Товары в корзине: 0 шт Оформить заказ
Стр. 1
 

39 страниц

Купить ГОСТ Р 58245-2018 — бумажный документ с голограммой и синими печатями. подробнее

Цена на этот документ пока неизвестна. Нажмите кнопку "Купить" и сделайте заказ, и мы пришлем вам цену.

Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО "ЦНТИ Нормоконтроль".

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

Способы доставки

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Устанавливает параметры, которые должны быть измерены объективными методами, а также методы и условия измерений, процедуры обработки измеренных данных и представления полученной информации для объективной сквозной (здесь и далее по тексту термин «сквозной» обозначает «от начала и до конца») оценки качества систем аудио-, видеосвязи, осуществляемой посредством цифровых сетей. Измерения следует проводить при двухстороннем и полном эталонном сигнале. Предполагается, что системы обеспечены каналами электрических интерфейсов на входе и выходе аудио-, видеосигналов для объективной оценки.

Дополнительные требования для систем, не обеспеченных такими каналами, оставлены для дальнейшего изучения

  Скачать PDF

Стр. 1
стр. 1
Стр. 2
стр. 2
Стр. 3
стр. 3
Стр. 4
стр. 4
Стр. 5
стр. 5
Стр. 6
стр. 6
Стр. 7
стр. 7
Стр. 8
стр. 8
Стр. 9
стр. 9
Стр. 10
стр. 10
Стр. 11
стр. 11
Стр. 12
стр. 12
Стр. 13
стр. 13
Стр. 14
стр. 14
Стр. 15
стр. 15
Стр. 16
стр. 16
Стр. 17
стр. 17
Стр. 18
стр. 18
Стр. 19
стр. 19
Стр. 20
стр. 20
Стр. 21
стр. 21
Стр. 22
стр. 22
Стр. 23
стр. 23
Стр. 24
стр. 24
Стр. 25
стр. 25
Стр. 26
стр. 26
Стр. 27
стр. 27
Стр. 28
стр. 28
Стр. 29
стр. 29
Стр. 30
стр. 30

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ



НАЦИОНАЛЬНЫЙ

СТАНДАРТ

РОССИЙСКОЙ

ФЕДЕРАЦИИ


ГОСТР
58245—
2018/
IEC/TR 62251:2003

СИСТЕМЫ И ОБОРУДОВАНИЕ МУЛЬТИМЕДИА
Оценка качества. Системы аудио-, видеосвязи

(IEC/TR 62251:2003, ЮТ)


Издание официальное


Москва

Стандартинформ

2018


Предисловие

1    ПОДГОТОВЛЕН Автономной некоммерческой организацией «Научно-технический центр сертификации электрооборудования «ИСЭП» (АНО «НТЦСЭ «ИСЭП») на основе собственного перевода на русский язык англоязычной версии международного документа, указанного в пункте 4

2    ВНЕСЕН Техническим комитетом по стандартизации ТК 452 «Безопасность аудио-, видео-, электронной аппаратуры, оборудования информационных технологий и телекоммуникационного оборудования»

3    УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 17 октября 2018 г. № 801-ст

4    Настоящий стандарт идентичен международному документу IEC(TR 62251:2003 «Системы и оборудование мультимедиа. Оценка качества. Системы аудио-, видеосвязи» (1ЕСЯР 62251:2003 «Multimedia systems and equipment — Quality assessment - Audio-video communication systems». IDT).

Международный документ разработан Техническим комитетом ТС 100 «Аудио-, видео- и мультимедийные системы и оборудование» Международной электротехнической комиссии (IEC).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты, сведения о которых приведены в дополнительном приложении ДА

5    ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федералыюго закона от 29 июня 2015 г. №> 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информациотюм указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске информационного указателя «Национальные стандарты». Соответствующая информация, уводошонив и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (wkviv.posf.ru)

© Стандартинформ. оформление. 2018

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

II

ГОСТ Р 58245-2018

5.3.3 Представление результата оценки

Результаты оценки, включающие входные и выходные цвета в формате данных R. G и В. должны быть рассмотрены как цвета в цветовом пространстве sRGB. определенном в МЭК 61966-2-1. Они должны быть преобразованы в CIE 1976 L*a*b* однородное цветовое пространство. Цветовые разности Д£*й между эталонными и полученными данными должны быть рассчитаны и представлены, как показано в таблице 2.

Таблица 2 — Пример воспроизведения цвета

Измерение

Спецификация

Входной сигнал (В-6итмый*3)

Выходкой сигнал (В-биткыйхЗ)

Цветовая

разность.

R. %

G. %

в.%

R

G

В

Я

G

В

0

87,053

80.546

87.216

222

205

222

221

211

215

3.5

1

48.904

24.181

23.419

184

134

132

186

135

129

1.4

2

37.405

27.352

12.466

163

141

99

164

144

91

4.2

3

25.874

32.782

5.646

138

154

69

139

156

66

2.0

4

12.176

34.717

19.279

98

158

121

96

158

123

0.9

5

15,414

34.081

41.443

109

156

171

109

158

166

22

6

17,982

29.222

61.449

117

146

204

119

145

196

1.9

7

36.893

24.007

52.231

164

130

190

163

137

187

3.9

8

51.332

22.896

45.507

188

130

178

187

132

162

5.3

9

43.311

3.062

4.885

174

52

65

172

56

54

8.1

10

83.988

56.759

4.964

236

197

65

219

201

62

4.7

11

2.426

25.943

13.965

47

138

104

45

140

105

1.2

12

3.259

7.178

18.424

54

77

118

50

77

113

2.7

13

82.033

49.052

37.190

233

184

163

219

186

157

3.7

14

10.356

12.908

4,612

91

101

63

89

100

53

52

Средняя цветовая разность составляет: д£^, = 3.396.

5.4 Сквозные цветовые разности

5.4.1    Параметр, подлежащий оценке

Оценивают среднее значение цветовых разностей в психофизически однородном цветовом пространстве. определенном в МЭС 15.2, между эталонным видеокадром и соответствующим ухудшенным видеокадром.

5.4.2    Метод оценки

В качестве исходного эталонного сигнала для позиции 1 рисунка 2 используют эталонные видеосигналы из таблицы А.1. Видеосигнал должен быть подготовлен путем уменьшения размера кадра видеосигнала в несжатом формате AVI (позиция 2 на рисунке 2). В этой точке необходимо встроить номера кадров, чтобы их можно было использовать для идентификации принятых кадров, соответствующих переданным кадрам.

Закодированные и переданные потоковые видеосигналы должны непрерывно регистрироваться. Вычисления должны быть проведены попиксельно.

Среднюю цветовую разность дв психофизически однородном цветовом пространстве между эталонными и ухудшенными кадрами к рассчитывают по формуле

_. л и,

*£*.-*■ I X .    (1)

Л т-МуП-Ы,

1

где К -.-:---триплеты в цветовом пространстве CIELAB. соответствующие каж-

I Му ~ Мл V\Ny “    1"    W

дому пикселю эталонного видеокадра к:

Д£а6< -    - L0    |    41arfj - a0 J 4    -b0<) — цветовая разность CIELAB между пикселями.

7

Триплеты в цветовом пространстве CIELAB должны быть исключены из значений пикселей R.G и В эталонных и ухудшенных видеокадров по умолчанию в цветовом пространстве RGB (sRGB). определенном МЭК 61966-2-1. Каждый пиксель располагается в строке т и столбце п видеокадра.

5.4.3 Представление результатов оценки

Результаты оценки представляют в виде графика зависимости цветовой разности между каждым из соответствующих кадров и номерами кадров, как показано на рисунке 6. вместе с идентификацией исходных эталонных видеосигналов. Также должны быть представлены условия измерения, такие как размер кадра в пикселях, частота кадров, скорость потока передачи данных.


Цветовая разность

Цветовая разность 20


Цветовая разность 20


15


Этзпогягмй исходный закодированный/ потоковый видеосигнал


50


100


150


200    250

кадры

Ь) Пример для SRC14_REF_525

Цветовая разность 20


16 ,s


10


Эталонный исходный закодированный' потсжсевий видеосигнал


Этэпоюгьм исходный закодированный/ гагатовый видеосигнал


50    100    150    200    250

Кадры

с) Пример для SRC15_REF_525


200    250

Кадры

(1) Пример для SRC16_REF_525


50


100


150


Цветовая разность 20


Цветовая разность 20


15


10


10-


6


Эталонный исходный заиодкрювлнгслл' потех свай видеосигнал


Этагкз1*1ьй «сходный закодированный/ гатоховый видеосигнал


50    100    150    200    250

кадры

е) Пример для SRC17_REF_525


150    200    250

Кадры

f) Пример для SRC18_REF_525


50


100


Рисунок 6 — Цветовые разности между эталонными и потоковыми видеокадрами при 250 кбит.'с и 30 кадр|'с. лист 1



Цпетовлп разность    Цветовая    разность

д) Пример для SRC19_REF_525

Цветовая разность 20

Эталонный исходный закодированный/ потоковый видеосигнал


h) Пример для SRC20_REF_525


15F


5


i) Пример для SRC21_REF_525


Цветовая разность


Условия оценки:

-    размер видеокадра — 320 х 240 пикселей:

-    частота кадров — 30 кадр/с;

-    потоковая скорость передачи данных — 250 кбит/с;

-    пропускная способность сети — более 250 кбит/с;

-    воспроизведение — плейер Microsoft Media Player ® версия 7.1


Рисунок 6. лист 2


Для заключительной оценки полученные данные должны быть усреднены по кадрам с помощью формулы (2). чтобы обеспечить единичный параметр для объективной оценки, являющийся общим средним значением цветовой разности, которое должно быть представлено, как показано в таблице 3.


*2


I

к-К,


(2)


Таблица 3 — Общие средние значения цветовых разностей

Идентификация исходного эталонного видеосигнала

Общее среднее значение цветовой разности

SRC13_REF_525

9.6

SRC 14_REF_525

8.4

SRC 15_REF_525

14.9

SRC16_REF_525

8.3

9


Окончание таблицы 3

Идентификация исходного эталонною видеосигнала

Общее среднее значение цветовой разности

SRC17_REF_525

16.8

SRC18_REF_525

8.2

SRC 19_REF_525

8.2

SRC20_REF_525

9.2

SRC21_REF_525

5.4

SRC22_REF_525

13.2

5.5 Сквозное отношение максимального сигнала к шуму (PSNR)

5.5.1    Параметр, подлежащий оценке

Оценивают отношение мощности максимального сигнала к мощности шума. PSNR, в трехмерной системе координат.

5.5.2    Метод оценки

В качестве исходного эталонного сигнала для позиции 1 рисунка 2 используют эталонные видеосигналы из таблицы А.1. Видеосигнал должен быть подготовлен путем уменьшения размера кадра видеосигнала в несжатом формате AVI (позиция 2 на рисунке 2). При необходимости в этой точке встраивают номера кадров, чтобы их можно было использовать для идентификации принятых кадров, соответствующих переданным кадрам.

Закодированные и переданные потоковые видеосигналы должны приниматься непрерывно. Вычисления должны быть проведены попиксельно.

Следует использовать отношение максимального сигнала к шуму (PSNR) между полным эталонным изображением и воспроизведенным изображением, рекомендованное в ITU-T J.144. PSNR рассчитывают по формуле

$£.х| MSE )'

(3)

'

PSNR = 10lg

где MSE--W £ £ (d(p.rn,n)-o(p.m,n))2.

Л p-P,m-U,п-А/,

к _1_.

ГДв " (Р2 - P^ * 1)(М2 - м, »1)(W2-N,*1)’

d (р. т. п) и о (р, т, п) — представляют, соответственно, ухудшенные и исходные пиксельные векторы в кадре р. строке т и столбце п\

Smax — максимально возможное значение пиксельных векторов.

В случае цветных изображений каждый элемонт изображения обычно состоит из трехмерных значений: красного (R). зеленого (G) и синего (В). Таким образом, для определения среднеквадратичных ошибок применяют формулу

MSEaoo-ll £ X ((R«-R0f -(<3a-Gj i(Bd-B0)f,    (4)

p-P/n-M, л-W,

где ^max(RGB) “ 3'22(w для значений при AZ-битном кодировании.

Для оценки PSNR в более однородном цветовом пространстве CIE 1976 LAB рекомендуют применять формулу

ГОСТ P 58245—2018

где Smax|Lab)a£(_    ax) +(amax) f(bmax) • фактическое значение которого зависит от цветовой

гаммы исходного цветового пространства RGB.

Рекомендуется по умолчанию использовать цветовое пространство RGB. определенное МЭК 61966-2-1. в котором Smax(Lab) =148.254.

Примечание — Следует отметить, что члены суммирования в формуле (5) являются квадратом цветовых разностей в психофизически однородном цветовом пространстве, описанных в 5.4.

Дополнительно для сравнения рассчитывают сигнал яркости У и два цветоразностных сигнала С6 и Сг, обозначенных как Ycc, по формуле

MS£v„-fX X X ((^ -у»)2 '(ч -с»,)2 'К -С'.)Г    (6)

В системе цветового пространства YCbCr. определенного в МЭК 61966-2-1 Smax(Ycc) _ 1,01659.

5.5.3 Представление результатов оценки

PSNR в трехмерных пространствах Lab. Ycc и RGB вместе с PSNR в одномерных пространствах L‘ и У должны быть представлены в протоколе, как показано на рисунке 7.

Также должны быть представлены условия измерения, такие как размер кадра в пикселях, частота кадров, скорость потока передачи данных в битах.

PSNR. дБ

SRC 13_REF_525

Кадры

a) SRC13_REF_525

Примечание — В приложении А для информации приведено программное обеспечение для оценки различных параметров качества в отношении известного гипотетического ухудшения, используемого группой экспертов по качеству видеосигнала (GQEG). с точки зрения трехмерных и одномерных PSNR вместе со средней цветовой разностью, разработанное университетом Чиба в сотрудничестве с компанией Mitsubishi Electric Согр.

PSNR, дБ

351 SRC 14 REF_525

20

15 ■

100    50    100    150    200    250

Кадры

b) SRC14_REF_,525

Рисунок 7 — Примеры оценки PSNR. лист 1

11

ГОСТ P 58245—2018


PSNR, дБ


PSNR дБ


PSNR дБ

PSNR.дБ

PSNR.дБ 35


PSNR дБ


30


25


20


15 •


SRC20_REF_525


h) SRC20_REF_525


Рисунок 7, лист 2



PSNR дБ 35

30

25


SRC21 _REF_525


20


15 ■


50    100    150

i) SRC21_REF_525


200    250

Кедры


PSNR дБ


Условия оценки:

-    размер видеокадра — 320 х 240 пикселей:

-    частота кадров — 30 кадр/с;

-    скорость потока передачи данных — 250 кбит/с;

-    пропускная способность сети — более 250 кбит/с;

-    воспроизведение — плейер Microsoft Media Player ® версия 7.1


Рисунок 7. лист 3


Для заключительной оценки PSNR должны быть усреднены по кадрам с помощью формулы (7), чтобы обеспечить общие параметры для объективной оценки. Результаты расчета должны быть представлены в виде таблицы 4.


PSNR


1

21+1)


к;

I PSNRK.

*»/с,


(7)


Таблица 4 — Общие PSNR. усредненные по кадрам

Идентификация эталонного сигнала

PSNR a CIELAB

PSNR a YCC

PSNR a RGB

PSNR u L*

PSNR a Y

SRC13_REF_525

20.9

24.4

24.4

23.3

26.1

SRC 14_REF_525

22.3

29.9

30.0

24.4

30.9

SRC15_REF_525

17.7

21.5

21.5

21.9

23.5

SRC16_REF_525

22,1

27.0

27,2

23.7

28.2

SRC17_REF_525

16.9

23.7

23.7

19.6

25.1

SRC18_REF_525

22.5

28.3

28.3

25.2

30.2

SRC19_REF_525

22,3

27.0

27.0

24.4

28.4

SRC20_REF_525

20.7

23.2

23.0

21.3

23.6

SRC21_REF_525

24.4

29.8

29.7

24.9

30.3

SRC22_REF_525

18.8

23.6

23.5

21.5

24.9


5.6 Сквозная объективная оценка качества видеосигнала 5.6.1 Параметр, подлежащий оценке

Оценивают субъективную разность средних экспертных оценок (OMOS) качества видеосигнала с использованием модели, имитирующей характеристики зрения и восприятия человеком цифровых видеосигналов.


13


5.6.2    Метод оценки

В результате первого этапа испытаний и изучения VQEG в соответствии с ITU-R 10-11Q/56-E предложенных десяти моделей оценки (фактически девять из десяти представленных моделей были признаны эффективными) приняты следующие модели для оценки качества видеосигнала:

a)    оценка изображения на основе сегментации, обеспечивающая прогнозирование качества по набору заранее заданных сцен:

b)    оценка зрительного различения, имитирующая реакции пространственно-временных зрительных механизмов человека.

c)    оценка имитации характеристик зрения человека с использованием пространственно-временных трехмерных фильтров;

d)    оценка среднеквадратической ошибки (MSE), взвешенной с помощью зрительных фильтров человека, таких как фильтры на основе пикселей, блоков и последовательностей:

e)    оценка параметра искажения восприятия, основанного на пространственно-временной модели зрительной системы человека;

f)    оценка, включающая оценку модели восприятия и выделителя признаков, специально настроенного на определенные типы искажений;

д) оценка качества цифрового видеосигнала, включающая множественные аспекты зрительной чувствительности человека при обработке простых изображений,

h)    оценка субъективного измерения восприятия видеосигнала с использованием подхода к измерению качества видеосигнала, такого же. как для измерения качества восприятия речи;

i)    оценка с использованием характеристик ограниченной полосы пропускания, выделенных из пространственно-временных областей и линейной комбинации параметров для оценки субъективных показателей качества.

Эффективность оценки всех моделей была проверена с точки зрения возможности выделения признаков по сравнению с традиционным методом отношения максимального сигнала к шуму.

VQEG в настоящее время проводит испытания новой предложенной модели для оценки (метода оценки) на основе полного эталонного телевидения. Возможный на практике метод оценки на основе полного эталонного телевидения находится на рассмотрении.

Примечание — Республикой Корея был представлен «новый метод», включающий в себя пространственно-временное вейвлет-преобразование, как описано в ITU-R 6Q/42-E. В настоящем стандарте этот метод был рассмотрен в области цветового пространства sRGB. как показано в приложении В.

5.6.3    Представление результатов оценки

Результаты оценки качества видеосигнала должны быть представлены в виде оценки разности средних экспертных оценок вместе с используемой оцениваемой моделью и условиями.

Примечание — Пример представления результатов оценки находится на рассмотрении.

6 Качество аудиосигнала

6.1    Воспринимаемое качество аудиосигнала по отношению к полным эталонным сигналам

6.1.1    Параметр, подлежащий оценке

Оценивают значения объективной разницы качества (ODG). измеренные методом PEAQ (оценка восприятия качества аудиосигнала), рекомендованным ITU-R BS. 1387-1.

6.1.2    Обоснование

Воспринимаемое качество аудиосигнала (PEAQ) является одним из ключевых факторов при разработке цифровых систем аудио-, видеосвязи. Официально принятые испытания на прослушивание всегда были важным методом оценки качества аудиосигнала. Однако субъективные оценки качества являются трудоемкими и дорогостоящими. В связи с этим возникла необходимость разработки объективного метода измерения при проведении оценки качества аудиосигнала. Традиционные объективные методы измерений, такие как отношение сигнала к шуму (SNR) или общее гармоническое искажение (THD). в действительности никогда не показывали достоверного воспринимаемого качества аудиосигнала. Проблемы возникают, когда эти методы применяют по отношению к современным кодекам, которые являются нелинейными и неустановившимися. МСЭ-Р (сектор радиосвязи Международного союза электросвязи) рекомендовал объективный метод измерения для оценки воспринимаемого качества аудиосигнала испытуемого оборудования, например, кодека с низкой скоростью передачи данных, известный как PEAQ (оценка восприятия качества аудиосигнала). Этот метод установлен в ITU-R BS. 1387-1 и кратко описан в приложении В.

14

ГОСТ Р 58245-2018

Выходная переменная объективного метода измерений PEAQ является показателем объективной разницы качества (ODG) и показателем искажения (Dl). ODG соответствует показателю субъективной разницы качества (SDG) в субъективной области. Точность оценки ODG ограничена одним десятичным знаком. Однако следует соблюдать осторожность и. в целом, не ожидать, что разница между любой парой ODG в одну десятую показателя будет являться значительной. DI имеет то же значение, что и ODG. Однако DI и ODG можно сравнивать только количественно, но не качественно. Как правило, ODG следует использовать в качестве показателя качества для значений ODG. приблизительно более минус 3.6. ODG очень хорошо коррелируется с субъективной оценкой в этом диапазоне. Если значение ODG составляет менее минус 3.6. следует использовать DI. Таким образом, должны быть измерены обе выходные переменные ODG и DI.

6.1.3 Метод оценки и алгоритм PEAQ

Базовая модель метода объективного измерения PEAQ показана на рисунке 8. Базовая модель состоит из двух входов, один из которых предназначен для (необработанного) эталонного аудиосигнала. соответствующего позиции 2 рисунка 2, а другой — для испытуемого аудиосигнала. Испытуемый аудиосигнал может быть, например, выходным сигналом цифровых систем аудио-, видеосвязи, соответствующим выходу позиции 4 рисунка 2, на который подается эталонный сигнал.

(МШГ

ИОтытуИеО» [_ устройство I

Цифровой

юнтропдоный

опал

Настоящий метод измерения применим к большинству типов оборудования для обработки цифровых и аналоговых аудиосигналов. В настоящем стандарте рассматривают применение метода только по отношению к цифровым каналам аудиосвязи. Блок «испытуемое устройство» соответствует позициям 2 и 3 рисунка 2.

РРСнвтХв

ЕЯНВСГЯО

ООикпамый

кклщкзма рений

ядооомнапа -►

Рисунок 8 — Базовая модель проведения объективных измерений

Алгоритм проведения оценки методом PEAQ приведен на рисунке 9. Метод PEAQ основан на общепринятых психоакустических принципах. В целом он сравнивает сигнал, который был некоторым образом обработан, с соответствующим синхронизированным во времени эталонным сигналом. На первом этапе обработки сигнала используется периферийное устройство, моделирующее ухо, известное как «модель восприятия», или «модель уха». Одновременные блоки данных эталонного и обработанного сигнала преобразуются в выходные сигналы моделей уха. На следующем этапе модели алгоритма определяют присутствие слышимого искажения в испытуемом сигнале путем сравнения выходных сигналов моделей уха. Информация, полученная посредством этих процессов, дает несколько значений, так называемых MOV (выходных переменных метода измерений), и может использоваться для детального анализа сигнала.

Конечной целью является управление показателем качества, состоящего из одного числа, указывающего на слышимость искажений, присутствующих в испытуемом сигнале. В целях сохранения этого параметра требуется некоторая дальнейшая обработка MOV, имитирующая когнитивную часть слуховой системы человека. Поэтому алгоритм PEAQ включает искусственную нейронную сеть.

Существуют две версии PEAQ: «базовая» версия, отличающаяся низким уровнем сложности, и «расширенная» версия, обеспечивающая большую точность за счет более высокой сложности. Структура обеих версий очень похожа и точно соответствует модели PEAQ, показанной на рисунке 9. Основное различие мехеду базовой и расширенной версиями заключается в соответствующих моделях уха и наборе используемых MOV. В приложении С приводится дополнительная информация о PEAQ. которая помогает понять результаты измерений.

Рекомендуется использовать доступные эталонные сигналы из ITU в виде WAV-файлов (в формате Microsoft RIFF) на CD-ROM-диске. Все эталонные сигналы были отобраны на частоте 48 кГц для 16-битного РСМ. Эталонные и испытуемые сигналы, предоставленные ITU. уже согласованы друг с другом по времени и уровню, поэтому дополнительного усиления или задержки не требуют.

Алгоритм измерения должен быть откорректирован на уровень прослушивания 92 дБ SPL.

15

Рисунок 9 — Представление модели PEAQ 6.1.4 Представление результатов оценки

Результаты измерения PEAQ должны быть приведены в виде таблицы параметров указанных эталонного и испытуемого сигналов'\ а также полученных значений DI и ODG.

Таблица 5 относится к базовой версии, а таблица 6 содержит значения для расширенной версии.

Та блица 5 — Параметры испытуемого сигнала и полуненные значения DI и ODG для базовой версии

Параметр

01

ODG

Acodsna.wav

1.304

-0.676

Bcodtri.wav

1.949

-0.304

Ccodsax.wav

0.048

-1.829

Dcodryc.wav

1.648

-0.458

Ecodsmg.wav

1.731

-0.412

Fcodsb1.wav

0.677

-1.195

Fcodtr1.wav

1.419

-0.598

Fcodtr2.wav

-0.045

-1.927

fcodtr3.wav

-0.715

-2.601

gcodcla.wav

1.781

-0.386

hcodryc.wav

2.291

-0.166

Hcodstr.wav

2.403

-0.128

lcodsna.wav

-3.029

-3.786

kcodsme.wav

3.093

0.038

lcodhrp.wav

1.041

-0.876

lcodpip.wav

1.973

-0.293

mcodda.wav

-0.436

-2.331

ncodsfe.wav

3.135

0.045

scodclv.wav

1.689

-0.435

’) Наименования соответствующих параметров эталонных сигналов получаются путем замены подстроки «cod» в наименованиях параметров испытуемых сигналов на «ref», например наименованием параметра эталонного сигнала для «bcodtri.wav» является «breftri.wav».

ГОСТ Р 58245-2018

Содержание

1    Область применения....................................................................................................................................1

2    Нормативные ссылки....................................................................................................................................1

3    Термины и определения.............................................................. 2

4    Конфигурация для оценки качества............................................................................................................2

4.1    Входные и выходные каналы.................................................................................................................2

4.2    Точки входных и выходных оконечных устройств................................................................................3

5    Качество видеосигнала................................................................................................................................3

5.1    Введение.................................................................................................................................................3

5.2    Сквозное воспроизведение тонов.........................................................................................................4

5.3    Сквозное воспроизведение цвета........................................................................................................6

5.4    Сквозные цветовые разности................................................................................................................7

5.5    Сквозное отношение максимального сигнала к шуму (PSNR)..........................................................10

5.6    Сквозная объективная оценка качества видеосигнала.....................................................................13

6    Качество аудиосигнала..............................................................................................................................14

6.1    Воспринимаемое качество аудиосигнала по отношению к полным эталонным сигналам.............14

6.2    Частота дискретизации и разрешение квантования.........................................................................17

6.3    Задержка...............................................................................................................................................17

7    Качество видео- и аудиосигналов в    целом.........................................................................................—18

7.1    Синхронизация аудио- и видеосигнала (синхронизация изображения и речевых сигналов)........18

7.2    Масштабируемость...............................................................................................................................19

7.3    Общее качество испытуемых сигналов..............................................................................................19

Приложение А (справочное) PSNR. определенные в трехмерных пространствах, применяемые

к гипотетическому ухудшению испытуемых сигналов по отношению

к исходным эталонным видеосигналам.............................................................................20

Приложение В (справочное) Сквозная объективная оценка качества видеосигнала

в пространственно-частотной области..............................................................................24

Приложение С (справочное) Описание метода объективного измерения РЕ АО.....................................28

Приложение ДА (справочное) Сведения о соответствии ссылочных международных

стандартов национальным стандартам..........................................................................32

Библиография................................................................................................................................................33

Таблица 6 — Параметры испытуемого сигнала и полученные значения DI и ODG для расширенной версии

Параметр

DI

ODG

Acodsna.wav

1.632

-0.467

Bcodtri.wav

2.000

-0.281

Ccodsax.wav

0.567

-1.300

Dcodryc.wav

1,725

-0.415

Ecodsmg.wav

1.594

-0.489

FcodsM.wav

1.039

-0.877

Fcodtrl .wav

1.555

-0.512

Fcodtr2.wav

0.162

-1.711

Fcodtr3.wav

-0,783

-2.662

Gcodda.wav

1.457

-0.573

Hcodryc.wav

2.410

-0.126

Hcodstr.wav

2,232

-0.187

lcodsna.wav

-2.510

-3.664

Kcodsme.wav

2,765

-0.029

Lcodhrp.wav

1.538

-0.523

Lcodpip.wav

2,149

-0.219

Mcodcla.wav

0.430

-1.435

Ncodsfe.wav

3,163

0.050

ScodcJv.wav

1,972

-0.293

6.2 Частота дискретизации и разрешение квантования

6.2.1    Параметр, подлежащий оценке

Оценивают частоту дискретизации и пропускную способность эталонного и обработанного аудиосигнала.

6.2.2    Метод оценки

Частота дискретизации зависит от полосы пропускания аудиосигналов. Для высококачественных аудиосигналов используется частота дискретизации 48 кГц. Должны быть выбраны значения частоты дискретизации и ширины полосы эталонного и обработанного аудиосигналов.

Разрешение квантования относится к динамическому диапазону аудиосигналов или шума квантования. Для высококачественных аудиосигналов используют линейный (или равномерный) метод квантования. имеющий 16-битное разрешение квантования. Значение разрешения и метод квантования должны быть идентифицированы.

6.2.3    Представление результатов оценки

Должны быть зарегистрированы выбранные и идентифицированные значения.

6.3    Задержка

6.3.1    Параметр, подлежащий оценке

Оценивают время задержки аудиоситалов от аудиовходов до кодера и их принятия, измеренное в секундах.

6.3.2    Метод оценки

Импульсные аудиосигналы должны быть использованы в качестве входных для позиции 2 рисунка 2. Время обработки сигнала между входом позиции 3 и выходом позиции 4 рисунка 2 должно быть измерено в секундах.

17

Введение к международному стандарту

Международная электротехническая комиссия (МЭК) — всемирная организация по стандартизации. включающая в себя все национальные комитеты (национальные комитеты МЭК). Цель МЭК заключается в развитии международного сотрудничества по всем вопросам стандартизации в области электрики и электроники. Для этого, кроме осуществления других видов деятельности. МЭК публикует международные стандарты, технические требования, технические отчеты, технические требования открытого доступа (ТТОД) и руководства (далее — публикации МЭК). Их подготовка возлагается на технические комитеты. Любой национальный комитет МЭК. заинтересованный в объекте рассмотрения. может принять участие в этой подготовительной работе. Международные, правительственные и неправительственные организации, сотрудничающие с МЭК. также принимают участие в этой подготовительной работе. МЭК тесно сотрудничает с Международной организацией по стандартизации (ИСО) на условиях, определенных в соглашении между этими двумя организациями.

Официальные решения или соглашения МЭК по техническим вопросам выражают, насколько это возможно, международное согласованное мнение по относящимся к проблеме вопросам, так как каждый технический комитет имеет представителей от всех заинтересованных национальных комитетов МЭК.

Выпускаемые документы имеют форму рекомендаций для международного использования, публикуются в форме стандартов, технических условий, технических отчетов или руководств и принимаются национальными комитетами МЭК именно в таком качестве.

В целях содействия международной унификации национальные комитеты МЭК обязуются максимально ясно и понятно использовать Публикации МЭК в своих национальных и региональных публикациях. Любое расхождение между стандартами МЭК и соответствующими национальными или региональными стандартами должно быть ясно обозначено в последних.

МЭК не предоставляет никакой маркировки соответствия и не несет ответственности за любое оборудование, заявленное как соответствующее одному из ее стандартов.

Необходимо обратить внимание на то, что некоторые элементы данного технического отчета могут быть предметом патентного права. МЭК не несет ответственности за идентификацию частично или полностью такого патентного права.

Основная задача технических комитетов МЭК заключается в подготовке международных стандартов. Тем не менее технический комитет может внести предложение о публикации технического отчета в том случае, когда он собрал данные, отличные от тех. которые обычно публикуются в качестве международного стандарта, например данные, относящиеся к последним техническим достижениям.

Технические комитеты МЭК не обязаны пересматривать технические отчеты до тех пор. пока предоставляемые ими данные не перостанут считаться действительными или полезными для разработчиков документа.

IEC/TR 62251. который является техническим отчетом, был подготовлен Техническим комитетом ТС 100 «Аудио-, видео- и мультимедийные системы и оборудование».

Текст настоящего технического отчета основан на следующих документах:

Проект документа для голосования

Отчет о голосовании

100/561/DTR

100/662/RVC

Полную информацию о голосовании по одобрению настоящего технического отчета можно найти в вышеуказанном отчете о голосовании.

Настоящая публикация была составлена в соответствии с Директивами ИСО/МЭК. часть 2.

IV

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

СИСТЕМЫ И ОБОРУДОВАНИЕ МУЛЬТИМЕДИА Оценка качества. Системы аудио-, видеосвязи

Multimedia systems and equipment. Quality assessment. Audio-video communication systems

Дата введения — 2019—04—01

1    Область применения

Настоящий стандарт устанавливает параметры, которые должны быть измерены объективными методами, а также методы и условия измерений, процедуры обработки измеренных данных и представления полученной информации для объективной сквозной (здесь и далее по тексту термин «сквозной» обозначает «от начала и до конца») оценки качества систем аудио-, видеосвязи, осуществляемой посредством цифровых сетей. Измерения следует проводить при двухстороннем и полном эталонном сигнале. Предполагается, что системы обеспечены каналами электрических интерфейсов на входе и выходе аудио-, видеосигналов для объективной оценки.

Дополнительные требования для систем, не обеспеченных такими каналами, оставлены для дальнейшего изучения.

2    Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты. Для датированных ссылок применяют только указанное издание ссылочного стандарта, для недатированных — последнее издание ссылочного стандарта (включая все изменения к нему).

IEC 60268-4. Sound system equipment — Part 4: Microphones (Оборудование звуковых систем. Часть 4. Микрофоны)

IEC 60268-5. Sound system equipment — Part 5: Loudspeakers (Оборудование звуковых систем. Часть 5. Громкоговорители)

IEC 61146-1:1994. Video cameras (PAL/SECAM/NTSC) — Methods of measurement — Part t: Nonbroadcast single-sensor cameras [Видеокамеры (PAL/SECAM/NTSC). Методы измерения. Часть 1. Камеры с одним преобразователем, не предназначенные для телевещания]

IEC 61146-2:1997, Video cameras (PAL/SECAM/NTSC) — Methods of measurement — Part 2. Two-and three-sensor professional cameras [Видеокамеры (PAL/SECAM/NTSC). Методы измерения. Часть 2. Профессиональные камеры с двумя и тремя преобразователями]

IEC 61966-2-1:1999 with Amendment 1 (2003). Multimedia systems and equipment — Colour measurement and management — Part 2-1: Colour management — Default RGB colour space — sRGB [Мультимедийные системы и оборудование. Измерение и управление цветом. Часть 2-1. Управление цветом. Цветовое пространство RGB. используемое по умолчанию — sRGB]

IEC 61966-3:2000. Multimedia systems and equipment — Colour measurement and management — Part 3: Equipment using cathode ray tubes (Мультимедийные системы и оборудование. Измерение и управление цветом. Часть 3. Оборудование, использующее электронно-лучевые трубки)

Издание официальное

IEC 61966-4:2000. Multimedia systems and equipment — Colour measurement and management — Part 4: Equipment using liquid crystal display panels (Мультимедийные системы и оборудование. Измерение и управление цветом. Часть 4. Оборудование, использующее жидкокристаллические дисплейные панели)

IEC 61966-5:2000', Multimedia systems and equipment — Colour measurement and management — Part 5: Equipment using plasma display panels (Мультимедийные системы и оборудование. Измерение и управление цветом. Часть 5. Оборудование, использующее плазменные дисплейные панели)

IEC 61966-9:2000", Multimedia systems and equipment — Colour measurement and management — Part 9: Digital cameras (Мультимедийные системы и оборудование. Измерение и управление цветом. Часть 9. Цифровые камеры)

ITU-R BS.1387-1:2001. Method for objective measurements of perceived audio quality (Метод объективных измерений воспринимаемого качества аудиосигнала)

ITU-R ВТ.601-5:1995, Studio encoding parameters of digital television for standard 4:3 and wide-screen 16:9 aspect ratios (Параметры студийного кодирования цифрового телевидения для стандартного форматного соотношения 4:3 и широкоэкранного форматного соотношения 16:9)

ITU-T J.144:2001. Objective perceptual video quality measurement techniques for digital cable television in the presence of a full reference (Методы объективного измерения воспринимаемого качества видеосигнала для цифрового кабельного телевидения при наличии полного эталонного сигнала)

ITU-T Р.931:1998. Multimedia communications delay, synchronization and frame rate measurement (Задержка при передаче мультимедийных данных, синхронизация и измерение частоты кадров)

3    Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1    система аудио-, видеосвязи (audio-video communication system): Система, обрабатывающая аудио-, видео- и, возможно, другие потоки данных синхронизированным в рамках восприятия пользователей способом для передачи и/или обмена информацией, работающая, как предполагается, через локальную или глобальную цифровую сеть.

3.2    DMOS (DMOS): Разность качества исходного и обработанного видеосигнала, оцениваемого на основании средних экспертных оценок (MOS). полученных в результате субъективной оценки испытаний. проведенных группой экспертов по качеству видеосигнала (VQEG).

3.3    PEAQ (PEAQ): Оценка восприятия качества аудиосигнала, определенная согласно ITU-R BS.1387-1.

3.4    PSNR (PSNR): Объективный параметр качества видеосигнала, определяемый отношением пикового сигнала к шуму, который вычисляют из сравнения исходных и обработанных видеокадров.

3.5    VQR (VQR): Объективная оценка качества видеосигнала, заниженная по сравнению с любым объективным параметром благодаря наличию оптимальной корреляции с DMOS.

4    Конфигурация для оценки качества

4.1 Входные и выходные каналы

Аудио- и видеосигнал в аудио-, видеопотоках должны быть зарегистрированы на соответствующих входном и выходном каналах системы аудио-, видеосвязи, как показано на рисунке 1.

' Заменен на IEC 61966-5:2008. Однако для однозначного соблюдения требований настоящего стандарта, выраженного в датированной ссылке, рекомендуется использовать только указанное в этой ссылке издание.

Заменен на IEC 61966-9:2003. Однако для однозначного соблюдения требований настоящего стандарта, выраженного в датированной ссыпке, рекомендуется использовать только указанное в этой ссылке издание.

2


«ДО*

О

Ымрофон


Вход

н-



Вцу нал


■ 1 •    -II-»-


аивд

ч-


©


*4*9


ИЗ

*4*9


Аудоогамл


Гнгпп

< • 111


<1


Пюметасритъ


Рисунок 1 — Модель систем аудио-, видеосвязи


4.2 Точки входных и выходных оконечных устройств

Руководствуясь принципом сквозной оценки качества систем аудио-, видеосвязи, точки для получения необработанных данных должны быть в максимально возможной степени предельными оконечными точками. Методы измерения и характеристики оборудования, входящего в состав систем аудио-. видеосвязи, стандартизованы, например на входные преобразователи, такие как видеокамеры и микрофоны, распространяются МЭК 61146-1. МЭК 61146-2. МЭК 61966-9 и МЭК 60268-4. а на выходные преобразователи, такие как дисплеи видеосигнала и громкоговорители. — МЭК 61966-3, МЭК 61966-4, МЭК 61966-5 и МЭК 60268-5. требования которых могут быть не применимы для сквозной оценки качества систем аудио-, видеосвязи.

Структурная схема оценки качества при двухстороннем и полном эталонных сигналах приведена на рисунке 2.



1    — исходный эталонный аудио- или видеосигнал:

2    -- предварительная подготовка аудио или видеосигнала:

-    уменьшение динамического частотного диапазона аудиосигнала

-    уменьшение размера кадра и частоты кадров видеосигнала для получения пригодности к оценке качества систем аудио-. видеосвязи, при необходимости.

3    -- кодирование с помощью кодера сетевой потоковой передачи с заданной скоростью передачи данных для согласования пропускной способности сквозного сетевого соединения

4    — декодирование с помощью декодера и визуализация полученных данных для получения слышимых и видимых данных:

5    -- сбор данных и расчет оценки качества для предоставления информации, установленной настоящим стандартом

Рисунок 2 — Структурная схема оценки качества


5 Качество видеосигнала

5.1 Введение

В настоящем стандарте для сквозной объективной оценки качества видеосигнала рассмотрены два аспекта:


3


- статические характеристики, такие как воспроизведение тона и воспроизведение цвета, описанные в 5.2 и 5.3:

-динамические характеристики, основанные на потоковой передаче видеокадров в сети, описанные в 5.4, 5.5 и 5.6.

В качестве исходного эталонного видеосигнала, указанного на рисунке 2 (позиция 1). рекомендуется использовать набор наиболее распространенных исходных видеосигналов, например испытательные последовательности канадского научного центра (CRC). Для фактического кодирования потокового видеосигнала в сеть с ограниченной полосой пропускания исходный эталонный сигнал должен быть уменьшен по размеру кадра и скорости передачи, как указано на рисунке 2 (позиция 2), из-за высокой скорости передачи данных и большого размера кадра, при необходимости.

Доступные в настоящее время эталонные видеопоследовательности для динамических характеристик приведены в таблице А. 1. Все источники эталонных видеосигналов, указанные в таблице А. 1. которые были использованы группой экспертов по качеству видеосигнала (VQEG) для проведения субъективных испытаний качества видеосигнала в целях получения разности средних экспертных оценок (DMOS). а также для объективной оценки качества видеосигнала (VRG) согласно ITU-R 10-11Q/56-E1. были использованы в настоящем стандарте с разрешения владельца — канадского научного центра (CRC).

Формат каждого из исходных эталонных видеосигналов состоит из 10 кадров (для ракорда) + видеокадры за 8 с + 10 кадров (для трейлера). Существует два видеоформата 525/60 Гц и 625/50 Гц, однако в настоящем стандарте для оценки качества используют только формат 525/60 Гц, приведенный в таблице А.1.

Каждая строка находится в пиксельном мультиплексированном 4:2:2 компонентном видеоформате в последовательности Cb Y Cr Y... и так далее, закодированной в соответствии с ITU-R ВТ.601-5, где 720 байт/строка для Y. 360 байт/строка для СЬ. а Сг — 360 байт/строка для Сг. Строки соединены последовательно в кадры, а кадры соединены последовательно в форме последовательности файлов.

Формат содержит 720 пикселей (1440 байт) на горизонтальную строку и имеет 486 активных строк на кадр. Размеры кадров составляют 1440x486 = 699840 байт/строка. а размеры последовательности — размер файла из 240 кадров за 8 с + 20 кадров. Таким образом, размер файла составляет 699840 байт/кадр х 260 кадров = 181958 400 байт. 30 кадров/с дает скорость передачи данных 699840 байт/кадр х зо кадров/с х 8 бит = 167961600 бит/с. Поскольку эта скорость передачи данных слишком высокая для обработки обычными персональными компьютерами и потоковой передачи в сети Интернет, исходные испытательные последовательности были уменьшены по размеру кадра до 320x240 пикселей и по формату — до 24-бит/пиксель цветового пространства RGB (вместо цветового пространства YCC) для соответствия типовому видеоформату (AVI) с учетом требований IEC 61966-2-1.

Примечание 1 — Оценка ошибок, проводимая поликсельно. требует уверенного использования крайне высокой степени нормализации. Для нормализации требуется как пространственное, так и временное выравнивание. а также поправки на усиление и смещение. С этой целью следует обратиться к разделу А2 ITU-R 6Q/39-E.

Примечание 2 — Поскольку значения объективных показателей качества в значительной степени зависят от контента видеосигнала, следует в максимально возможной степени использовать различные наиболее распространенные источники видеосигналов.

Примечание 3 — Показатели качества видеосигнала, полученные путем объективной оценки, проведенной согласно разделу 5. должны быть преобразованы в VQR посредством оптимальной корреляции с DMOS. рассматриваемой в ITU-R WP 60.

5.2 Сквозное воспроизведение тонов

5.2.1    Параметры, подлежащие оценке

Оценивают сквозную нелинейность в отношении воспроизведения тонов.

5.2.2    Метод оценки

В качестве исходного эталонного сигнала для позиции 1 рисунка 2 должно быть использовано изображение шкалы серых тонов, установленное МЭК 61146-1. как показано на рисунке 3. Статическое ахроматическое изображение должно быть подготовлено (позиция 2 на рисунке 2) и повторно закодировано как потоковый видеосигнал, переданный в сеть.

4

ГОСТ Р 58245-2018

Рисунок 3 — Изображение шкалы серых тонов, установленное МЭК 61146-1

Полученный потоковый видеосигнал должен быть декодирован и воспроизведен устройством просмотра входящих потоковых видеосигналов. Подлежащие отображению данные изображения должны быть зарегистрированы выходным оконечным устройством.

Данные принятого изображения следует сравнивать по показателям трехкомпонентных данных: R (красный). G (зеленый) и В (синий), усредненных в каждой из соответствующих областей.

5.2.3 Представление результата оценки

Результаты оценки, включающие данные воспроизведения изображения по сравнению с входными данными изображения, должны быть представлены в виде таблицы и графика, как показано в таблице 1 и на рисунке 4. соответственно, вместе с оцениваемой системой аудио-, видеосвязи и спецификацией точки входа-выхода.

Таблица 1 — Пример воспроизведения тонов

Измерение

Спецификами»

Входной сигнал

Выходной сигнал

R. %

G. %

В.*

R

G

8

R

G

В

0

2.0

2.0

2.0

44

43

44

34

39

28

1

4.5

4.5

4.5

63

63

62

55

60

53

2

8.1

8.1

8.1

82

81

82

73

78

69

3

13.0

13.0

13.0

102

102

101

93

98

87

4

19.8

19.8

19.8

123

122

123

115

120

110

5

27.9

27.9

27,9

144

144

144

136

140

128

6

37.8

37.8

37.8

165

164

165

158

163

152

7

48.6

48.6

48.6

184

184

186

174

180

171

8

63.0

63.0

63.0

207

206

208

198

203

195

9

77.3

77.3

77.3

226

227

228

216

219

213

10

89.9

89.9

89.9

243

243

235

217

218

211

ГОСТ P 58245—2018

Уровень выходного сигнала (8-битный)

Рисунок 4 — Пример графика воспроизведения тонов

5.3 Сквозное воспроизведонио цвета

5.3.1    Параметр, подлежащий оценке

Оценивают сквозные сдвиги цвета в цветовом пространстве CIELAB для статического цветного изображения.

5.3.2    Метод оценки

В качестве исходного эталонного сигнала для позиции 1 рисунка 2 должно быть использовано изображение шкалы воспроизведения цвета, установленное МЭК 61146-1. как показано на рисунке 5. Статическое цветное изображение должно быть подготовлено (позиция 2 на рисунке 2) и повторно закодировано как потоковый видеосигнал, переданный в сеть.

Рисунок 5 — Изображение шкалы воспроизведения цвета по МЭК 61146-1

Полученный потоковый видеосигнал должен быть декодирован и воспроизведен устройством просмотра потоковых видеосигналов. Подлежащие отображению данные цветного изображения должны быть зарегистрированы на выходном оконечном устройстве.

Данные принятого изображения должны быть получены в формате трехкомпонентных данных: R (красный). G (зеленый) и В (синий), усредненных по каждой из соответствующих областей.

6