — пример коммерчески доступных продуктов. Данная информация приведена для удобства пользования настоящим стандартом и не означает рекламу данных продуктов.

Смешивают 10 г смолы DEAE Sephadex A25 (или аналогичной смолы) в избытке раствора уксусной кислоты молярной концентрации 2 моль/дм³. Дают отстояться. Добавляют раствор уксусной кислоты 2 моль/дм³, пока объем жидкости не будет равен двойному объему осадка.

4.8 Сульфатаза, Helix pomatia тип H1 (3.1.6.1), имеющая активность более чем 0,5 единиц активности на кубический сантиметр раствора очищенной сульфатазы

Очистку, определение активности и разведение сульфатазы проводят в соответствии с методом, установленным в 4.8.1—4.8.4.

4.8.1 Подготовка ионообменных колонок

Обрезают пять пипеток Пастера (5.9) на 7 см выше кончика и вкладывают тампон из стекловаты (5.8) в отверстие пипетки. Пипетки ставят в вертикальном положении в штативе и вносят в каждую достаточное количество ионообменной смолы (4.7) таким образом, чтобы после стекания воды объем ионообменной смолы составлял 500 мм³.

В каждую пипетку добавляют 1 см 3 раствора формиата имидазола (4.4) и промывают дважды порциями воды по 1 см 3 .

4.8.2 Очистка

Взвешивают с точностью до 0,1 мг 25 мг Helix pomatia типа H1 (4.8), растворяют в 2,5 см³ воды и переносят 500 мм³ полученного раствора в каждую колонку, подготовленную по 4.8.1. Промывают каждую колонку 1,5 см³ воды и элюат отбрасывают. Затем добавляют 1,5 см³ раствора ацетата натрия (4.3) и собирают элюаты из пяти колонок в пробирку.

Концентрируют элюаты путем фильтрования, используя иммерсионный фильтр Millipore PTGC 11K25¹⁾, до тех пор, пока не останется приблизительно 100 мм³ жидкости (сульфатаза с молярной массой более 5000 не удаляется). Вносят 2,5 см³ воды и концентрируют еще раз с помощью фильтрации, пока не останется приблизительно 100 мм³ жидкости. Разводят до 2,5 см³ водой и хранят очищенную сульфатазу в морозильной камере при температуре минус 18 °C в небольших количествах для того, чтобы было удобно размораживать небольшое количество перед непосредственным использованием.

4.8.3 Определение активности сульфатазы

- 4.8.3.1 Приготовление раствора синигрина молярной концентрации 0,15 ммоль/ дм³, с рН 5,8 Приготавливают три раствора в следующей последовательности:
- а) вносят 1 см³ уксусной кислоты в мерную колбу вместимостью 500 см³ и доводят водой до метки;
- b) вносят 1 см³ этилендиамина в мерную колбу вместимостью 500 см³ и доводят водой до метки;
- с) смешивают 73 см³ раствора a) с 40 см³ раствора b) и регулируют pH на уровне 5,8, используя раствор a) или b) по мере необходимости.

Вносят 3 см³ раствора синигрина молярной концентрации 5 ммоль/ дм³ (4.5.1.1) в мерную колбу вместимостью 100 см³ и доводят объем до метки раствором с).

4.8.3.2 Определение активности

Используя пипетку, переносят 2 см³ раствора синигрина (4.8.3.1) в сравнительную и измерительную ячейки спектрофотометра (5.3) с установленной длиной волны, равной 229 нм и с температурой ячеек 30 °C. В момент времени t=0 вносят 50 мм³ очищенной сульфатазы (4.8.2) в измерительную ячейку и незамедлительно включают регистрацию. Останавливают регистрацию, когда оптическая плотность более не изменяется (A_e), строят касательную к точке t=0 и измеряют градиент $\Delta A / \Delta t$.

Активность сульфатазы (т. е. высвобождение 1 мкмоль десульфированного синигрина в минуту при температуре 30 °C и pH = 5,8), выраженная в единицах активности на кубический сантиметр раствора сульфатазы, вычисляют по формуле

$$\frac{\Delta A}{\Delta t} \cdot \frac{V}{\Delta \varepsilon} \cdot \frac{1000}{50} \cdot 10^6,$$

где $\Delta A/\Delta t$ — градиент касательной к точке t=0, в единицах оптической плотности в минуту;

V — объем содержимого в процессе реакции, дм³ (т. е. 2,05 · 10⁻³ дм³);

 $\Delta \varepsilon$ — разница между молярным коэффициентом поглощения синигрина и десульфосинигрина при 228 нм (приблизительно 1 500 дм³ моль^{—1} см^{—1}), т. е.

¹⁾ Millipore PTGC 11K25 — пример коммерчески доступного продукта. Данная информация приведена для удобства пользования настоящим стандартом и не означает рекламу данного продукта.

$$\Delta \varepsilon = \frac{A_e}{l c}$$

где A_{θ} — разница между оптической плотностью при равновесии десульфированного синигрина и оптической плотности при t=0;

длина оптического пути ячейки, см (т. е. 1 см);

с — концентрация десульфированного синигрина при равновесии, моль/ дм³, т. е.

$$c = \frac{0,15 \cdot 10^{-3} \cdot 0,95 \cdot 2}{2,05} = 0,139 \text{ моль/дм}^3,$$

где 0,95 — выход десульфированного синигрина при равновесии.

В качестве альтернативы, активность сульфатазы может быть рассчитана с использованием следующей упрощенной формулы

$$\frac{\Delta A \cdot 5,7}{\Delta t \cdot A_e}$$

4.8.4 Разведение сульфатазы

Используя пипетку, переносят 1 см³ очищенной сульфатазы (см. 4.8.2) в мерную колбу на 10 см³. Доводят объем водой до метки и перемешивают.

Раствор делят на небольшие порции и хранят в морозильной камере, в термоустойчивой колбе при температуре минус 18 °C.

5 Оборудование

Используют обычное лабораторное оборудование, в частности следующее.

- 5.1 Хроматограф для ВЭЖХ, обеспечивающий проведение градиентного элюирования с возможностью термостатирования колонки на уровне 30 °C с ультрафиолетовым детектором, позволяющим проводить измерения при длине волны 229 нм.
- 5.2 Хроматографическая колонка для ВЭЖХ, заполненная сорбентом типа С₁₈ или С₈ с размером частиц меньше или равным 5 мкм, например¹⁾:

Lichrosorb RP18 колонка, < 5 мкм (150 мм · 4,6 мм)

Spherisorb ODS2 колонка, < 5 мкм (250 мм · 4 мм; 250 мм · 5 мм)

Novapak C18 колонка, 4 мкм (150 мм 4 мм)

Lichrospher RP8 колонка, < 5 мкм (125 мм · 4 мм)

Nucleosil Cl8 колонка < 5 мкм (200 мм · 4 мм)

Эффективность работы колонки должна регулярно проверяться, предпочтительно с применением контрольного образца десульфоглюкозинолата рапса²⁾. В частности, колонки не должны разрушать 4-гидроксиглюкобрассицин, который является важным, но относительно нестабильным, глюкозинолатом.

Для получения сопоставимых результатов, новые колонки должны быть кондиционированы в соответствии с инструкциями изготовителя.

- 5.3 Двухлучевой спектрофотометр, предназначенный для работы в ультрафиолетовой области спектра, с контролем температуры на уровне 30 °C, снабженный кварцевыми кюветами с длиной оптического пути 1 см и регистрирующей системой.
 - 5.4 Микромельница, например кофемолка.

¹⁾ Примеры коммерчески доступных продуктов. Данная информация приведена для удобства пользования настоящим стандартом и не означает рекламу данных продуктов.

²⁾ Контрольный образец десульфоглюкозинолата рапса может быть получен из Community Reference Bureau.

- 5.5 Центрифуга, с возможностью использования пробирок (5.6), работающая при центробежном ускорении $5000\ a$.
 - 5.6 Полипропиленовые пробирки вместимостью 6 см³.
- 5.7 Водяная баня или другое нагревательное оборудование, способное поддерживать температуру на уровне (75 ± 1) °C.
 - 5.8 Стекловата.
- 5.9 Пипетки Пастера, длиной 150 мм, с соответствующим штативом или любым другим подходящим оборудованием.

6 Отбор проб

Отбор проб проводят в соответствии с [1].

Если перед сокращением лабораторной пробы были отделены крупные инородные тела, имеющие немасличную природу, при проведении расчетов необходимо сделать соответствующие поправки.

7 Подготовка анализируемой пробы

Выделение лабораторной пробы в соответствии с ISO 664.

Если рапс имеет влажность и содержание летучих веществ более 10 % (по массе), их сушат при помощи потока воздуха при температуре приблизительно 45 °C.

Уровень загрязнений, как правило, составляет 2 % (по массе). Если в пробе обнаружен синигрин, проводят анализ чистых семян и отдельно анализируют загрязнения.

Определение влажности и содержания летучих веществ в анализируемой пробе проводят в соответствии с ISO 665.

Если рапс был очищен, его промывают дихлорметаном.

Рапс измельчают в микромельнице (5.4) в течение 20 с. Перемешивают муку и затем дополнительно перемалывают в течение 5 с.

8 Методика проведения анализа

8.1 Отбор части анализируемой пробы для анализа

В две пробирки (5.6) А и В помещают по 200 мг подготовленной анализируемой пробы (см. 7), взвешенной с точностью до 0,1 мг.

8.2 Экстракция глюкозинолатов

- 8.2.1 Пробирки помещают в водяную баню или другое нагревательное оборудование (5.7) при температуре 75 °C и оставляют на 1 мин. Вносят по 2 см³ кипящего раствора метанола (4.1) и затем незамедлительно вносят:
 - в пробирку A, 200 мм³ раствора внутреннего стандарта молярной концентрации 5 ммоль/дм³ (4.5.1.1);
 - в пробирку B, 200 мм³ раствора внутреннего стандарта молярной концентрации 20 ммоль/дм³ (4.5.1.2).
- 8.2.2 Продолжают нагревать при температуре 75 °C еще в течение 10 мин, встряхивая пробирки через определенные интервалы времени. Перемешивают содержимое каждой пробирки и затем центрифугируют при центробежном ускорении 5 000 g в течение 3 мин. Сливают надосадочную жидкость из каждой пробирки в две другие пробирки (5.6), обозначенные, соответственно, как А' и В'.
- 8.2.3 В две пробирки, содержащие сухой остаток, добавляют 2 см³ кипящего раствора метанола (4.1) и повторно нагревают в течение 10 мин на водяной бане или другом нагревательном оборудовании (5.7) при температуре 75 °C, встряхивая пробирки через определенные интервалы времени.

Центрифугируют в течение 3 мин и затем приливают надосадочную жидкость из двух пробирок к соответствующей надосадочной жидкости, полученной по 8.2.2.

8.2.4 Доводят объем объединенных экстрактов водой приблизительно до 5 см³ и перемешивают.

Данные экстракты можно хранить в течение двух недель в темноте, в морозильной камере при температуре минус 18°C.

8.3 Подготовка ионообменных колонок

Обрезают требуемое количество пипеток Пастера (5.9) (на один объединенный экстракт должна приходиться одна пипетка), таким образом, чтобы выше отверстия пипетки остался объем 1,2 см³, и закрывают отверстие каждой пипетки тампоном из стекловаты (5.8). Пипетки размещают в штативе в вертикальном положении.

0,5 см³ тщательно перемешанной суспензии ионообменной смолы (4.7) переносят в каждую пипетку и дают отстояться.

FOCT ISO 9167-1-2015

Пипетки с ионообменной смолой промывают 2 см³ имидазола формиата (4.4), затем дважды порциями воды по 1 см³.

8.4 Очистка и десульфатация

- 8.4.1 Проводят процедуры, приведенные в 8.4.2—8.4.5 для каждого объединенного экстракта.
- 8.4.2 1 см³ экстракта (8.2.4) переносят в подготовленную колонку (8.3), не затрагивая поверхность смолы, и позволяют жидкости стечь. Вносят две порции по 1 см³ раствора ацетата натрия (4.2), позволяя ему впитаться в объем смолы после каждого добавления.
- 8.4.3 Вносят в колонку 75 мм³ разведенного раствора очищенной сульфатазы (4.8.4). Оставляют на ночь при комнатной температуре.
 - 8.4.4 Помещают пробирку (5.6) под колонку для сбора элюата.

Элюируют содержащийся десульфоглюкозинолат двумя порциями воды по 1 см³, позволяют воде впитаться в объем смолы после каждого добавления.

8.4.5 Элюат тщательно перемешивают. Если элюат не используют незамедлительно для проведения хроматографии, его допускается хранить в темноте в морозильной камере при температуре минус 18°C в течение одной недели.

8.5 Контрольное испытание

Если требуется (9.3), то проводят контрольное испытание, отбирая анализируемую пробу, используя аналогичную процедуру отбора тестовой порции из той же анализируемой пробы, но без использования раствора внутреннего стандарта синигрина, с целью обнаружения и определения количества синигрина, присутствующего в анализируемой пробе.

8.6 Проведение хроматографического анализа

8.6.1 Настройка оборудования

Хроматограф настраивают таким образом, чтобы были достигнуты следующие параметры:

Расход подвижных фаз (4.6), зависящий от особенностей колонки (8.6.2), как правило, равен приблизительно 1 см³/мин.

Температура колонки (5.2) — 30 °C.

Рабочая длина волны 229 нм.

8.6.2 Анализ

Анализ проводят в соответствии с инструкциями к оборудованию, в хроматограф вводят не более 50 мм³ раствора десульфоглюкозинолата, полученного по 8.4.4.

Используют градиентное элюирование, соответствующее используемой колонке.

Примечания

- 1 Следующие градиенты элюирования приведены в качестве примеров.
- a) Lichrosorb RP18 колонка, ≤ 5 мкм (150 мм · 4,6 мм):
- в течение 1 мин в колонку подается 100 %-ный элюент А (4.6.1);
- в течение 20 мин линейный градиент элюирования со снижением доли элюента A до 0 % и одновременным ростом доли элюента B (4.6.2) до 100 %;
- затем за 5 мин линейный градиент элюирования с ростом доли элюента A до 100 % и одновременным снижением доли элюента B до 0 %;
 - подача в колонку 100 %-ного элюента А (4.6.1) в течение 5 мин до достижения равновесия.
 - b) Lichrospher RP18 колонка, ≤ 5 мкм (125 мм · 4 мм):
 - подача в колонку 100% элюента А (4.6.1) в течение 2,5 мин;
- далее за 18 мин линейный градиент элюирования со снижением доли элюента A до 0% и одновременным ростом доли элюента B до 100 %;
 - подача в колонку 100 %-ного элюента В в течение 5 мин;
- затем за 2 мин линейный градиент элюирования с ростом доли элюента A до 100 % и одновременным снижением доли элюента B до 0 %;
 - подача в колонку 100 %-ного элюента А (4.6.1) в течение 5 мин до достижения равновесия.
- 2 Профили градиента могут быть изменены для оптимизации эффективности и селективности разделения, соответствующего используемым колонкам.

8.6.3 Обработка хроматограмм

Принимают во внимание только те хроматографические пики, которые имеют площадь более чем 1 % от общей суммы площадей пиков.

Порядок элюирования пиков на колонке с сорбентом C₁₈ с применяемым градиентным элюированием (см. примеры, приведенные в 8.6.2), как правило, соответствует представленному на рисунке 1.

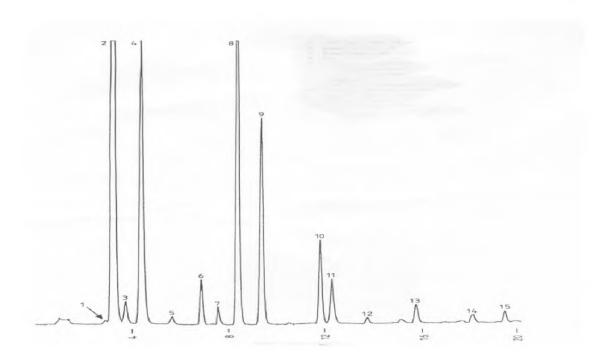


Рисунок 1 — Пример типичной хроматограммы

Примечание — Пики на рисунке 1, обозначенные цифрами, приведены в 9.2.

9 Обработка результатов

9.1 Расчет содержания глюкозинолатов

Содержание каждого глюкозинолата, выраженное в мкмоль на грамм сухого вещества в продукте, равно

$$C_i = \frac{A_g}{A_s} \cdot \frac{n}{m} \cdot \frac{K_g}{K_s} \cdot \frac{100}{100 - w}$$

где A_g — площадь пика, в интегральных единицах, соответствующая десульфоглюкозинолату;

 A_s — площадь пика, в интегральных единицах, соответствующая использованному внутреннему стандарту;

n — количество внутреннего стандарта, добавленного в пробирку по 8.2 мкмоль,

т — масса аналитической пробы, г;

 K_g — градуировочный коэффициент десульфоглюкозинолата (9.2);

К_s — градуировочный коэффициент использованного внутреннего стандарта;

w — влажность и количество летучих веществ, выраженные в процентах по массе, в анализируемой пробе.

При выражении результата с учетом конкретной влажности и конкретного содержания летучих веществ $w_{\rm s}$ (например, $w_{\rm s}$ = 9 % по массе) умножают результат, полученный для сухого вещества, на коэффициент

$$\frac{100-w_s}{100}$$

FOCT ISO 9167-1-2015

9.2 Коэффициенты отклика

Были приняты коэффициенты отклика, приведенные ниже.

П р и м е ч а н и е — Данные коэффициенты отклика определены экспериментальным путем и усреднены между различными лабораториями, которые принимали участие в анализе. В дальнейшем они могут быть пересмотрены.

1 Десульфоглюкоиберин 1,	,07
2 Десульфопрогоитрин 1,0	,09
3 Десульфоэпи-прогоитрин 1,0	,09
4 Десульфосинигрин 1,0	,00
5 Десульфоглюкорафанин 1,0	,07
6 Десульфоглюконаполеиферин 1,0	,00
7 Десульфоглюкоалиссин 1,0	,07
8 Десульфоглюконапин 1,	,11
9 Десульфо-4-гидроксиглюкобрассицин 0,3	,28
10 Десульфоглюкобрассицанапин 1,	,15
11 Десульфоглюкотропаеолин 0,	,95
12 Десульфоглюкобрассицин 0,2	,29
13 Десульфоглюконастуртин 0,4	,95
14 Десульфо-4-метоксиглюкобрассицин 0,3	,25
15 Десульфоглюкобрассицин 0,3	,20
16 Другие десульфоглюкозинолаты 1,0	,00

9.3 Расчет общего содержания глюкозинолатов

Общее содержание глюкозинолатов, выраженное в мкмоль/г сухого вещества продукта, равняется сумме содержания каждого глюкозинолата (соответствующая площадь пика которого более чем 1 % суммарной площади пиков).

Если разница между результатами общего содержания глюкозинолатов, полученными в тестовой порции анализируемой пробы и контрольным испытанием по 8.5 удовлетворяет условия повторяемости (10.2), что подтверждает отсутствие внутреннего стандарта в порции анализируемой пробы (8.5). В этом случае за результат испытаний принимают среднеарифметическое значение двух определений.

10 Прецизионность

10.1 Результаты межлабораторных испытаний

В межлабораторных испытаниях, проводимых на международном уровне в 1988 г, приняли участие 11 лабораторий, каждая из которых проводила два определения каждого образца, статистические результаты (рассчитанные в соответствии с ISO 5725) приведены в таблице 1.

Таблица 1 — Статистически обработанные результаты межлабораторных испытаний

таолица 1 — Отатистичсоки	- copaco annibio	podynibiaibimor	olacopa ropilbix r	OTIBIT GITTITI
Проба	Семя рапса А	Семя рапса В	Семя рапса С	Семя рапса D
Количество лабораторий, оставшихся после исключения лабораторий с резко отклоняющимися значениями	11	11	11	11
Среднее значение содер- жания глюкозинолата, мкмоль/г сухого вещества	20,6	14,1	4,9	25,6
Стандартное отклонение повторяемости, <i>s</i> _r	1,7	0,6	0,3	0,8
Коэффициент вариации по- вторяемости, %	8,5	4,4	6,7	3,3
Повторяемость, 2,83 S _r	4,9	1,7	0,9	2,4
Стандартное отклонение воспроизводимости, <i>S</i> _R	3,4	2,5	1,5	2,4
Коэффициент вариации воспроизводимости, %	17	18	31	9,4
Воспроизводимость, 2,83 S _R	9,6	7,1	1,4	6,8

10.2 Повторяемость

Абсолютная разница между результатами двух независимых единичных испытаний, полученных по одному и тому же методу на идентичном испытуемом материале в одной и той же лаборатории, одним и тем же оператором, на одном и том же оборудовании в течение короткого интервала времени должна быть не более 2 мкмоль/г при содержании глюкозинолатов менее 20 мкмоль/г, и не более 4 мкмоль/г при содержании глюкозинолатов в диапазоне от 20 до 35 мкмоль/г.

10.3 Вопроизводимость

Абсолютная разница между результатами двух единичных испытаний, полученных по одному и тому же методу на идентичном испытуемом материале в разных лабораториях, разными операторами, на разном оборудовании, должна быть не более 4 мкмоль/г при содержании глюкозинолатов менее 20 мкмоль/г, и не более 8 мкмоль/г при содержании глюкозинолатов в диапазоне от 20 до 35 мкмоль/г

11 Протокол испытаний

В протоколе испытаний должен быть указан используемый метод и полученные результаты. В нем также должны быть приведены все детали анализа, не установленные настоящим стандартом или считающиеся необязательными, наряду с любыми инцидентами, которые могут повлиять на результат.

Протокол испытаний должен содержать всю информацию, необходимую для полной идентификации пробы.

Приложение ДА (справочное)

Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам

Таблица ДА.1

Обозначение и наименование ссылочного международного стандарта	Степень соответствия	Обозначение и наименование соответствующего межгосударственного стандарта
ISO 664:1990 Семена масличных культур. Разделение лабораторных образцов на пробы для испытаний	1	*
ISO 665:1977 Семена масличных культур. Определение содержания влаги и летучих веществ	_	*
ISO 3696:1987 Вода для лабораторного анализа. Технические требования и методы испытаний	_	*

^{*} Соответствующий межгосударственный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов.

Библиография

- [1] ISO 542:1990 Маслосемена Отбор проб
- [2] ISO 5725:1986 Прецизионность методов испытаний Определение повторяемости и воспроизводимости результатов стандартного метода с помощью межлабораторных испытаний

УДК 664:543.544.5.068.7:006.354

MKC 67.200.20

IDT

Ключевые слова: рапс, глюкозинолаты, высокоэффективная жидкостная хроматография, экстракция, десульфатация, ионообменная смола, сульфатаза, подвижная фаза, градиентное элюирование

Редактор *Е.В. Костылева*Корректор *М.С. Кабашова*Компьютерная вёрстка *Д. М. Кульчицкого*

Подписано в печать 24.02.2016. Формат $60x84^{1}/_{8}$ Усл. печ. л. 1,86. Тираж 44 экз. Зак. 3883.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ФГУП «СТАНДАРТИНФОРМ»

123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru